首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Loza MJ  Zamai L  Azzoni L  Rosati E  Perussia B 《Blood》2002,99(4):1273-1281
To determine whether production of type 1 and type 2 cytokines defines discrete stages of natural killer (NK) cell differentiation, cytokine expression was analyzed in human NK cells generated in vitro in the presence of interleukin-15 (IL-15) and/or IL-2 from umbilical cord blood hematopoietic progenitors. Like peripheral NK cells, the CD161(+)/CD56(+) NK cells from these cultures contained a tumor necrosis factor alpha (TNF-alpha)(+)/granulocyte macrophage-colony-stimulating factor (GM-CSF)(+) subset, an interferon gamma (IFN-gamma)(+) subset, mostly included within the former, and very few IFN-gamma(-)/IL-13(+) cells. Instead, most immature CD161(+)/CD56(-) NK cells, detectable only in the cultures with IL-2, produced IL-13, TNF-alpha, and GM-CSF, but not IFN-gamma, and contained an IL-5(+) subset. In short-term cultures with IL-12 and feeder cells, a proportion of the immature cells acquired the ability to produce IFN-gamma. Part of these produced both IFN-gamma and IL-13, irrespective of induced CD56 expression. These in vitro data indicate that ability to produce the type 2 cytokines IL-13 and IL-5 defines CD161(+) NK cells at intermediate stages of differentiation, and is lost upon terminal functional differentiation, concomitant with acquired ability to produce IFN-gamma.  相似文献   

2.
Natural killer (NK) cells are characterized by their ability to mediate spontaneous cytotoxicity against susceptible tumor cells and infected cells. They differentiate from hematopoietic progenitor cells. Patients with X-linked severe combined immunodeficiency (SCID X1) carry mutations in the gamma c cytokine receptor gene that result in lack of both T and NK cells. To assess the role of interleukin-2 (IL-2), IL-7, and IL-15 cytokines, which share gamma c receptor subunit, in NK cell differentiation, we have studied NK cell differentiation from cord blood CD34 (+) cells in the presence of either stem cell factor (SCF), IL-2, and IL-7 or SCF and IL-15. The former cytokine combination efficiently induced CD34 (+) CD7 (+) cord blood cells to proliferate and mature into NK cells, while the latter was also able to induce NK cell differentiation from more immature CD34 (+) CD7 (-) cord blood cells. NK cells expressed CD56 and efficiently killed K562 target cells. These results show that IL-15 could play an important role in the maturation of NK cell from cord blood progenitors. Following retroviral-mediated gene transfer of gamma c into SCID X1 bone marrow progenitors, it was possible to reproduce a similar pattern of NK cell differentiation in two SCID-X1 patients with SCF + IL-2 + IL-7 and more efficiently in one of them with SCF + IL-15. These results strongly suggest that the gamma c chain transduces major signal(s) involved in NK cell differentiation from hematopoietic progenitor cells and that IL- 15 interaction with gamma c is involved in this process at an earlier step than IL-2/IL-7 interactions of gamma c are. It also shows that gene transfer into hematopoietic progenitor cells could potentially restore NK cell differentiation in SCID X1 patients.  相似文献   

3.
Soluble HLA-G (sHLA-G) inhibits natural killer (NK) cell functions. Here, we investigated sHLA-G-mediated modulation of (1) chemokine receptor and NK receptor expression and function and (2) cytokine and chemokine secretion in CD56bright and CD56dim NK cells. sHLA-G-treated or untreated peripheral blood (PB) and tonsil NK cells were analyzed for chemokine receptor and NK receptor expression by flow cytometry. sHLA-G down-modulated (1) CXCR3 on PB and tonsil CD56bright and CD56dim, (2) CCR2 on PB and tonsil CD56bright, (3) CX3CR1 on PB CD56dim, (4) CXCR5 on tonsil CD56dim, and (5) CD94/NKG2A on PB and tonsil CD56brigh) and CD56dim NK cells. Such sHLA-G-mediated down-modulations were reverted by adding anti-HLA-G or anti-ILT2 mAbs. sHLA-G inhibited chemotaxis of (1) PB NK cells toward CXCL10, CXCL11, and CX3CL1 and (2) PB CD56bright NK cells toward CCL2 and CXCL10. IFN-γ secretion induced by NKp46 engagement was inhibited by NKG2A engagement in untreated but not in sHLA-G-treated NK cells. sHLA-G up-regulated secretion of (1) CCL22 in CD56bright and CD56dim and (2) CCL2, CCL8, and CXCL2-CXCL3 in CD56dim PB NK cells. Signal transduction experiments showed sHLA-G-mediated down-modulation of Stat5 phosphorylation in PB NK cells. In conclusion, our data delineated novel mechanisms of sHLA-G-mediated inhibition of NK-cell functions.  相似文献   

4.
Aberrant proliferation, differentiation, and/or migration of progenitors observed in various hematological malignancies may be caused by defects in expression and/or function of integrins. In this study, we have developed a new fluorescent beads adhesion assay that facilitates flow cytometric investigation of lymphocyte function-associated antigen 1 (LFA-1)- and very late activation antigen-4 (VLA-4)-mediated functional adhesion in B-lineage acute lymphoblastic leukemia (ALL) of both the CD10(-) and CD10(+) (leukemic) cell population within one blood or bone marrow sample. Surprisingly, of the 20 B-lineage ALL patients investigated, 17 contained a leukemic cell population with LFA-1- and/or VLA-4-mediated adhesion defects. Five patients contained CD10(+) cells that did not exhibit any LFA-1-mediated adhesion due to the lack of LFA-1 surface expression. The CD10(+) cells from 10 ALL patients expressed LFA-1 that could not be activated by the phorbol ester phorbol 12-myristate 13-acetate (PMA), whereas the CD10(-) cells expressed a functional LFA-1. Seven patients contained CD10(+) cells that expressed a PMA-unresponsive form of VLA-4. The PMA unresponsiveness of the integrins LFA-1 and VLA-4 expressed by the CD10(+) cells may be due to mutations in the integrins itself, in protein kinases, or in other intracellular molecules involved in integrin adhesion. These data clearly demonstrate the importance of investigating integrin function in addition to integrin surface expression. The strikingly high frequency (85%) of adhesion defects in ALL could suggest a causal relationship between integrin-mediated adhesion and B-lineage ALL.  相似文献   

5.
Human immunodeficiency virus (HIV)-1 infection compromises the natural killer (NK) cell function and leads to defective control on virus multiplication. One of the major features of HIV-1 infection is the expansion of a functionally compromised defective NK cell subset (CD56(-)CD16(+)). We analyzed the NK cell subsets in early HIV infection to determine the effect of NK cell perturbation on the viral load set point, a marker of disease progression. We report that the defective NK cells are expanded in early HIV infection within 6-8 months of acquiring infection and are correlated with a higher plasma viral load set point, suggesting its utility as a predictive marker for disease progression. The expression of CD161, a molecular marker responsible for proliferation and differentiation of NK cells, was significantly down-regulated in the defective NK cells as compared to slow progressors (p=0.0009) and healthy controls (p=0.0003) and was correlated with a higher viral load set point in early HIV-1 infection (r=-0.6154, p=0.03), suggesting the probable role of CD161 expression in the impaired proliferation and differentiation of defective NK cells into the functional NK cells in early HIV infection. The reduction in CD161 expression on the defective NK cells in early HIV infection is thus indicative of the role of innate immune cells in early control of HIV infection.  相似文献   

6.
The stages of human natural killer (NK) cell differentiation are not well established. Culturing CD34(+) progenitors with interleukin 7 (IL-7), IL-15, stem cell factor (SCF), FLT-3L, and murine fetal liver cell line (EL08.1D2), we identified 2 nonoverlapping subsets of differentiating CD56(+) cells based on CD117 and CD94 (CD117(high)CD94(-) and CD117(low/-)CD94(+) cells). Both populations expressed CD161 and NKp44, but differed with respect to NKp30, NKp46, NKG2A, NKG2C, NKG2D, CD8, CD16, and KIR. Only the CD117(low/-) CD94(+) population displayed cytotoxicity and interferon-gamma production. Both populations arose from a single CD34(+)CD38(-) Lin(-) cell and their percentages changed over time in a reciprocal fashion, with CD117(high)CD94(-) cells predominating early and decreasing due to an increase of the CD117(low/-)CD94(+) population. These 2 subsets represent distinct stages of NKcell differentiation, since purified CD117(high) CD94(-) cells give rise to CD117(low/-)CD94(+) cells. The stromal cell line (EL08.1D2) facilitated the transition from CD117(high)CD94(-) to CD117(low/-)CD94(+) via an intermediate phenotype (CD117(low)CD94(low/-)). EL08.1D2 also maintained the mature phenotype, preventing the reversion of CD117(low/-)CD94(+) cells to the intermediate (CD117(low)CD94(low/-)) phenotype. An analogous population of CD56(+)CD117(high)CD94(-) cells was found in cord blood. The identified stages of NK-cell differentiation provide evidence for coordinated acquisition of HLA-specific inhibitory receptors (ie, CD94/NKG2A) and function in developing human NK cells.  相似文献   

7.
Perez OD  Mitchell D  Jager GC  Nolan GP 《Blood》2004,104(4):1083-1093
Leukocyte function antigen 1 (LFA-1) is essential for the formation of immune cell synapses and plays a role in the pathophysiology of various autoimmune diseases. We investigated the molecular details of LFA-1 activation during adhesion between cytotoxic cells and a target model leukemia cell. The cytolytic activity of a CD3-CD8+CD56+ natural killer (NK) subset was enhanced when LFA-1 was activated. In a comparison of LFA-1 ligands, intercellular adhesion molecule 2 (ICAM-2) and ICAM-3 promoted LFA-1-directed perforin release, whereas ICAM-1 had little effect. Ligand-induced LFA-1 clustering facilitated perforin release, demonstrating LFA-1 could regulate degranulation mechanisms. LFA-1 induced the activation of src family kinases, Vav1 and p44/42 mitogen-activated protein kinase (MAPK), in human CD56+ NK cells as evidenced by intracellular phospho-epitope measurements that correlated with effector-target cell binding and perforin-granzyme A-mediated cytolytic activity. These results identify novel, specific functional consequence of LFA-1-mediated cytolytic activity in perforin-containing human NK subsets.  相似文献   

8.
The regulatory roles of a number of early-acting growth factors on the generation of natural killer (NK) cells and B cells from primitive progenitors were studied. Experiments focused on the contributions of granulocyte-macrophage colony-stimulates factor (GM-CSF) and interleukin-3 (IL-3) to the regulation of the early events of lymphopoiesis.Two progenitor populations isolated from human fetal liver were studied, CD38(-)CD34(++)lineage(-) (Lin(-)) cells (candidate hematopoietic stem cells [HSCs]) and the more mature CD38(+)CD34(++)Lin(-) cells. The effects of different cytokines on the generation of CD56(+)CD3(-) NK cells and CD19(+) B cells were studied in serum-deprived cultures in the absence of stroma.NK cells generated in vitro were able to kill NK-sensitive target cells, expressed NK-associated marker CD161 (NKR-P1A), but exhibited little or no expression of CD2, CD8, CD16, CD94/NKG2A, or killer cell inhibitory receptors (KIRs). Among the cytokine combinations tested, kit ligand (KL) and IL-15 provided the best conditions for generating CD56(+) NK cells from CD38(+)CD34(++)Lin(-) cells. However, either flk-2/flt3 ligand (FL), GM-CSF, IL-3, or IL-7 could partially substitute KL. All of these cytokines also supported the growth of NK-cell progenitors from candidate HSC, with the combination of IL-15, KL, GM-CSF, and FL generating the greatest number of CD56(+) cells. B cells were generated from both progenitor populations in response to the combined effects of KL, FL, and IL-7. Both B and NK cells were generated with the further addition of IL-15 to these cultures. The in vitro generated B cells were CD10(+), CD19(+), HLA-DR(+), HLA-DQ(+), and some were CD20(+), but no cytoplasmic or surface immunoglobulin M expression was observed. In contrast with NK lymphopoiesis, GM-CSF, IL-3, and IL-15 had no effect on the generation of B cells from CD38(-)CD34(++)Lin(-) cells, and GM-CSF inhibited B-cell generation from CD38(+)CD34(++)Lin(-) progenitors. These findings indicate a differential regulation of NK and B lymphopoiesis beginning in the early stages of hematopoiesis as exemplified by the distinctive roles of IL-7, IL-15, GM-CSF, and IL-3.  相似文献   

9.
10.
Because lymphoid progenitors can give rise to natural killer (NK) cells, NK ontogeny has been considered to be exclusively lymphoid. Here, we show that rare human CD34(+) hematopoietic progenitors develop into NK cells in vitro in the presence of cytokines (interleukin-7, interleukin-15, stem cell factor, and fms-like tyrosine kinase-3 ligand). Adding hydrocortisone and stromal cells greatly increases the frequency of progenitor cells that give rise to NK cells through the recruitment of myeloid precursors, including common myeloid progenitors and granulocytic-monocytic precursors to the NK-cell lineage. WNT signaling was involved in this effect. Cells at more advanced stages of myeloid differentiation (with increasing expression of CD13 and macrophage colony-stimulating factor receptor [M-CSFR]) could also differentiate into NK cells in the presence of cytokines, stroma, and hydrocortisone. NK cells derived from myeloid precursors (CD56(-)CD117(+)M-CSFR(+)) showed more expression of killer immunoglobulin-like receptors, a fraction of killer immunoglobulin-like receptor-positive-expressing cells that lacked NKG2A, a higher cytotoxicity compared with CD56(-)CD117(+)M-CSFR(-) precursor-derived NK cells and thus resemble the CD56(dim) subset of NK cells. Collectively, these studies show that NK cells can be derived from the myeloid lineage.  相似文献   

11.
Tang Q  Ahn YO  Southern P  Blazar BR  Miller JS  Verneris MR 《Blood》2011,117(15):4052-4055
Human secondary lymphoid tissues (SLTs) contain interleukin-22 (IL-22)-producing cells with an immature NK phenotype. Given their location, these cells are difficult to study. We have generated large numbers of NK22 cells from hematopoietic stem cells. HSC-derived NK22 cells show a CD56(+)CD117(high)CD94(-) phenotype, consistent with stage III NK progenitors. Like freshly isolated SLT stage III cells, HSC-derived NK22 cells express NKp44, CD161, CCR6, IL1 receptor, AHR, and ROR-γτ. IL-1β and IL-23 stimulation results in significant IL-22 but not interferon-γ production. Supernatant from these cells increases CD54 expression on mesenchymal stem cells. Thus, IL-22-producing NK cells can be generated in the absence of SLT. HSC-derived NK22 cells will be valuable in understanding this rare NK subset and create the opportunity for human translational clinical trials.  相似文献   

12.
In the normal developmental pathway of natural killer (NK) cells, pre-NK cells express CD161, immature NK cells express CD161 and CD56, and mature NK cells express CD161, CD56 and CD94. To identify the normal counterpart of NK cells from which neoplastic cells originate, surface antigens were analysed. Blastic NK-cell lymphoma/leukaemia lacked CD94 and CD161 but had CD56. Aggressive NK-cell leukaemia/lymphoma and nasal NK-cell lymphoma, although morphologically immature, expressed both CD56 and CD94 and strong NK activity. Cells from chronic NK lymphocytosis expressed CD56 and CD94.  相似文献   

13.
Chemerin is a chemotactic agonist recently identified as the ligand of ChemR23, a serpentine receptor expressed by mononuclear phagocytes and dendritic cells (DCs). This study shows that blood CD56(low)CD16(+) natural killer (NK) cells selectively express functional ChemR23 and that this receptor is coexpressed with CXCR1, the CXCL8 receptor, and the KIR receptors. In vitro culturing of NK cells with IL-2 or IL-15 induced a delayed and time-dependent down-regulation of ChemR23 that was associated with the inhibition of NK cell migration to chemerin. Biopsies obtained from patients with oral lichen planus presented an infiltration of CD94(+)CD3(-)CD56(+) NK cells that coexpressed ChemR23. The same biopsies were infiltrated by myeloid, DC-SIGN(+) and plasmacytoid, CD123(+)BDCA2(+), ChemR23(+) dendritic cells that were occasionally associated with NK cells. In the same histologic sections, chemerin was expressed by inflamed dermal endothelium. These findings propose a role for the ChemR23/chemerin axis in the recruitment of blood NK cells and strongly implicate chemerin as a key factor for the colocalization of NK cells and DC subsets in pathologic peripheral tissues.  相似文献   

14.
Natural killer (NK) T cells are innate CD1d-restricted immune cells involved in regulation of immune tolerance, tumor immunity, and immunity to infectious pathogens. Human alpha-chain variable gene segment 24 (Valpha24) NK T cells exist in the periphery as two functionally distinct subsets: one CD4+ and one CD4- subset. However, the developmental pathway of human Valpha24 NK T cells is not well understood. Here, we show that Valpha24 NK T cells develop in the fetal thymus. The relative number of intrathymic NK T cell precursors decline in a linear manner with gestational age, and they are very rare in the neonatal thymus, indicating that these cells preferentially develop in the early fetal thymus. Their restriction element, CD1d, is expressed by a vast majority of thymocytes. A majority of intrathymic Valpha24 NK T cell progenitors are CD4+, whereas a minority are CD4/8(+/+). CD4+ Valpha24 NK T cell precursors show features of mature NK T cells, such as high levels of their semiinvariant T cell receptor and CD3 and some expression of CD161, whereas the CD4/8(+/+) precursors seem less mature. The cytokine IL-7 shows a biphasic effect on Valpha24 NK T cell progenitors in fetal thymic organ culture, with high doses driving proliferation of immature CD161-progenitors and low doses supporting survival and maturation. Thus, the data demonstrate that human Valpha24 NK T cells of the CD4+, but not the CD4-, subset develop in the early fetal thymus. Furthermore, data suggest an intrathymic pathway of CD4+ Valpha24 NK T cell development that is regulated by IL-7.  相似文献   

15.
AIM: To investigate the role of local colonic mucosal NK receptor-positive T (NKR+ T) cells in the regulation of intestinal inflammation, we analyzed the population and function of these cells in ulcerative colitis (UC). METHODS: Colonic mucosal tissues were obtained from colonoscopic biopsies of the descending colon from 96 patients with UC (51 endoscopically uninflamed, 45 inflamed) and 18 normal controls. Endoscopic appearance and histologic score at the biopsied site were determined by MaLts' classification. A single cell suspension was prepared from each biopsy by collagenase digestion. Two NKR^+ T cell subsets, CD56^+ (CD56^+CD3^+) T cells and CD161+ (CD161^+CD3^+) T cells, were detected by flow cytometric analysis. Intracellular cytokine analysis for anti-inflammatory cytokine interleukin-10 (IL-10) was performed by in vitro stimulation with phorbol-myristateacetate (PMA) and ionomycin. RESULTS: CD56^+ T cells and CD161^+ T cells are present in the normal human colon and account for 6.7% and 21.3% of all mononuclear cells, respectively. The populations of both CD56+ T cells and CD161^+ T cells were decreased significantly in the inflamed mucosa of UC. In contrast, the frequency of conventional T cells (CD56 CD3^+ cells and CD161CD3^+ cells) was similar among the patient and control groups. The populations of NKR^+ T cells were correlated inversely with the severity of inflammation, which was classified according to the endoscopic and histologic Marts' criteria. Interestingly, approximately 4% of mucosal NKR+ T cells expressing IL-10 were detected by in vitro stimulation with PMA and ionomycin.CONCLUSION: Selective reduction in the population of colonic mucosal NKR+T cells may contribute to the development of intestinal inflammation in UC.  相似文献   

16.
17.
The two major functions of human natural killer (NK) cells are conventionally associated with distinct cell subsets. Thus, cytolytic activity is mostly confined to the CD56(dim)CD16(+) subset, whereas cytokine production is generally assigned to CD56(bright)CD16(+/-) cells. In this study, we reevaluated the functional capabilities of these NK subsets with regard to the production of IFN-γ at different time points after cell triggering via NKp46 and NKp30 activating receptors. Different from previous studies, cytokine production was also assessed at early intervals. We show that CD56(dim) NK cells produce IFN-γ already at 2 to 4 h, whereas no cytokine production is detected beyond 16 h. In contrast, CD56(bright) cells release IFN-γ only at late time intervals (>16 h after stimulation). The rapid IFN-γ production by CD56(dim) NK cells is in line with the presence of IFN-γ mRNA in freshly isolated cells. Rapid IFN-γ production was also induced by combinations of IL-2, IL-12, and IL-15. Our data indicate that not only cytolytic activity but also early IFN-γ production is a functional property of CD56(dim) NK cells. Thus, this subset can assure a rapid and comprehensive NK cell intervention during the early phases of innate responses.  相似文献   

18.
19.
Type 17 programmed CD161(hi)CD8α(+) T cells contribute to mucosal immunity to bacteria and yeast. In early life, microbial colonization induces proliferation of CD161(hi) cells that is dependent on their expression of a semi-invariant Vα7.2(+) TCR. Although prevalent in adults, CD161(hi)CD8α(+) cells exhibit weak proliferative and cytokine responses to TCR ligation. The mechanisms responsible for the dichotomous response of neonatal and adult CD161(hi) cells, and the signals that enable their effector function, have not been established. We describe acquired regulation of TCR signaling in adult memory CD161(hi)CD8α(+) T cells that is absent in cord CD161(hi) cells and adult CD161(lo) cells. Regulated TCR signaling in CD161(hi) cells was due to profound alterations in TCR signaling pathway gene expression and could be overcome by costimulation through CD28 or innate cytokine receptors, which dictated the fate of their progeny. Costimulation with IL-1β during TCR ligation markedly increased proinflammatory IL-17 production, while IL-12-induced Tc1-like function and restored the response to TCR ligation without costimulation. CD161(hi) cells from umbilical cord blood and granulocyte colony stimulating factor-mobilized leukaphereses differed in frequency and function, suggesting future evaluation of the contribution of CD161(hi) cells in hematopoietic stem cell grafts to transplant outcomes is warranted.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号