首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous experiments have suggested that 5-HT3 antagonists such as ondansetron may alter reward-related behaviour that is dependent in part upon raised mesolimbic dopamine activity. However, the evidence for this is far from conclusive. One major behavioural role of dopamine is in the control of behaviour elicited by conditioned rewarding stimuli. To date, the effects of 5-HT3 antagonists on this function of mesolimbic dopamine have not been examined. Two experimental procedures were employed to examine the effects of ondansetron (10 and 100 μg/kg) on the acquisition of responding for conditioned reward, and on the response potentiating effect of intra-accumbens d-amphetamine (10 μg). These effects were compared to those elicited by the dopamine antagonist α-flupenthixol (0.1 mg/kg). In the first procedure, rats were trained to associate food pellet delivery with a conditioned stimulus (CS). Rats subsequently allowed to respond on a lever delivering this CS, and on an inactive lever, showed a greater preference for the lever delivering the CS, indicating that this CS functioned as a conditioned reward (CR). Ondansetron administered during the conditioning phase did not alter subsequent responding for the CR, but α-flupenthixol induced a small but significant reduction in responding on the CR lever. These results suggest that blockade of dopamine receptors, but not 5-HT3 receptors interfere with the learning of stimulus reward relationships. In the second procedure, d-amphetamine injected into the nucleus accumbens markedly potentiated responding for CR. Ondansetron at 10 μg/kg induced a small attenuation of this effect, without altering responding in its own right. However, at a higher dose (100 μg/kg) ondansetron plus amphetamine treatment significantly enhanced responding on the inactive lever. At both doses, the net effect of ondansetron was to produce a subtle impairment in the allocation of responses such that the differential responding on the CR versus NCR lever was diminished. In contrast to these effects α-flupenthixol significantly attenuated d-amphetamine’s selective enhancement of responding for conditioned reward, as well as impairing the ability of the conditioned reward to elicit and maintain behaviour. These results confirm the role of dopamine in responding for conditioned reward, and suggest a possible modulators role for 5-HT3 receptors in this process. However, the effects of ondansetron on the acquisition of, and responding for, conditioned reward are clearly different from those induced by blockade of dopamine receptors. Received:4 December 1996/Final version:30 April 1997  相似文献   

2.
These studies investigated the effects of the 5-hydroxytryptamine (5-HT) releaser, and re-uptake inhibitor,d-fenfluramine, and the non-selective 5-HT receptor antagonist metergoline, on responding for conditioned reward (CR), and on the potentiation of responding for CR following amphetamine injected into the nucleus accumbens. Water deprived rats were trained to associate a compound stimulus with water delivery during a conditioning phase. During a test phase, water was not delivered but the compound stimulus was delivered according to a random ratio 2 schedule following a response on one of two levers; responding on the other lever was not reinforced. Overall, rats responded at a higher rate on the lever delivering the CR.d-Amphetamine (1, 3 and 10 µg) injected into the nucleus accumbens dose-dependently enhanced responding on the CR lever. Treatment withd-fenfluramine (0.5 and 1 mg/kg) reduced responding for the CR, and abolished the potentiating effect ofd-amphetamine. Responding on the inactive lever was also reduced by 1 mg/kg but not 0.5 mg/kgd-fenfluramine. The reduction ofd-amphetamine's effect on responding for CR was prevented by prior treatment with the 5-HT receptor antagonist metergoline (1 mg/kg). Control experiments showed that changes in thirst and motor performance, as well as deficits in learning ability, cannot account for the effects ofd-fenfluramine in this paradigm. In a separate experiment, 1 mg/kg metergoline failed to enhance responding for CR, and to augment the response potentiating effect of a low dose (2 µg) ofd-amphetamine injected into the nucleus accumbens. Thus, elevating brain 5-HT activity appears to reduce the ability of secondary reinforcing stimuli to elicit and maintain behaviour, and antagonizes the effects of enhanced dopamine activity within the nucleus accumbens. However, reduced 5-HT function induced by blockade of 5-HT1/2 receptors does not appear to influence responding for CR, or the response potentiating effect ofd-amphetamine. These results suggest that 5-HT may play an important role in mediating incentive motivation.  相似文献   

3.
Injection ofd-amphetamine into the nucleus accumbens potentiates responding for stimuli paired with a primary reward. A previous study showed that this potentiating effect ofd-amphetamine on responding for conditioned reward (CR) was attenuated by peripherally injectedd-fenfluramine, a 5-hydroxytryptamine (5-HT) releaser and re-uptake inhibitor. The present experiments further examined the effects of manipulating 5-HT function within the nucleus accumbens on responding for CR, and on the potentiation of CR responding following intra-accumbens injection ofd-amphetamine. Water deprived rats were trained to associate a compound stimulus with water delivery during a conditioning phase. During a test phase water was not delivered, but the compound stimulus was delivered according to a random ratio 2 schedule following a response on one of two levers. Rats responded at a higher rate on the lever delivering this CR.d-Amphetamine (10 g) injected into the nucleus accumbens enhanced responding on the CR lever. Co-injections of 5-HT (5 and 10 g) into the nucleus accumbens abolished the response-potentiating effect ofd-amphetamine but were without effect on the base-line level of responding for CR. This reduction by 5-HT of the response potentiating effect ofd-amphetamine was prevented by prior treatment with the 5-HT receptor antagonist metergoline (1 mg/kg). Responding for water was not altered by 5-HT and so the effects of 5-HT on responding for CR cannot be due to a change in the motivation to seek the primary reward. Thus, elevating 5-HT activity within the nucleus accumbens antagonises the effects ofd-amphetamine on responding for CR within the nucleus accumbens. These results suggest that 5-HT within the nucleus accumbens may play an important role in mediating incentive motivation by modulating dopaminergic neurotransmission.  相似文献   

4.
These experiments examined the role of dopamine-opiate interactions in the ventral tegmental area (VTA) and nucleus accumbens in the mediation of reinforcement-related behaviour. It has been shown previously that opiates induce a dopamine-dependent increase in locomotor activity in rats when infused into the VTA, and a dopamine-independent hyperactivity when infused into the nucleus accumbens. The present study investigated the generality and significance of these two findings, by examining dopamine-opiate interactions in the control over behaviour exerted by a conditioned reinforcer (CR), an arbitrary stimulus which gains control by association with primary reinforcement. Rats were trained to associate a light/noise stimulus with sucrose reinforcement, and the efficacy of the CR in controlling behaviour was assessed by measuring its ability to support a new lever pressing response. Responding on one lever (CR lever) produced the CR, responding on the other lever had no programmed consequences. In experiment 1, intra-accumbens infusions ofd-amphetamine (10 µg), the D1 dopamine receptor agonist SKF-38393 (0.1 µg), the D2 dopamine receptor agonist LY-171555 (quinpirole; 0.1 µg) or the opiate receptor agonist [d-Ala2]-methionine enkephalinamide (DALA; 1 µg) selectively increased responding on the CR lever. Infusion with DALA intra-VTA had no effect. However, pretreatment with DALA intra-VTA (10 × 1 µg/day) subsequently reduced the selectivity of the response to infusions intra-accumbens withd-amphetamine or SKF-38393, and blocked the response to LY-171555 or DALA. Pretreatment also shifted to the right the dose-response function for DALA intra-accumbens. In experiment 2, intra-accumbens infusions ofd-amphetamine, SKF-38393, LY-171555 or DALA again increased responding on the CR lever only. Pretreatment with intra-accumbensd-amphetamine (5 × 1 µg/day) reduced the selectivity of the response subsequently tod-amphetamine, and blocked the response to SKF-38393, LY-171555 or DALA. In experiment 3, intra-accumbens infusions of the -opiate receptor agonist [d-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (0.003–0.1 µg), or the -opiate receptor agonist [d-Pen2, 5]-enkephalin (0.03–1 µg) enhanced selectively responding on the CR lever. Thus, the dopamine-dependent locomotor-stimulant properties of intra-VTA infusions of opiates are associated with impaired conditioned reinforcer efficacy. Finally, repeated stimulation of the mesoaccumbens dopamine pathway may compromise the dopamine-independence of the opiate system within the nucleus accumbens.  相似文献   

5.
Intra-accumbens d-amphetamine enhances responding for reward-related stimuli (conditioned reinforcers, CRs), whereas intra-caudate d-amphetamine has only weak and variable effects (Taylor and Robbins 1984). The present experiment further examined the involvement of the nucleus accumbens and the role of dopamine (DA) in this effect. Thirsty rats were trained to associate a flash of a light and movement of a dipper (CR) with water. After implantation of permanent guide cannulae aimed at the nucleus accumbens, they were assigned to one of four groups, receiving either bilateral 6-OHDA (4 mg/ml free base in 2 1 0.1% ascorbic acid/0.9% saline) or sham (vehicle) infusions into the nucleus accumbens or the caudate nucleus. In the test phase, two novel levers were available. Responding on one lever (CR lever) produced the light and dipper stimuli without water presentation, whereas responding on the other (NCR lever) had no effect. All four groups received four counterbalanced intra-accumbens infusions of d-amphetamine (3, 10, 20 g/2 l) or vehicle. On the 5th test day, subjects were pretreated subcutaneously with apomorphine (0.1 mg/kg). Intra-accumbens d-amphetamine in both sham-lesioned groups produced a dose-dependent increase in responding on the CR lever, but no significant change on the NCR lever. No selective increases in responding on either lever were found in animals with 6-OHDA-induced depletion of DA (>80%) in the nucleus accumbens following intra-accumbens d-amphetamine; however, in subjects with DA depletion of the posterior caudate nucleus (>80%), increases in responding on the CR lever were observed to be similar in magnitude to those of both the sham-lesioned groups. Following systemic administration of apomorphine, only rats in the nucleus-accumbens-lesioned group continued to respond, preferring the CR lever, thus suggesting the involvement of DA receptors in these effects. These results indicate that enhanced responding for CR following administration of psychomotor stimulant drugs is critically dependent on dopaminergic activation of the nucleus accumbens, rather than the caudate nucleus.  相似文献   

6.
Stimulant drugs have been shown to enhance the control over behaviour exerted by stimuli previously correlated with primary reinforcers, termed conditioned reinforcers (CR). Experiment 1 examined the possible neuroanatomical specificity of the enhancement of conditioned reinforcement following intracerebral injections ofd-amphetamine. Thirsty rats were trained to associate, a light with water. In the test phase, water was no longer presented but the light (CR) was intermittently produced by responding on one of two novel levers. Rats with bilateral guide cannulae aimed at the nucleus accumbens, posterior caudate nucleus, or medio-dorsal nucleus of the thalamus received four counterbalanced microinfusions ofd-amphetamine (10, 20, 30 g/2 l) or vehicle (control) over 4 test days. There was a dose-dependent selective increase in responding on the lever that produced the light (CR) with intra-accumbensd-amphetamine infusions. Quantitatively similar, but much more variable effects were found with intra-caudate infusions and no effects following intra-thalamicd-amphetamine. Experiment 2 provided evidence that the enhanced control over responding by a CR with intra-accumbensd-amphetamine is behaviourally specific. Three groups of rats received a compound tone — plus —light stimulus that was positively, negatively or randomly correlated with water during training. Intra-accumbensd-amphetamine produced selective increases in responding only if the contingent stimulus had been positively correlated. The results suggest that the nucleus accumbens may play an important role ind-amphetamine's enhanced control over behaviour exerted by conditioned reinforcers.  相似文献   

7.
 Serotonin (5-HT) afferents may modulate the dopamine mesoaccumbens circuit, which has been shown to be critically involved in the locomotor stimulatory, discriminative stimulus, and rewarding properties of cocaine. In the present study, we investigated the role of 5-HT1A receptors in the ventral tegmental area (VTA) in mediating the discriminative stimulus effects of cocaine. Male Sprague-Dawley rats were trained to discriminate cocaine (10 mg/kg) from saline in a two-lever, water-reinforced FR 20 task. After acquiring the cocaine-saline discrimination, rats were stereotaxically implanted with bilateral guide cannulae into the VTA or adjacent substantia nigra reticulata (SNR). Intraperitoneal administration of cocaine (0.625–10 mg/kg) produced a dose-related increase in drug-lever responding. Both intra-VTA and intra-SNR infusion of cocaine (12.5–50 μg/0.5 μl/side) engendered primarily saline-like responding. Microinjection of the 5-HT1A agonist 8-hydroxy-2-(di-N-propylamino) tetralin (DPAT; 0.1–10 μg/0.5 μl/side) or the 5-HT1A antagonist WAY 100635 (0.01–1.0 μg/0.5 μl/side) into the VTA or SNR did not substitute for the systemic cocaine cue. Further, intra-VTA or intra-SNR DPAT or WAY 100635 in combination with systemic doses of cocaine did not alter (i.e., attenuate or potentiate) the systemic cocaine cue. Overall, these data indicate that 5-HT1A receptors in the VTA do not mediate or modulate the discriminative stimulus effects of cocaine in the rat. Received: 15 April 1997 / Final version: 21 October 1997  相似文献   

8.
Limbic innervation of the nucleus accumbens via the ventral subiculum/hippocampus and basolateral area of the amygdala has been shown to determine dissociable aspects of behaviour controlled by stimuli associated with natural rewards. However, the respective contributions of the ventral subiculum and amygdala to behaviour governed by drug-associated stimuli remain to be determined. Experiments consisted of two phases: drug-stimulus training, and subsequent stimulus-only testing. Initial training sessions were of two alternating forms. During drug sessions, responding upon one lever resulted in an infusion of 1 μg d-amphetamine into the nucleus accumbens, whilst during saline sessions d-amphetamine was replaced with saline. Each infusion (drug or saline) was preceded with either a light, or tone. Responding upon a control lever had no programmed consequences. Following training, the levers were retracted, and instead two novel vertical bars were extended from the chamber ceiling. Movement of one bar produced the drug-associated stimulus, whilst the alternative bar produced the saline-associated stimulus. Infusions of the AMPA receptor antagonist CNQX into the ventral subiculum or basolateral area of the amygdala (0, 0.2, 2.0 nmol) were made immediately before the start of each session. Intra-basolateral area of the amygdala CNQX reduced responding upon the drug-associated stimulus bar, but at the same time increased responding upon the saline-associated stimulus bar. By contrast, intra-ventral subiculum CNQX reduced drug-associated stimulus responding selectively. Neither manipulation affected levels of activity within the operant chamber extraneous to the bar-pushing response. Hence, the basolateral area of the amygdala appeared to have determined the degree of discriminative control exerted over behaviour by the drug-associated stimulus, whilst the ventral subiculum is suggested to have determined the efficacy of the conditioned reward. Received: 24 October 1996/Final version: 11 December 1996  相似文献   

9.
The pharmacological properties of 5-hydroxytryptamine (5-HT) receptors positively coupled to adenylyl cyclase in the rat hippocampus were investigated using selective agonists and antagonists. 5-HT (0.008–125 μM) stimulated cyclic AMP formation in homogenates of rat hippocampus in a concentration-dependent manner. The maximal increase in cyclic AMP formation occurred at 1 μM (141 ± 6%) and the half-maximal effect (EC50) at 50 ± 22 nM. Cyclic AMP accumulation induced by 1 μM 5-HT was partly inhibited by the selective 5-HT1A receptor antagonist WAY 100,635 (1 μM), the selective 5-HT4 receptor antagonist SB 203,186 (1 μM), and the 5-HT2A/C/ 5-HT7 receptor antagonist mesulergine (25 μM). WAY 100,635, SB 203,186 and mesulergine inhibited the effect of 5-HT (1 μM) by 47%, 33% and 49%, respectively. The combination of WAY 100,635 (1 μM) with SB 203,186 (1 μM) or mesulergine (25 μM) resulted in stronger inhibition than with each antagonist alone, and the combination of all three antagonists produced almost total blockade (95%) of 5-HT-induced cyclic AMP accumulation. 5-Carboxamidotryptamine (5-CT; 0.008–125 μM), a 5-HT1/5-HT7 receptor agonist, and SDZ 216–454 (0.008– 125 μM), a selective 5-HT4 receptor agonist, concentration-dependently stimulated cyclic AMP formation, but the maximal effect of each agonist was smaller than that of 5-HT alone. SDZ 216–454 (5 μM) and 5-CT (5 μM) in combination stimulated cyclic AMP formation in an additive manner. 8-OH-PIPAT and 8-OH-DPAT, two selective 5-HT1A agonists, produced a small but significant increase in cyclic AMP formation at concentrations above 0.04 μM and 10 μM, respectively. These findings suggest that at least three 5-HT receptor subtypes, i.e. 5-HT1A, 5-HT7 and 5-HT4 receptors, are involved in mediating 5-HT-induced cyclic AMP formation in rat hippocampus. Received: 28 October 1998 / Accepted: 16 March 1999  相似文献   

10.
The present experiment examined changes in the ability of the selective 5-HT3 receptor agonist, 1-(m-chlorophenyl)-biguanide (mCPBG), to facilitate K+-induced dopamine (DA) release during withdrawal from continuous cocaine administration. Rats were withdrawn from continuous cocaine administration (40 mg/kg per day cocaine for 14 days) for 7 days, and then slices from the nucleus accumbens obtained. Following an equilibration period, the slices were perfused with 0, 12.5, 25, or 50 μM mCPBG in the absence and presence of 25 mM K+. The samples were assayed for DA content by HPLC with electrochemical detection. Continuous cocaine administration significantly attenuated the ability of mCPBG to facilitate K+-induced DA overflow compared to saline control rats. These results suggest that continuous cocaine administration functionally down-regulates 5-HT3 receptors in the nucleus accumbens. These results further suggest that 5-HT3 receptor subsensitivity may represent a partial mechanism for the tolerance induced by continuous cocaine administration. Received: 19 June 1996 / Final version: 25 October 1996  相似文献   

11.
The effect of 5-HT1B receptor stimulation on dopamine-mediated reinforcement in rats was investigated using intravenous self-administration of the selective dopamine uptake inhibitor GBR-12909 on an FR5 schedule of reinforcement. Pretreatment with the 5-HT1A/1B receptor agonist CGS-12066B (1–10 mg/kg, IP) dose-dependently reduced the self-administration of GBR-12909 (83 μg/injection) by increasing the interval between drug injections, consistent with a enhancement of the reinforcing effects of GBR-12909. Additionally, CGS-12066B pretreatment (3 mg/kg, IP) shifted the dose-effect function for GBR-12909 self-administration to the left. Pretreatment with the selective 5-HT1A receptor agonist 8-OH-DPAT (0.03– 1.0 mg/kg, SC) had no significant effect on GBR-12909 self-administration (83 μg/injection), indicating that the effect of CGS-12066B is not mediated by the 5-HT1A receptor. Finally, CGS-12066B pretreatment (1–10 mg/kg, IP) did not alter the self-administration of cocaine (0.03–0.5 mg/injection), suggesting that the simultaneous stimulation of multiple 5-HT receptor subtypes by the indirect 5-HT agonist properties of cocaine may mask the effect of 5-HT1B receptor stimulation on DA-mediated reinforcement. Received: 5 February 1996/Final version: 20 June 1996  相似文献   

12.
The 5-HT2 receptor antagonist, ritanserin, reduces alcohol intake in rats and the nucleus accumbens (NAC) has been proposed as a site of action for the drug. Recent microdialysis studies have shown that acute subcutaneous (SC) administration of ritanserin increases extracellular 5-HT levels in the NAC. The present study evaluated, in genetically heterogeneous rats with developed preference for 3% ethanol, whether the attenuation of ethanol intake induced by ritanserin might be related to its effect on the synaptic availability of 5-HT in the NAC. Damaging 5-HTergic neurons by intracerebroventricular infusion of 5,7-dihydroxytryptamine (5,7-DHT) abolished the effect of ritanserin on ethanol consumption. Injections of the 5-HT3 receptor antagonist MDL 72222 into the NAC significantly reduced the inhibitory effect of SC injection of ritanserin, 1 mg/kg, and completely abolished the effect of ritanserin, 0.1 mg/kg. Subcutaneous injections of MDL 72222, 0.3 mg/kg 3times/day, suppressed the effect of SC ritanserin, 0.1 mg/kg. The present findings, together with those of previous experiments showing that the tryptophan hydroxylase inhibitor p-chlorophenylalanine abolishes the effect of ritanserin, support the hypothesis that its effect on ethanol intake may be due to increased synaptic availability of 5-HT into the NAC. Received: 22 March 1996/Final version: 10 July 1996  相似文献   

13.
Rationale  Social instigation is used in rodents to induce high levels of aggression, a pattern of behavior with certain parallels to that of violent individuals. This procedure consists of a brief exposure to a provocative stimulus male, before direct confrontation with an intruder. Studies using 5-HT1A and 5-HT1B receptor agonists show an effective reduction in aggressive behavior. An important site of action for these drugs is the ventral orbitofrontal cortex (VO PFC), an area of the brain which is particularly relevant in the inhibitory control of aggressive and impulsive behavior. Objectives  The objectives of the study are to assess the anti-aggressive effects of 5-HT1A and 5-HT1B agonist receptors [8-hydroxy-2-(di-n-propylamino) tetralin hydrobromide (8-OH-DPAT) and CP-93,129] in the VO PFC of socially provoked male mice. To confirm the specificity of the receptor, 5-HT1A and 5-HT1B antagonist receptors (WAY-100,635 and SB-224,289) were microinjected into the same area, in order to reverse the agonist effects. Results  8-OH-DPAT (0.56 and 1.0 μg) reduced the frequency of attack bites. The lowest dose of CP-93,129 (0.1 μg) also decreased the number of attack bites and lateral threats. 5-HT1A and 5-HT1B receptor agonists differed in their effects on non-aggressive activities, the former decreasing rearing and grooming, and the latter, increasing these acts. Specific participation of the 1A and 1B receptors was verified by reversal of anti-aggressive effects using selective antagonists WAY-100,635 (10.0 μg) and SB-224,289 (1.0 μg). Conclusions  The decrease in aggressiveness observed with microinjections of 5-HT1A and 5-HT1B receptor agonists into the VO PFC of socially provoked mice, supports the hypothesis that activation of these receptors modulates high levels of aggression in a behaviorally specific manner.  相似文献   

14.
The present study used a three-choice operant drug discrimination procedure to determine if NMDA-mediated discriminative stimulus effects could be separated from other stimulus effects of 2.0 g/kg ethanol. Adult male Long-Evans rats (n = 7) were trained to discriminate dizocilpine (0.17 mg/kg; IG) from ethanol (2.0 g/kg; IG) from water (4.7 ml; IG) using food reinforcement. Substitution tests were conducted following administration of the GABAA positive modulators allopregnanolone (5.6–30.0 mg/kg; IP), diazepam (0.3–10.0 mg/kg; IP) and pentobarbital (1.0–21.0 mg/kg; IP), the non-competitive NMDA antagonist phencyclidine (0.3–10.0 mg/kg; IP), the 5-HT1 agonists TFMPP (0.3–5.6 mg/kg; IP) and RU 24969 (0.3–3.0 mg/kg; IP), and isopropanol (0.10–1.25 g/kg; IP). Allopregnanolone, diazepam and pentobarbital substituted completely (>80%) for ethanol. Isopropanol partially (77%) substituted for ethanol. Phencyclidine substituted completely for dizocilpine. RU 24969 and TFMPP did not completely substitute for either training drug, although RU 24969 partially (62%) substituted for ethanol. Successful training of this three-choice discrimination indicates that the discriminative stimulus effects of 0.17 mg/kg dizocilpine were separable from those of 2.0 g/kg ethanol. The finding that attenuation of NMDA-mediated effects of ethanol occurred without altering significantly GABAA- and 5-HT1-mediated effects suggests that the NMDA component may be independent of other discriminative stimulus effects of 2.0 g/kg ethanol. Received: 18 November 1997 / Final version: 10 February 1998  相似文献   

15.
The modulation of extracellular 5-hydroxytryptamine (5-HT) in the central nucleus of the amygdala (CeA) by 5-HT1A receptors was studied by intracerebral microdialysis in awake and freely moving rats. Local administration of 1 μM tetrodotoxin (TTX), 60 mM K+ and perfusion with Ca2+-free Ringer containing EGTA confirmed that the major part of dialysate 5-HT levels from the CeA is of neuronal origin. Administration of 300 nM of RU 24969, a 5-HT1B receptor agonist, through the probe into the CeA decreased dialysate 5-HT levels to 67.2% of the baseline value. Systemic administration of the 5-HT1A receptor agonists 8-OH-DPAT and flesinoxan dose-dependently decreased 5-HT levels in the CeA. The effect of 0.3 mg/kg of flesinoxan could be completely antagonized by systemic administration of 0.05 mg/kg WAY 100635, a 5-HT1A receptor antagonist. WAY 100635 alone had only minimal effects at this dose. These data show that a major part of the extracellular 5-HT in the CeA stems from 5-HT neurons and that the amount of 5-HT released into this brain region can be modulated by 5-HT1A receptors. Received: 11 September 1996 / Accepted: 25 November 1996  相似文献   

16.
Rationale In rodents, serotonin 1B (5-HT1B) agonists specifically reduce aggressive behaviors, including several forms of escalated aggression. One form of escalated aggression is seen in mice that seek the opportunity to attack another mouse by accelerating their responding during a fixed interval (FI) schedule. Responses preceding the opportunity to attack may reflect aggressive motivation. Objective This study investigated the effects of two 5-HT1B receptor agonists on the motivation to fight and the performance of heightened aggression. Materials and methods Male mice were housed as “residents” and performed nose-poke responses on an FI 10-min schedule with the opportunity to briefly attack an “intruder” serving as the reinforcer. In the first experiment, the 5-HT1B receptor agonist, CP-94,253 (0–10 mg/kg, IP), was given 30 min before the FI 10 schedule. To confirm that CP-94,253 achieved its effects via 5-HT1B receptors, the 5HT1B/1D receptor antagonist, GR 127935 (10 mg/kg, IP) was administrated before the agonist injection. In the second experiment, the 5-HT1B agonist CP-93,129 (0–1.0 μg) was microinjected into the dorsal raphe 10 min before the FI 10 schedule. Results The agonists had similar effects on all behaviors. CP-94,253 and CP-93,129 significantly reduced the escalated aggression towards the intruder at doses lower than those required to affect operant responding. The highest doses of CP-94,253 (10 mg/kg) and CP-93,129 (1.0 μg) decreased the rate and accelerating pattern of responding during the FI 10 schedule; lower doses were less effective. GR 127935 antagonized CP-94,253’s effects on all other behaviors, except response rate. Conclusions These data extend the anti-aggressive effects of 5-HT1B agonists to a type of escalated aggression that is rewarding and further suggest that these effects are associated with actions at 5-HT1B receptors in the dorsal raphe.  相似文献   

17.
 Electrophysiological studies using chloral hydrate-anesthetized rats were performed to elucidate the role of serotonin1A (5-HT1A) receptors in the regulation of neuronal activity of nucleus accumbens (Acc) neurons receiving input from the parafascicular nucleus of the thalamus (Pf). Extracellular neuronal activities were recorded in Acc using a glass microelectrode attached along a seven-barreled micropipette, each barrel of which was filled with dopamine, 5-HT, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT: 5-HT1A agonist) hydrobromide, 1-(2-methoxyphenyl)-4-[4-(2-phthalimido)butyl]-piperazine (NAN-190: 5-HT1A antagonist) hydrobromide, glutamate and 2 M NaCl. These drugs were microiontophoretically applied to the immediate vicinity of the target neuron. Spikes elicited by Pf stimulation were inhibited by iontophoretically applied dopamine, 5-HT and 8-OH-DPAT in a dose-dependent manner. In these neurons, firing induced by iontophoretic application of glutamate was also suppressed by dopamine, 5-HT and 8-OH-DPAT. The 5-HT or 8-OH-DPAT-induced inhibitions of the glutamate-induced firing were antagonized by concomitant application of NAN-190. These findings suggest that the dopamine-sensitive Acc neurons receiving input from Pf are inhibited by 5-HT via 5-HT1A receptors located on postsynaptic Acc neurons. Received: 6 November 1996/Final version: 9 July 1997  相似文献   

18.
 The role of caudal brainstem 5-HT receptors in mediating the anorectic effect of the direct 5-HT2C/1B agonist, mCPP [1-(3-chlorophenyl)piperazine dihydrochloride], was evaluated. We demonstrated, first, that systemic injections of mCPP yielded a dose-related suppression of intra-oral intake of 12.5% glucose in intact rats and in chronically maintained supracollicular decerebrate rats. The results of the decerebrate experiment suggest that 5-HT receptors in the caudal brainstem are sufficient for mediating the drug’s intake effect. We also showed a dose-related intake suppression when mCPP was delivered to the fourth ventricle of intact rats, with potent suppression obtained at doses well below threshold for systemic administration. Whether and to what extent the 5-HT2C/2A antagonist, mesulergine reverses the intake suppression that follows systemic or 4th ICV injection of mCPP was examined. Fourth ICV co-administration of mesulergine (60 μg) and mCPP (40 μg) eliminated the approximately 50% intake suppression observed when mCPP was delivered alone, a result that affirms the receptor selectivity of the 4th ICV agonist effect. We showed, further, that 4th ICV mesulergine (60 μg) completely reversed the intake suppression produced by systemic mCPP (2 mg/kg). The latter result indicates that stimulation of 5-HT receptors in the caudal brainstem is necessary for the intake suppression produced by systemic administration of this 5-HT agonist in the intact rat. Received: 24 June 1997 / Final version: 13 November 1997  相似文献   

19.
Selective serotonin reuptake inhibitors (SSRIs) or serotonin precursors inhibit ethanol and food intake by increasing the synaptic availability of 5-HT in the central nervous system. However, these agents can also increase 5-HT levels at somatodendritic 5-HT1A autoreceptors, with negative effects on serotonergic transmission. (+)WAY100135 [N-ter-butyl 3-4-(2-methoxy-phenyl) piperazin-1-yl-2-phenylpropa-namide dihydrochloride] is a selective antagonist both at pre-and post-synaptic 5-HT1A receptors. The present study investigated the effect on ethanol and food intake of (+)WAY100135, given alone or coadministered with the SSRI fluoxetine or the 5-HT precursor 5-hydroxytryptophan (5-HTP) in genetically selected alcohol-preferring rats. Blockade of presynaptic 5-HT1A receptors after injection of (+)WAY100135, 0.1 or 1 μg/rat, into the dorsal raphe did not significantly modify ethanol, food or total fluid intake. The same doses of (+)WAY100135 did not modify the inhibition of ethanol and food intake induced by intraperitoneal (IP) injection of fluoxetine, 5 mg/kg. Subcutaneous (SC) administration of (+)WAY100135 (1 or 10 mg/kg) did not affect the 3-h, or the overnight intake of ethanol, food or total fluids. Given together with IP fluoxetine (5 mg/kg) or SC 5-HTP (100 mg/kg plus carbidopa, 12.5 mg/kg), the same SC doses of (+)WAY100135 did not modify their inhibitory effect on ethanol and food consumption. Present findings suggest that blockade either of pre-or of pre-and postsynaptic 5-HT1A receptors does not potentiate the inhibitory effect of fluoxetine or 5-HTP on ethanol and food intake. Received: 2 November 1996/Final version: 23 April 1997  相似文献   

20.
Rationale  Interval timing in the free-operant psychophysical procedure is sensitive to the monoamine-releasing agent d-amphetamine, the D2-like dopamine receptor agonist quinpirole, and the D1-like agonist 6-chloro-2,3,4,5-tetrahydro-1-phenyl-1H-3-benzepine (SKF-81297). The effect of d-amphetamine can be antagonized by selective D1-like and 5-HT2A receptor antagonists. It is not known whether d-amphetamine’s effect requires an intact 5-hydroxytryptamine (5-HT) pathway. Objective  The objective of this study was to examine the effects of d-amphetamine, quinpirole, and SKF-81297 on timing in intact rats and rats whose 5-hydroxytryptaminergic (5-HTergic) pathways had been ablated. Materials and methods  Rats were trained under the free-operant psychophysical procedure to press levers A and B in 50-s trials in which reinforcement was provided intermittently for responding on A in the first half, and B in the second half of the trial. Percent responding on B (%B) was recorded in successive 5-s epochs of the trials; logistic functions were fitted to the data for derivation of timing indices (T 50, time corresponding to %B = 50%; Weber fraction). The effects of d-amphetamine (0.4 mg kg−1 i.p.), quinpirole (0.08 mg kg−1 i.p.), and SKF-81297 (0.4 mg kg−1 s.c.) were compared between intact rats and rats whose 5-HTergic pathways had been destroyed by intra-raphe injection of 5,7-dihydroxytryptamine. Results  Quinpirole and SKF-81297 reduced T 50 in both groups; d-amphetamine reduced T 50 only in the sham-lesioned group. The lesion reduced 5-HT levels by 80%; catecholamine levels were not affected. Conclusions   d-Amphetamine’s effect on performance in the free-operant psychophysical procedure requires an intact 5-HTergic system. 5-HT, possibly acting at 5-HT2A receptors, may play a ‘permissive’ role in dopamine release.
S. BodyEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号