首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: The anatomical location of the motor area of the hand may be revealed using functional magnetic resonance imaging (fMRI). The motor cortex representation of the intrinsic hand muscles consists of a knob-like structure. This is omega- or epsilon-shaped in the axial plane and hook-shaped in the sagittal plane. As this knob lies on the surface of the brain, it can be stimulated non-invasively by transcranial magnetic stimulation (TMS). It was the aim of our study to identify the hand knob using fMRI and to reveal if the anatomical hand knob corresponds to the hand area of the motor cortex, as identified by TMS, by means of a frameless MRI-based neuronavigation system. METHODS: Suprathreshold transcranial magnetic stimuli were applied over a grid on the left side of the scalp of 4 healthy volunteers. The motor evoked potentials (MEPs) were recorded from the contralateral small hand muscles, and the centers of gravity (CoG) of the MEPs were calculated. The exact anatomical localization of each point on the grid was determined using a frameless MRI-based neuronavigation system. In each subject, the hand area of the motor cortex was visualized using fMRI during sensorimotor activation achieved by clenching the right hand. RESULTS: In all 4 subjects, the activated precentral site in the fMRI and the CoG of the MEP of all investigated muscles lay within the predicted anatomical area, the so-called hand knob. This knob had the form of an omega in two subjects and an epsilon in the other two subjects. CONCLUSIONS: TMS is a reliable method for mapping the motor cortex. The CoG calculated from the motor output maps may be used as an accurate estimation of the location of the represented muscle in the motor cortex.  相似文献   

2.
OBJECTIVE: Congenital brain lesions producing focal seizures may be accompanied by reorganization of the areas responsible for motor and sensory functions within the brain due to a phenomenon that has been termed "neuronal plasticity." This can be studied using functional MRI (fMRI) and transcranial magnetic stimulation (TMS). Using either method, the motor cortex can be localized noninvasively, but to date there have been few studies correlating the level of agreement between the two techniques. METHODS: We used fMRI and TMS to localize the motor cortex in a young woman with intractable focal seizures, congenital left arm weakness, and a dysplastic right hemisphere on MRI. RESULTS: There was excellent agreement in the localization of motor representation for each hand. Both were predominantly located in the left hemisphere. fMRI also showed an area of posterior activation in the right hemisphere, but there was no evidence of descending corticospinal projections from this site using TMS, direct cortical stimulation, and Wada testing. CONCLUSIONS: Functional MRI (fMRI) and transcranial magnetic stimulation (TMS) were successfully used to localize cortical motor function before epilepsy surgery. Each technique demonstrated migration of motor function for the left hand to the left motor cortex. After resection of the dysplastic right precentral gyrus there was no permanent increase in weakness or disability. The two techniques are complementary; fMRI indicates all cortical areas activated by the motor task, whereas TMS identifies only those areas giving rise to corticospinal projections.  相似文献   

3.
OBJECTIVE: Although motor system plasticity in response to neuromuscular injury has been documented, few studies have examined recovered and functioning muscles in the human. We examined brain changes in a group of patients who had a muscle transfer. METHODS: Transcranial magnetic stimulation (TMS) was used to study a unique group of 9 patients who had upper extremity motor function restored using microneurovascular transfer of the gracilis muscle. The findings from the reconstructed muscle were compared to the homologous muscle of the intact arm. One patient was also studied with functional magnetic resonance imaging (fMRI). RESULTS: TMS showed that the motor threshold and short interval intracortical inhibition was reduced on the transplanted side while at rest but not during muscle activation. The difference in motor threshold decreased with the time since surgery. TMS mapping showed no significant difference in the location and size of the representation of the reconstructed muscle in the motor cortex compared to the intact side. In one patient with reconstructed biceps muscle innervated by the intercostal nerves, both TMS mapping and fMRI showed that the upper limb area rather than the trunk area of the motor cortex controlled the reconstructed muscle. CONCLUSIONS: Plasticity occurs in cortical areas projecting to functionally relevant muscles. Changes in the neuronal level are not necessarily accompanied by changes in motor representation. Brain reorganization may involve multiple processes mediated by different mechanisms and continues to evolve long after the initial injury. SIGNIFICANCE: Central nervous system plasticity following neuromuscular injury may have functional relevance.  相似文献   

4.
Two male patients (a child and an adult) with congenital mirror movement were studied using functional MRI (fMRI) and transcranial magnetic stimulation (TMS). Bilateral primary sensorimotor cortices were activated during unilateral hand gripping on fMRI when the child patient was 8 years old andthe adult was 37 years old. Bilateral motor evoked potentials were induced from the hand and forearm muscles after TMS of each hemisphere. Bilateral motor responses were also induced from the arm muscles in the adult patient. Bilateral motor responses had short and similar latencies. Contralateral motor responses to TMS were smaller than ipsilateral ones in the hand muscles, while contralateral responses were larger than ipsilateral ones in the arm muscles. Contralateral hand motor responses reduced in amplitude or disappeared with increasing age while in the child patient, mirror movements decreased gradually. Our results suggest that bilateral activation of the primary sensorimotor cortices during intended unilateral hand movement and bilateral motor responses to TMS account, at least in part, for the pathophysiology of congenital mirror movement. Reduction of contralateral hand motor responses may be related to the decrease in mirror movements during development.  相似文献   

5.
We studied an amputee patient who experiences a conscious sense of movement (SoM) in her phantom hand, without significant activity in remaining muscles, when transcranial magnetic stimulation (TMS) is applied at appropriate intensity over the corresponding sector of contralateral motor cortex. We used the novel methodological combination of TMS during fMRI to reveal the neural correlates of her phantom SoM. A critical contrast concerned trials at intermediate TMS intensities: low enough not to produce overt activity in remaining muscles; but high enough to produce a phantom SoM on approximately half such trials. Comparing trials with versus without a phantom SoM reported phenomenally, for the same intermediate TMS intensities, factored out any non-specific TMS effects on brain activity to reveal neural correlates of the phantom SoM itself. Areas activated included primary motor cortex, dorsal premotor cortex, anterior intraparietal sulcus, and caudal supplementary motor area, regions that are also involved in some hand movement illusions and motor imagery in normals. This adds support to proposals that a conscious sense of movement for the hand can be conveyed by activity within corresponding motor-related cortical structures.  相似文献   

6.
Functional imaging studies, using blood oxygen level-dependent signals, have demonstrated cortical reorganization of forearm muscle maps towards the denervated leg area following spinal cord injury (SCI). The extent of cortical reorganization was predicted by spinal atrophy. We therefore expected to see a similar shift in the motor output of corticospinal projections of the forearm towards more denervated lower body parts in volunteers with cervical injury. Therefore, we used magnetic resonance imaging-navigated transcranial magnetic stimulation (TMS) to non-invasively measure changes in cortical map reorganization of a forearm muscle in the primary motor cortex (M1) following human SCI. We recruited volunteers with chronic cervical injuries resulting in bilateral upper and lower motor impairment and severe cervical atrophy and healthy control participants. All participants underwent a T1-weighted anatomical scan prior to the TMS experiment. The motor thresholds of the extensor digitorum communis muscle (EDC) were defined, and its cortical muscle representation was mapped. The centre of gravity (CoG), the cortical silent period (CSP) and active motor thresholds (AMTs) were measured. Regression analysis was used to investigate relationships between trauma-related anatomical changes and TMS parameters. SCI participants had increased AMTs (P = 0.01) and increased CSP duration (P = 0.01). The CoG of the EDC motor-evoked potential map was located more posteriorly towards the anatomical hand representation of M1 in SCI participants than in controls (P = 0.03). Crucially, cord atrophy was negatively associated with AMT and CSP duration (r(2) ≥ 0.26, P < 0.05). In conclusion, greater spinal cord atrophy predicts changes at the cortical level that lead to reduced excitability and increased inhibition. Therefore, cortical forearm motor representations may reorganize towards the intrinsic hand motor representation to maximize output to muscles of the impaired forearm following SCI.  相似文献   

7.
Functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) are well-established tools for investigating the human motor system in-vivo. We here studied the relationship between movement-related fMRI signal changes in the primary motor cortex (M1) and electrophysiological properties of the hand motor area assessed with neuronavigated TMS in 17 healthy subjects. The voxel showing the highest task-related BOLD response in the left hand motor area during right hand movements was identified for each individual subject. This fMRI peak voxel in M1 served as spatial target for coil positioning during neuronavigated TMS. We performed correlation analyses between TMS parameters, BOLD signal estimates and effective connectivity parameters of M1 assessed with dynamic causal modeling (DCM). The results showed a negative correlation between the movement-related BOLD signal in left M1 and resting as well as active motor threshold (MT) obtained for left M1. The DCM analysis revealed that higher excitability of left M1 was associated with a stronger coupling between left supplementary motor area (SMA) and M1. Furthermore, BOLD activity in left M1 correlated with ipsilateral silent period (ISP), i.e. the stronger the task-related BOLD response in left M1, the higher interhemispheric inhibition effects targeting right M1. DCM analyses revealed a positive correlation between the coupling of left SMA with left M1 and the duration of ISP. The data show that TMS parameters assessed for the hand area of M1 do not only reflect the intrinsic properties at the stimulation site but also interactions with remote areas in the human motor system.  相似文献   

8.
Brain plasticity was investigated in a child with a hemiplegia due to unilateral schizencephaly involving the sensorimotor cortex. This focal lesion led to a dramatic functional reorganization of the undamaged hemisphere, as evidenced by the unusual pattern of fMRI activation during paretic finger movements. The functional relevance of the activation in the undamaged motor cortex was supported by the finding that TMS of this area yielded a response in the paretic hand, indicating that it controls both hands. However, this reorganization was not restricted to the primary motor cortex, but also concerned other structures involved in the control of movements, as shown by the activation of contralesional SMA and thalamus. In contrast, the fMRI activation in the damaged sensorimotor cortex during paretic hand movements appears functionally irrelevant.  相似文献   

9.
There have been a number of physiological studies of motor recovery in hemiplegic cerebral palsy which have identified the presence of novel ipsilateral projections from the undamaged hemisphere to the affected hand. However, little is known regarding the afferent projection to sensory cortex and its relationship to the reorganized cortical motor output. We used transcranial magnetic stimulation (TMS) to investigate the corticomotor projection to the affected and unaffected hands in a group of subjects with hemiplegic cerebral palsy, and also performed functional magnetic resonance imaging (fMRI) studies of the patterns of activation in cortical motor and sensory areas following active and passive movement of the hands. Both TMS and fMRI demonstrated a normal contralateral motor and sensory projection between the unaffected hand and the cerebral hemisphere. However, in the case of the affected hand, the TMS results indicated either a purely ipsilateral projection or a bilateral projection in which the ipsilateral pathway had the lower motor threshold, whereas passive movement resulted in fMRI activation in the contralateral hemisphere. These results demonstrate that there is a significant fast-conducting corticomotor projection to the affected hand from the ipsilateral hemisphere in this group of subjects, but that the predominant afferent projection from the hand is still directed to the affected contralateral hemisphere, resulting in an interhemispheric dissociation between afferent kinesthetic inputs and efferent corticomotor output. The findings indicate that there can be differences in the organization of sensory and motor pathways in cerebral palsy, and suggest that some of the residual motor dysfunction experienced by these subjects could be due to an impairment of sensorimotor integration at cortical level as a result of reorganization in the motor system.  相似文献   

10.
Transcranial magnetic stimulation (TMS) studies have suggested that callosal afferents may mediate inhibition of the ipsilateral motor cortex (IMC) during unilateral hand movements. To test this concept, we used fMRI to determine whether acallosal patients have increased IMC activation with either complex or simple unilateral finger movements. Neither the localization of motor cortical regions activated, the volumes of activation, or the relative hemispheric lateralization of activations were different between the patients and normal controls. The potential callosal inhibitory pathway identified by TMS therefore does not appear to contribute to the interhemispheric suppression of physiologically relevant activations in the motor cortex as measured by fMRI.  相似文献   

11.
The authors examined serial changes in optical topography in a stroke patient performing a functional task, as well as clinical and physiologic measures while undergoing constraint-induced therapy (CIT). A 73-year-old right hemiparetic patient, who had a subcortical stroke 4 months previously, received 2 weeks of CIT. During the therapy, daily optical topography imaging using near-infrared light was measured serially while the participant performed a functional key-turning task. Clinical outcome measures included the Wolf Motor Function Test (WMFT), Motor Activity Log (MAL), and functional key grip test. Transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) were also used to map cortical areas and hemodynamic brain responses, respectively. Optical topography measurement showed an overall decrease in oxy-hemoglobin concentration in both hemispheres as therapy progressed and the laterality index increased toward the contralateral hemisphere. An increased TMS motor map area was observed in the contralateral cortex following treatment. Posttreatment fMRI showed bilateral primary motor cortex activation, although slightly greater in the contralateral hemisphere, during affected hand movement. Clinical scores revealed marked improvement in functional activities. In one patient who suffered a stroke, 2 weeks of CIT led to improved function and cortical reorganization in the hemisphere contralateral to the affected hand.  相似文献   

12.
Congenital mirror movements (CMMs) are involuntary, symmetric movements of one hand during the production of voluntary movements with the other. CMMs have been attributed to a range of physiological mechanisms, including excessive ipsilateral projections from each motor cortex to distal extremities. We examined this hypothesis with an individual showing pronounced CMMs. Mirror movements were characterized for a set of hand muscles during a simple contraction task. Transcranial magnetic stimulation (TMS) was then used to map the relative input to each muscle from both motor cortices. Contrary to our expectations, CMMs were most prominent for muscles with the strongest contralateral representation rather than in muscles that were activated by stimulation of either hemisphere. These findings support a bilateral control hypothesis whereby CMMs result from the recruitment of both motor cortices during intended unimanual movements. Consistent with this hypothesis, bilateral motor cortex activity was evident during intended unimanual movements in an fMRI study. To assess the level at which bilateral recruitment occurs, motor cortex excitability during imagined unimanual movements was assessed with TMS. Facilitory excitation was only observed in the contralateral motor cortex. Thus, the bilateral recruitment of the hemispheres for unilateral actions in individuals with CMMs appears to occur during movement execution rather than motor planning.  相似文献   

13.
Transcranial magnetic stimulation (TMS) is a tool of choice to study the functionality of the corticospinal pathway. In this study, we used single-pulse TMS at different intensities and during different levels of grasping force, to stimulate the hand area of the left primary motor cortex (M1). We measured, the TMS-evoked forces, or motor evoked forces (MEFs) in a multi-fingered three-point grasp in addition of the conventional motor evoked potentials (MEPs) from the right forearm and intrinsic hand muscles. This paper aims at presenting the viability of this innovative approach and some preliminary results. The timing (i.e., latencies and peak times), amplitudes and directions of the MEF were analyzed. We found that the TMS evoked synergistic increases of the force magnitudes, akin to those observed when participants voluntarily increased the grip force. The MEF sizes and MEP amplitudes increased with TMS intensity in most cases. The grip force (which measures the overall force involved in the grasp) and the net force (which measures the net effect of all contact forces exerted on the object) seem to be differently affected by single TMS pulses of the motor cortex.  相似文献   

14.
The purpose of this study was to use interleaved transcranial magnetic stimulation/functional magnetic resonance imaging (TMS/fMRI) to investigate the effects of lamotrigine (LTG) and valproic acid (VPA) on effective connectivity within motor and corticolimbic circuits. In this randomized, double-blind, crossover trial, 30 healthy volunteers received either drug or placebo 3.5 h prior to interleaved TMS/fMRI. We utilized dynamic causal modeling (DCM) to assess changes in the endogenous effective connectivity of bidirectional networks in the motor-sensory system and corticolimbic circuit. Results indicate that both LTG and VPA have network-specific effects. When TMS was applied over the motor cortex, both LTG and VPA reduced TMS-specific effective connectivity between primary motor (M1) and pre-motor cortex (PMd), and between M1 and the supplementary area motor (SMA). When TMS was applied over prefrontal cortex, however, LTG alone increased TMS-specific effective connectivity between the left dorsolateral prefrontal cortex(DLPFC) and the anterior cingulate cortex (ACC). In summary, LTG and VPA inhibited effective connectivity in motor circuits, but LTG alone increased effective connectivity in prefrontal circuits. These results suggest that interleaved TMS/fMRI can assess region- and circuit-specific effects of medications or interventions.  相似文献   

15.
OBJECTIVE: Neuroimaging studies have suggested an evolution of the brain activation pattern in the course of motor recovery after stroke. Initially poor motor performance is correlated with an recruitment of the uninjured hemisphere that continuously vanished until a nearly normal (contralateral) activation pattern is achieved and motor performance is good. Here we were interested in the early brain activation pattern in patients who showed a good and rapid recovery after stroke. METHODS: Ten patients with first-ever ischemic stroke affecting motor areas had to perform self-paced simple or more complex movements with the affected or the unaffected hand during functional magnetic resonance imaging (fMRI). The location and number of activated voxels above threshold were determined. To study possible changes in the cortical motor output map the amplitude of the motor evoked potentials (MEP) and the extent of the excitable area were determined using transcranial magnetic stimulation (TMS). RESULTS: The pattern of activation observed with movements of the affected and the unaffected hand was similar. In the simple motor task significant (P<0.05) increases were found in the primary motor cortex ipsilateral to the movement, the supplementary motor area and the cerebellar hemisphere contralateral to the movement during performance with the affected hand compared to movements with the unaffected hand. When comparing simple with more complex movements performed with either the affected or the unaffected hand, a further tendency to increased activation in motor areas was observed. The amplitude of MEPs obtained from the affected hemisphere was smaller and the extent of cortical output maps was decreased compared to the unaffected hemisphere; but none of the patients showed MEPs at the affected hand when the ipsilateral unaffected motor cortex was stimulated. CONCLUSIONS: Despite a rapid and nearly complete motor recovery the brain activation pattern was associated with increased activity in (bilateral) motor areas as revealed with fMRI. TMS revealed impaired motor output properties, but failed to demonstrate ipsilateral motor pathways. Successful recovery in our patients may therefore rely on the increased bilateral activation of existing motor networks spared by the injury.  相似文献   

16.
BACKGROUND: To date, interleaved transcranial magnetic stimulation and functional magnetic resonance imaging (TMS/fMRI) studies of motor activation have not recorded whole brain patterns. We hypothesized that TMS would activate known motor circuitry with some additional regions plus some areas dropping out. METHODS: We used interleaved TMS/fMRI (11 subjects, three scans each) to elucidate whole brain activation patterns from 1-Hz TMS over left primary motor cortex. RESULTS: Both TMS (110% motor threshold) and volitional movement of the same muscles excited by TMS caused blood oxygen level-dependent (BOLD) patterns encompassing known motor circuitry. Additional activation was observed bilaterally in superior temporal auditory areas. Decreases in BOLD signal with unexpected post-task "rebounds" were observed for both tasks in the right motor area, right superior parietal lobe, and in occipital regions. Paired t test of parametric contrast maps failed to detect significant differences between TMS- and volition-induced effects. Differences were detectable, however, in primary data time-intensity profiles. CONCLUSIONS: Using this interleaved TMS/fMRI technique, TMS over primary motor cortex produces a whole brain pattern of BOLD activation similar to known motor circuitry, without detectable differences from mimicked volitional movement. Some differences may exist between time courses of BOLD intensity during TMS circuit activation and volitional circuit activation.  相似文献   

17.
This study investigates the (re-)organization of somatosensory functions following early brain lesions. Using functional magnetic resonance imaging (fMRI), passive hand movement was studied. Transcranial magnetic stimulation (TMS) and magnetoencephalography (MEG) were used as complementary methods. fMRI data was analyzed on the first level with regard to topographical variability; second-level group effects as well as the overall integrity of the somatosensory circuitry were also assessed. Subjects with unilateral brain lesions occurring in the third trimester of pregnancy or perinatally with different types of motor reorganization were included: patients with regular, contralateral motor organization following middle cerebral artery strokes (CONTRA(MCA), n = 6) and patients with reorganized, ipsilateral motor functions due to periventricular lesions (IPSI(PL), n = 8). Motor impairment was similar, but sensory impairment was more pronounced in the CONTRA(MCA) group. Using fMRI and MEG, both groups showed a normal pattern with a contralateral somatosensory representation, despite the transhemispherically reorganized primary motor cortex in the IPSI(PL) group, as verified by TMS. Activation topography for the paretic hands was more variable than for the nonparetic hand in both groups. The cortico-cerebellar circuitry was well-preserved in almost all subjects. We conclude that in both models of motor reorganization, no interhemispheric reorganization of somatosensory functions occurred. Also, no relevant intrahemispheric reorganization was observed apart from a higher topographical variability of fMRI activations. This preserved pattern of somatosensory organization argues in favor of a differential lesion effect on motor and somatosensory functions and demonstrates a limited compensatory potential for the latter.  相似文献   

18.
Previous evidence highlighted the multisensory‐motor origin of embodiment – that is, the experience of having a body and of being in control of it – and the possibility of experimentally manipulating it. For instance, an illusory feeling of embodiment towards a fake hand can be triggered by providing synchronous visuo‐tactile stimulation to the hand of participants and to a fake hand or by asking participants to move their hand and observe a fake hand moving accordingly (rubber hand illusion). Here, we tested whether it is possible to manipulate embodiment not through stimulation of the participant's hand, but by directly tapping into the brain's hand representation via non‐invasive brain stimulation. To this aim, we combined transcranial magnetic stimulation (TMS), to activate the hand corticospinal representation, with virtual reality (VR), to provide matching (as contrasted to non‐matching) visual feedback, mimicking involuntary hand movements evoked by TMS. We show that the illusory embodiment occurred when TMS pulses were temporally matched with VR feedback, but not when TMS was administered outside primary motor cortex, (over the vertex) or when stimulating motor cortex at a lower intensity (that did not activate peripheral muscles). Behavioural (questionnaires) and neurophysiological (motor‐evoked‐potentials, TMS‐evoked‐movements) measures further indicated that embodiment was not explained by stimulation per se, but depended on the temporal coherence between TMS‐induced activation of hand corticospinal representation and the virtual bodily feedback. This reveals that non‐invasive brain stimulation may replace the application of external tactile hand cues and motor components related to volition, planning and anticipation.  相似文献   

19.
OBJECTIVE: Comparison of functional magnetic resonance imaging (fMRI) representational maps, that were generated during voluntary thumb abduction, hand dorsiflexion and foot elevation to amplitude maps of motor-evoked potentials (MEPs) elicited by single transcranial magnetic stimulation (TMS) administered to cortical motor representation areas of the muscles of the thenar eminence, extensor carpi radialis and tibialis anterior muscles. METHODS: Stimulus locations that produced maximal motor-evoked potential amplitudes were compared to fMRI activation maxima in three-dimensional (3D)-space and in a 2D-projection using a novel technique that allowed fMRI activation sites to be projected onto the surface of the brain. RESULTS AND CONCLUSIONS: When analyzing pooled data from all target muscles, the location of projected fMRI and TMS activation maxima on the cortical surface differed by an average 13.9 mm. The differences in 3D distances were particularly large for representation areas of lower leg muscles. 3D distances between fMRI activation maxima and highest MEP site in TMS correlated significantly with higher TMS thresholds. These observations strongly suggest that higher TMS excitation thresholds and lower MEP amplitudes are largely due to the absolute distance between the stimulation site and the excitable cortical tissue targeting this muscle. After the projection 4 out of 5 representation sites as evaluated by TMS were located anterior to the fMRI activation maxima, an observation which may due to the orientation of the magnetic field induced by the current in the coil. The representation sites as evaluated with both methods were specific for the type of movement: distances between representation maxima of the same movements were significantly smaller than those within different movements. Nevertheless, fMRI and TMS provide complementary information, which is discussed on the basis of the functional map observed with both methods.  相似文献   

20.
OBJECTIVE: The aim of this study was to verify whether motor imagery (MI) and observation of a movement (MO) enhanced cortical representations of the hand/forearm muscles not primarily involved in the task. We also explored the existence of functional overlaps in the upper-limb cortical representations during the aforementioned tasks. METHODS: Focal transcranial magnetic stimulation (TMS) was used to map out the cortical representation of the opponens pollicis (OP, target muscle) and other hand and forearm muscles at rest and during MI and MO. RESULTS: The MI and MO tasks induced similar changes in the area and volume of both the OP and synergic muscles. No significant changes were observed in the cortical excitability of the remaining muscles. The superimposition of different muscle maps revealed extensive functional overlaps in the hand/forearm cortical territories. CONCLUSIONS: This study demonstrates that neither the MI nor MO changes single muscle motor responses and that the hand/forearm muscle maps extensively overlap during motor cognitive tasks. SIGNIFICANCE: The data reported in this study support the notion that the basic unit of cortical output is not the mere activation of a given muscle. This flexible organization may have important implications in motor learning and plasticity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号