共查询到20条相似文献,搜索用时 10 毫秒
1.
de Haan EC Wagenaar-Hilbers JP Liskamp RM Moret EE Wauben MH 《Molecular immunology》2005,42(3):355-364
The balance between specific and degenerate T cell recognition of MHC class II bound peptides is crucial for T cell repertoire selection, and holds important implications for protective immunity versus autoimmunity. To investigate the degree of degeneracy in T cell recognition, we applied selected modifications to T cell receptor (TCR) contact residue amino acids in the MHC class II bound epitope gpMBP72-85. By using glycosylated amino acids, as an example of a posttranslational modification, large alterations were applied. Small modifications were accomplished by exchanging an arginine residue for a citrulline or an ornithine residue. Finally, the unmodified TCR contact residue side chains were shifted one atom position to the left, using peptoid residues. Both these large and subtle changes in the wild type (WT) peptide caused lack of recognition by WT peptide specific monoclonal and polyclonal T cells. Furthermore, T cells specific for the modified peptides did not cross recognize the WT peptide. Using a set of additional compounds, we investigated the specificity of these T cell populations into detail. Our data reveal a strongly limited plasticity in T cell recognition, and a high specificity for TCR contact residue side chains. 相似文献
2.
Homann D Lewicki H Brooks D Eberlein J Mallet-Designé V Teyton L Oldstone MB 《Virology》2007,363(1):113-123
Virus-specific CD4(+) T cells contribute to effective virus control through a multiplicity of mechanisms including direct effector functions as well as "help" for B cell and CD8(+) T cell responses. Here, we have used the lymphocytic choriomeningitis virus (LCMV) system to assess the minimal constraints of a dominant antiviral CD4(+) T cell response. We report that the core epitope derived from the LCMV glycoprotein (GP) is 11 amino acids in length and provides optimal recognition by epitope-specific CD4(+) T cells. Surprisingly, this epitope is also recognized by LCMV-specific CD8(+) T cells and thus constitutes a unique viral determinant with dual MHC class I- and II-restriction. 相似文献
3.
Molecular mimicry between exogenous microbial antigens and self-epitopes has been proposed as a triggering mechanism for autoimmune diseases for many years. We reported that a peptide from a protein specific to Chlamydia pneumoniae (Cpn0483) which shares a motif with the dominant encephalitogenic epitope of the self-antigen, rat myelin basic protein (rat68-86), elicits experimental autoimmune encephalomyelitis (EAE) in Lewis rats. We recently observed that rat68-86 utilizes aspartic acid (D) and arginine (R) in the common motif as primary and secondary TCR contacts, respectively. In contrast, the encephalitogenic activity of Cpn0483 is dependent on R and the C-terminal asparagine (N), which flanks the MHC class II-P9 anchor residue. Thus, rat68-86 and Cpn0483 share a common motif, are encephalitogenic and are both restricted by MHC class II RT1.B(l). T cells from rats immunized with the encephalitogenic Cpn0483 peptide proliferated to the priming peptide as well as to the non-encephalitogenic CpnN>A analog. However, CpnN>A-primed T cells did not respond to the native Cpn0483 peptide. We conclude that the MHC-flanking C-terminal asparagine residue markedly influences T cell recognition by the chlamydial peptide. 相似文献
4.
T cell receptors, major histocompatibility complex molecules, and antigens constitute tri-molecular complexes which induce T cell activation. T cells in I-Ab mice generate proliferative responses to a synthetic peptide composed of residues 43-58 of pigeon cytochrome c (p43-58) and its analogs with substitution at position 50 (50A, 50V, 50L, 50N, 50Q, 50K, and 50M). However, none of these peptides stimulate T cells in I-Ak mice. We substituted two residues at positions 46 and 54 of p43-58(50D), 50V, 50L, 50E, and 50K with two amino acids on agretopes of the I-Ak binding HEL52-61 peptide and immunized I-Ak mice with these newly synthesized peptides: 46D50D54R, 46D50V54R, 46D50L54R, 46D50E54R, and 46D50K54R. Apart from 46D50D54R, these peptides elicited T cell responses in I-Ak mice in an immunogen-specific manner, but did not stimulate those in I-Ab mice. Further, 46D50V54R inhibited competitively the responses of I-Ak restricted T cell hybridomas specific for 46D50E54R. These results demonstrate that the residues at positions 46 and 54 on the peptides act as an agretope and the residue at position 50 acts as an epitope in I-Ak mice, as in I-Ab mice, and provide the possibility of opening up a new method to prepare peptide antigens which induce T cell responses in each murine strain by introducing appropriate amino acids on agretopes. 相似文献
5.
A putative synthetic vaccine for foot-and-mouth disease (FMDV15) has proved less successful in a host species, cattle, than predicted by results in a small-animal model. Possible reasons for this include non-recognition by T cells influenced by major histocompatibility complex (MHC)-linked immune response gene control. It is now possible to type for human leucocyte antigen (HLA) DR-like bovine MHC (BoLA) class II polymorphisms with a one-dimensional isoelectric focusing (IEF) technique. Using this method 14 unrelated cattle were selected with eight different BoLA class II IEF types. After immunization with FMDV15, 13 cattle generated a T-cell response to FMDV15. However, the fine specificity and magnitude of the response was related to BoLA class II type. The non-response by one animal and low response by two other animals were associated with two of the BoLA class II types. Response to the region 149-158 was immunodominant and animals which did not respond to this region had low responses to the whole peptide. Using FMDV-specific T-cell lines five BoLA class II types associated with responder animals were able to present FMDV15 in an MHC class II-restricted fashion, indicating that this peptide is capable of binding to different MHC class II molecules and may account for the broad response observed. The restriction patterns of the lines indicated that the IEF method does not distinguish all functional polymorphisms. At least two of the IEF-defined types could each be split into two distinct specificities and revealed that the three sets of animals with identical IEF types in fact expressed distinct restriction elements. 相似文献
6.
The T cell stimulatory activity of peptides is known to be associated with the cell surface stability and lifetime of the peptide-MHC (pepMHC) complex. In this report, soluble high-affinity T cell receptors (TCRs) that are specific for pepMHC complexes recognized by the mouse CD8+ clone 2C were used to monitor the cell surface lifetimes of synthetic agonist peptides. In the 2C system, L(d)-binding peptide p2Ca (LSPFPFDL) has up to 10,000-fold lower activity than peptide QL9 (QLSPFPFDL) even though the 2C TCR binds to p2Ca-L(d) and QL9-L(d) complexes with similar affinities. Unexpectedly, p2Ca-L(d) complexes were found to have a longer cell surface lifetime than QL9-L(d) complexes. However, the strong agonist activity of QL9 correlated with its ability to participate in efficient intracellular delivery followed by cell surface expression of the peptide, resulting in high and persistent surface levels of QL9-L(d). The ability of target cells to take up and present QL9 was observed with TAP-deficient cells and TAP-positive cells, including dendritic cells. The process was brefeldin A-sensitive, indicating a requirement for transport of the pepMHC through the ER and/or golgi. Thus, strong T cell stimulatory activity of some pepMHC complexes can be accomplished not only through long cell surface lifetimes of the ligand, but through a mechanism that leads to delayed presentation of the exogenous antigen after intracellular uptake. 相似文献
7.
8.
Deng L Langley RJ Brown PH Xu G Teng L Wang Q Gonzales MI Callender GG Nishimura MI Topalian SL Mariuzza RA 《Nature immunology》2007,8(4):398-408
Structural studies of complexes of T cell receptor (TCR) and peptide-major histocompatibility complex (MHC) have focused on TCRs specific for foreign antigens or native self. An unexplored category of TCRs includes those specific for self determinants bearing alterations resulting from disease, notably cancer. We determined here the structure of a human melanoma-specific TCR (E8) bound to the MHC molecule HLA-DR1 and an epitope from mutant triosephosphate isomerase. The structure had features intermediate between 'anti-foreign' and autoimmune TCR-peptide-MHC class II complexes that may reflect the hybrid nature of altered self. E8 manifested very low affinity for mutant triosephosphate isomerase-HLA-DR1 despite the highly tumor-reactive properties of E8 cells. A second TCR (G4) had even lower affinity but underwent peptide-specific formation of dimers, suggesting this as a mechanism for enhancing low-affinity TCR-peptide-MHC interactions for T cell activation. 相似文献
9.
《International reviews of immunology》2013,32(2):107-149
The critical role of major histocompatibility complex (MHC) gene products in T cell activation was appreciated and extensively studied well before the availability of monoclonal T cell populations. However, the availability of cloned T cells has dramatically enhanced the ability to characterize the nature of MHC-restricted recognition by T cells. In certain areas, the use of monoclonal T cells has allowed substantial extension of principles already established through the use of heterogeneous T cells. In other cases, studies employing T cell clones have led to findings which were inaccessible to approaches using only heterogeneous T cell populations. On balance, it should also be pointed out that a significant number of critical questions concerning the MHC-restricted T cell repertoire remain best approached by studying the development of interactions of functionally heterogeneous T cell populations. The present review will focus upon recent progress in several areas in which the use of cloned T cells has been particularly important in characterizing the nature of MHC-restricted recognition. In particular, the restriction of T cell recognition by class II MHC products (Ia) is examined in detail. 相似文献
10.
Y Nishimura 《Arerugī》1999,48(10):1144-1147
11.
Burrows JM Bell MJ Brennan R Miles JJ Khanna R Burrows SR 《Molecular immunology》2008,45(6):1818-1824
A classic feature of antigen presentation for CD8+ T cell recognition is that MHC class I molecules generally present peptides of 8-10 amino acids in length. However, recent studies have demonstrated that peptides of >10 residues play a significant role in immune surveillance by T cells restricted by some HLA class I alleles. In the present study, we describe several examples of unusually long viral peptides of 11 or 12 residues, recognized by CTLs in the context of HLA-B35. Interestingly, all these immunogenic peptides completely encompass shorter canonical length sequences that conform to the HLA-B35 binding motif, but which fail to stimulate detectable T cell responses. The mechanism for this phenomenon appears to involve the preferential binding to HLA-B35 of the atypically long CD8+ T cell target peptides over the overlapping canonical length sequences. These data suggest that the peptide length specificity of some HLA class I alleles is broad, allowing peptides of >10 residues to sometimes dominate over canonical length class I ligands as targets for T cell recognition. 相似文献
12.
Autoimmune diseases result from the activation of self-reactive T cells induced by autoantigens or by foreign antigens cross-reactive with an autoantigen. A striking characteristic of autoimmune diseases is the increased frequency of certain HLA alleles in affected individuals. Moreover, as demonstrated for example in rheumatoid arthritis and insulin-dependent diabetes mellitus, class II alleles positively associated with autoimmune diseases share amino acid residues in the hypervariable HLA regions involved in peptide binding. Therefore, it is likely that disease-associated HLA class II molecules have the capacity to bind the autoantigen and present it to T cells, thereby inducing and maintaining, under appropriate conditions, the autoimmune disease. The data reviewed here demonstrate MHC-selective inhibition of antigen-induced T cell responses in vivo by parenterally administered soluble, MHC-binding peptide competitors, under conditions in which the competitor is not immunogenic. This suggests the feasibility of a therapeutic approach based on MHC blockade in the treatment of HLA-linked autoimmune diseases. 相似文献
13.
Recognition surfaces of MHC class I 总被引:1,自引:0,他引:1
Summary: Recent crystallographic results have provided dose to atomic resolution views of the recognition events mediated by MHC class I molecules. The specificity-conferring interaction of MHC class I/peptide with a T-cell antigen receptor (TCR) appears dependent on certain key interactions with the MHC scaffold. These interactions, in particular those of the TCR Va domain, define a standard orientation for TCR binding. Previous studies on biologically significant variations in the TCR recognition surface presented by a series of MHC/variant peptide complexes can be reassessed in the light of this TCR-building mode. The interaction of CDS with MHC class I resembles that between antibody and antigen in the use of loops from the CD8 structure. The interaction is of very low affinity and buries equivalent surface area to that between the TCR and MHC class I but while the TCR/MHC interface shows poor surface shape complementarity the match in the conservative interaction between MHC and CDS is precise. 相似文献
14.
15.
Quantitative aspects of T cell activation--peptide generation and editing by MHC class I molecules 总被引:1,自引:0,他引:1
The number of class I MHC/peptide complexes on the surface of antigen presenting cells crucially influences the activation of T cells. The formation of these complexes depends on selection processes at the level of peptide generation from proteins (predominantly in the cytosol), peptide transport into the ER and binding requirements of individual MHC class I molecules. These individual events have co-evolved to what is called 'antigen processing and presentation' and result in the representative presentation of peptides from every cellular protein by a species-specific combination of MHC class I molecules for recognition by MHC class I-restricted T cells. 相似文献
16.
Regulation of T cell function by NK cell receptors for classical MHC class I molecules 总被引:2,自引:0,他引:2
Inhibitory receptors for MHC class I molecules were initially characterised on NK cells. Human and mouse NK cell receptors (NKRs) are also expressed on T cells, predominantly on a subset of memory-phenotype CD8(+) T cells. This review focuses on the precise determination of interactions between NKRs and MHC class I, as well as on the unexpected in vivo function of NKRs on T cells. 相似文献
17.
The indirect alloimmune response seems to be restricted to a few dominant major histocompatibility complex (MHC)-derived peptides responsible for T-cell activation in allograft rejection. The molecular mechanisms of indirect T-cell activation have been studied using peptide analogues derived from the dominant allopeptide in vitro, whereas the in vivo effects of peptide analogues have not been well characterized yet. In the present study, we generated allochimeric peptide analogues by replacing the three allogeneic amino acids 5L, 9L, and 10T in the sequence of the dominant MHC class I allopeptide P1. These allochimeric peptide analogues were used to define the allogeneic amino acids critical for the MHC binding and TCR recognition. We found that position 5 (5L) of the dominant allopeptide acts as an MHC-binding residue, while the other two allogeneic positions, 9 and 10, are important for the T-cell receptor (TCR) recognition. A peptide containing the MHC-binding residue 5L, as the only different amino acid between donor (RT1.A(u)) and recipient (RT1.A(l)) sequences, did not induce proliferation of lymph node cells primed with the dominant peptide and prevented dominant peptide-induced acceleration of allograft rejection. Identification of MHC and TCR contact residues should facilitate the development of antigen-specific therapies to inhibit or regulate the indirect alloimmune response. 相似文献
18.
M Fridkis-Hareli R Aharoni D Teitelbaum R Arnon M Sela J L Strominger 《International immunology》1999,11(5):635-641
Copolymer 1 [Cop 1, poly(Y,E,A,K)] is a random synthetic amino acid copolymer of L-tyrosine, L-glutamic acid, L-alanine and L-lysine, effective both in suppression of experimental allergic encephalomyelitis and in the treatment of relapsing forms of multiple sclerosis. Cop 1 binds promiscuously and very efficiently to purified human HLA-DR molecules within the peptide-binding groove. In the present study the binding of copolymers composed of three of the four amino acids found in poly(Y,E,A,K) to purified class II MHC molecules was examined. Poly(Y,A,K) and poly(Y,E,A,K) bound to purified human HLA-DR1 or -DR4 molecules with affinity higher than poly(Y,E,A), poly(E,A,K) or poly(Y,E,K), whereas poly(Y,E,A,K) and poly(E,A,K) were the better binders of HLA-DR2 molecules. On the other hand, poly(Y,E,A) and poly(Y,A,K) inhibited the binding of biotinylated poly(Y,E,A,K) to these molecules 10-fold more efficiently than poly(Y,E,K). Finally, poly(Y,E,A), poly(Y,A,K) and poly(E,A,K) were cross-reactive with poly(Y,E,A,K) using YEAK-specific T cell lines and clones of mouse or human origin. 相似文献
19.
Owen Williams Yujiro Tanaka Mark Bix Marianna Murdjeva Dan R. Littman Dimitris Kioussis 《European journal of immunology》1996,26(3):532-538
The T cell receptor (TCR) recognizes antigenic peptide presented by major histocompatibility complex (MHC) molecules. Analogs of antigenic peptides have been shown to inhibit antigen-specific T cell responses, a phenomenon described as TCR antagonism. We have examined the effect of a natural variant of an antigenic peptide and a synthetic peptide analog, on the responses of mature T cells and immature thymocytes from an αβ TCR-transgenic mouse (F5), the TCR of which recognizes a nonamer peptide from the nucleoprotein (NP) of influenza virus in the context of the H-2Db MHC molecule. Both peptides were shown to antagonize specifically the T cell cytolytic response without being able directly to stimulate mature T cells from these transgenic mice. Furthermore, a negative selection assay in vitro was used to demonstrate for the first time that antagonistic peptides are capable of antagonizing thymocyte deletion induced by antigenic peptides. These data suggest that the final selection of a T cell could be the result of a balance between the positive and negative influences of endogenous peptide ligands. 相似文献
20.
T Cell Subsets and the Recognition of MHC Class 总被引:15,自引:0,他引:15