首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 234 毫秒
1.
目的 探讨超声和共聚物在质粒DNA对小鼠骨骼肌基因转染中的影响.方法 应用三种水溶性不同的共聚物F127,L61和P85,与DNA混合后直接小鼠胫前肌注射,并超声辐照.超声频率为1 MHz,脉冲重复频率100 Hz,占空系数为20%,用3 W/cm2声强辐照1 min.实验1周后取出胫前肌并快速冰冻切片,荧光显微镜计数表达GFP的转染肌纤维数,苏木精和伊红染色评价肌肉损伤情况.结果 三种共聚物均可显著提高质粒DNA的基因转染(P<0.01),P85的基因转染效率高于其他两种共聚物(P<0.05).超声虽对单纯质粒、F127和L61组的基因转染无显著促进作用,但与P85有协同作用,可显著提高P85组的基因转染效率(P<0.01).在给定超声剂量和共聚物浓度下,二者在提高质粒DNA基因转染的同时,并不显著增加对组织的损伤作用.结论 共聚物P85不但可显著提高质粒DNA在小鼠骨骼肌的基因转染,且与超声具有协同作用.  相似文献   

2.
目的 探讨细胞膜孔开放及含氟烷气体白蛋白外膜在超声微泡介导GFP转染C57810及mdx小鼠骨骼肌细胞中的机制.方法 以肌细胞膜缺损为主要病理改变的mdx小鼠与正常C57810小鼠为研究对象,目的基因GFP与Optison或SonoVue混合注入小鼠胫前肌,一侧胫前肌经超声辐照,另一侧胫前肌不经超声辐照.C57810小鼠作为正常对照,实验分组如下:①C57810小鼠生理盐水组(4条左胫前肌);②C57810小鼠生理盐水+超声组(4条右胫前肌);③C57810小鼠Optison组(4条左胫前肌);④C57810小鼠Oprison+超声组(4条右胫前肌);⑤C57810小鼠SonoVue组(4条左胫前肌);⑥C57810小鼠SonoVue+超声组(4条右胫前肌).mdx肌营养不良小鼠实验分组如下:①mdx小鼠生理盐水组(4条左胫前肌);②mdx小鼠生理盐水+超声组(4条右胫前肌);③mdx小鼠+Optison组(4条左胫前肌);④mdx小鼠Optison+超声组(4条右胫前肌);⑤mdx小鼠SonoVue组(4条左胫前肌);⑥mdx小鼠SonoVue+超声组(4条右胫前肌).1周后处死小鼠,荧光显微镜观察发出绿色荧光者为GFP阳性肌纤维细胞,计数最大GFP阳性肌纤维细胞数,作为GFP基因转染效率指标.结果 正常C57810小鼠:①无超声作用时,与阴性对照组比较,Optison微泡显著提高GFP基因转染水平(P<0.01),SonoVue微泡不提高GFP基因转染水平;②有超声作用时,与阴性对照组比较,Optison微泡显著提高GFP基因转染水平(P<0.01);③有超声作用时,与阴性对照组比较,SonoVue微泡显著提高GFP基因转染水平(P<0.01).mdx小鼠:①与正常C57810小鼠比较,GFP单独(生理盐水组)显著提高GFP基因转染水平(P<0.01),Optison微泡显著提高GFP基因转染水平(P<0.01),SonoVue微泡显著提高GFP基因转染水平(P<0.01);②与阴性对照组比较,Optison微泡显著提高GFP基因转染水平(P<0.01),SonoVue微泡显著提高GFP基因转染水平(P<0.01).结论 细胞膜孔开放是微泡提高基因转染水平的重要因素,含氟烷气体白蛋白外膜是Optison微泡提高GFP转染水平的主要成分.
Abstract:
Objective To investigate the role of sonoporation and the deblic of microbubbles with perfluoropropane gas and albumin in the mechanisms of microbubble-mediated gene enhancement by experimenting in skeletal muscle in C57B10/mdx mice. Methods Plasmid DNA (10 μg) encoding green fluorescent protein (GFP) was mixed with Optison or SonoVue dissolved in saline and injected into the tibialis anterior (TA) muscle of /C57B10/mdx mice with and without adjunct ultrasound. The efficiencies of GFP transgene expression were determined under different experimental conditions. C57B10 mice as normal control:①C57B10 mice + saline (4 left TAs);②C57B10 mice + saline + ultrasound (4 right TAs) ;③C57B10 mice + Optison(4 left TAs);④C57B10 mice+ Optison + ultrasound(4 right TAs);⑤ C57B10 mice + SonoVue(4 left TAs) ;⑥C57B10 mice + SonoVue + ultrasound(4 right TAs). Mdx mice groups:① mdx mice + saline(4 left TAs) ;② mdx mice + saline + ultrasound(4 right TAs);③ mdx mice + Optison (4 left TAs) ; ④ mdx mice + Optison + ultrasound (4 right TAs); ⑤mdx mice + SonoVue(4 left TAs) ;⑥mdx mice + SonoVue + ultrasound(4 right TAs). Mice were sacrificed 1 week after plasmid DNA injection. Fibres with fluorescence green signals were determined as GFP-positive fibres by fluorescence microscopy. Readout was performed on the section with the maximum number of transfected fibers. Results C57B10 mice: ?Optison without ultrasound had significantly increased gene expression compared with negative control ( P <0. 01). SonoVue without ultrasound did not enhance gene expression. ?Optison with ultrasound had significantly increased gene expression compared with negative control (P < 0.01). ?SonoVue with ultrasound had significantly increased gene expression compared with negative control ( P<0. 01).Mdx mice:? Compared with C57B10 mice, GFP alone demonstrated significant GFP expression in mdx mice ( P <0. 01) , Optison demonstrated significant GFP expression in mdx mice ( P <0.01), and SonoVue demonstrated significant GFP expression in mdx mice ( P <0. 01). ?Microbubble groups (Optison and SonoVue) had significantly increased gene expression compared with negative control (P <0. 01). Conclusions In the mechanisms of microbubble-mediated gene enhancement, sonoporation is the key step. The deblic of microbubbles with perfluoropropane gas and albumin is the main constituent in the mechanisms of Optison-mediated gene enhancement. fibers.Results C5781 0 mice:①Optison without ultrasound had significantly increased gene expressioncompared with negative control(P<0.01).SonoVue without ultrasound did not enhance gene expression.②Optison with ultrasound had significantly increased gene expression compared with negative control(P<0.01).③SonoVue with ultrasound had significantly increased gene expression compared with negativecontr01(P相似文献   

3.
目的 探讨共聚物P85与黏附增强型绿色荧光蛋白(enhanced green fluoresent protein,EGFP)质粒的微泡造影剂(microbubble,MB)结合后联合一定强度的超声(ultrasound,US)辐照,是否增强人肝癌细胞(HepG2)的质粒转染及表达.方法 以人肝癌细胞(HepG2)为研究对象,质粒DNA是可表达绿色荧光蛋白的pEGFP,添加微泡造影剂或共聚物P85后进行脉冲多普勒超声辐照(频率1 MHz,声强1 W/cm2,工作周期20%,时间20 s).24 h后台盼蓝染色评价细胞存活率,荧光显微镜和流式细胞仪评价细胞的基因转染率.结果 有超声辐照组的pEGFP转染率明显高于无超声辐照组(P<0.01),有超声辐照组中pEGFP+30%MB+P85+US组转染效率(22.14±3.06)%优于单独使用微泡组(11.34±2.2)%或P85组(9.72±1.21)%(P<0.01).结论 微泡造影剂与共聚物P85结合同时给予超声辐照可增强基因转染效率,在基因治疗上有待于进一步关注和研究.  相似文献   

4.
目的 探讨微泡造影剂Optison介导基因转染小鼠骨骼肌细胞的作用.方法 采用质粒GFP作为目的基因,超声(1 MHz脉冲波,20%工作周期,空间时间峰值强度1 W/cm2)结合Optison作用于小鼠体外H2K成肌细胞,照射时间分别为10、20、30、40、50及60 s,流式细胞仪测定GFP阳性细胞率,台盼蓝染色测定细胞生存率.超声结合Optison作用于小鼠胫前肌,1周后处死小鼠,荧光显微镜检测GFP阳性肌纤维数,HE染色后计算肌肉损伤面积.结果 活体外细胞实验结果显示,与阳性对照组相比,Optison结合超声作用于H2K细胞10、20及30 s时,显著增强GFP基因表达水平(P<0.01),但于40、50及60 s时基因表达水平显著降低(P<0.01),细胞死亡率总体显著增加(P<0.01).动物实验结果显示,Optison单独或结合超声均显著增强GFP基因表达水平,且Optison单独作用显著减少肌肉损伤面积.结论 Optison可显著增强活体小鼠骨骼肌细胞基因表达水平,同时具有肌肉保护作用.  相似文献   

5.
超声微泡造影剂介导小鼠骨骼肌基因转染实验研究   总被引:4,自引:2,他引:4  
目的探讨微泡造影剂在超声作用下是否可增加小鼠骨骼肌基因转染效率.方法 40只昆明小鼠随机分为4组,每组10只,第一组:在胫前肌注射造影剂与绿色荧光蛋白(GFP)质粒的混合溶液;第二组:注射与第一组相同的混合溶液后立即加超声辐照;第三组:注射GFP;第四组:在注射GFP后立即用超声辐照.7天后取小鼠胫前肌观察绿色荧光蛋白的表达情况.结果第一组与第二组有较多GFP表达,部分肌纤维绿色荧光较明亮,部分较暗淡;第三组和第四组GFP表达量较少.第一组与其余各组间的差异有显著性意义,P<0.05;第二组与其余各组间的差异有显著性意义,P<0.05;第三组与第四组间的差异无显著性意义,P>0.05.结论超声微泡造影剂在超声作用下可明显增强小鼠骨骼肌的基因转染效率;未加超声波作用时,直接肌注携基因的超声微泡造影剂亦可增加小鼠骨骼肌的基因转染效率.  相似文献   

6.
目的 探讨两种纳米微泡(白蛋白外膜和磷脂外膜)增强基因转染小鼠骨骼肌的作用.方法 以正常C57B10小鼠胫前肌为研究对象,目的基因GFP与微泡混合注入小鼠胫前肌,一侧胫前肌经超声(1MHz脉冲波,脉冲重复频率为100 Hz,20%工作周期,空间峰值时间峰值声强为2 W/cm2,辐照作用时间30 s),另一侧胫前肌不经超声辐照.观察白蛋白纳米微泡及磷脂纳米微泡增强骨骼肌细胞GFP转染水平的作用.1周后处死小鼠,荧光显微镜观察发出绿色荧光者为GFP阳性肌纤维细胞,计数最大GFP阳性肌纤维细胞数,作为GFP基因转染效率指标.结果 ①白蛋白纳米微泡组和白蛋白纳米微泡+超声组最大GFP阳性肌纤维数显著高于阴性对照组(P<0.05),显著低于阳性对照组(P<0.05).②磷脂纳米微泡组与阴性对照组及阳性对照组比较,最大GFP阳性肌纤维数差异均无统计学意义(P>0.05).磷脂纳米微泡+超声组最大GFP阳性肌纤维数较阴性对照组显著增高(P<0.05);磷脂纳米微泡+超声组与阳性对照组最大GFP阳性肌纤维数差异无统计学意义(P>0.05).结论 纳米微泡可增强基因转染骨骼肌细胞效率,白蛋白含氟化气体纳米微泡具有发展潜力.  相似文献   

7.
超声介导微泡破裂增强体外基因转染的方法学研究   总被引:10,自引:9,他引:1  
目的 对超声促进基因转染的方法进行系统的优化研究,初步确定超声介导微泡破裂(UMMD)增强体外基因转染的最优参数.方法 选用 Ishikawa、Hela 和 MCF-7 3种细胞系为研究对象,用1 MHz超声仪.超声强度为1.0W/cm2,系统研究不同参数下的细胞活力及两种DNA质粒[红色荧光蛋白质粒(DsRed)和荧光索酶质粒(pCMV-LUC)的基因转染情况,优化UMMD的转染条件(质粒浓度、占空比及辐照时间),分析SonoVue微泡对基因转染的增强作用.结果 基因转染率随着质粒浓度的增加而增高,当质粒浓度达到30 μg/孔时转染率最高,两种DNA质粒的最佳转染浓度相同.与10%占空比的超声辐照相比,20%占空比的转染率显著提高(P<0.01).辐照3 min时基因表达率最高,但存活率无明显下降(89.03±2.01)%,为最佳辐照时间.无超声辐照时,单独应用质粒或微泡十质粒的样本几乎不表达红色荧光蛋白.与单纯超声辐照相比,超声辐照联合SonoVue微泡可显著提高基因转染效率(P<0.01).结论 UMMD的转染参数影响转染效率和细胞活力,优化的参数有利于促进基因转染.  相似文献   

8.
目的 探讨脉冲超声辐照微泡超声造影剂提高脂质体介导增强型绿色荧光蛋白质粒在肝癌,细胞(HepG2)中转染率的可行性.方法 将HepG2接种在24孔板中,随机分为以下6组:①空白对照组;②质粒+脂质体组;③超声+质粒组;④超声+质粒+微泡组;⑤超声+质粒+脂质体组;⑥超声+质粒+脂质体+微泡组.荧光显微镜及流式细胞仪检测增强型绿色荧光蛋白表达及转染效率;MTT法检测此转染方法对HepG2生长活性的影响.结果 超声+质粒+脂质体组的转染效率最高,并对细胞活性无明显影响;而超声+质粒+脂质体+微泡组转染效率与超声+质粒+脂质体组比较差异无统计学意义(P>0.05),但细胞活性与空白组比较差异有统计学意义(P<0.05).结论 脉冲超声辐照可介导基因转染,并能提高脂质体基因转染效率.同时,在一定条件下,超声微泡造影剂可提高超声介导基因转染效率,此方法可为基因转染提供新的思路.  相似文献   

9.
目的探讨超声微泡造影剂在一定能量的超声波辐照下,介导EGFP质粒转染视网膜母细胞瘤(RB)细胞的效率及可行性。 方法将RB细胞分为6组,1组以一定能量的超声波辐照,2组加适当剂量的微泡造影剂,3组加入质粒,4组加入质粒与微泡,5组加入质粒、微泡,并用一定能量的超声辐照,6组予脂质体与质粒。转染24-48h后观察EGFP表达,并用RT—PCR进行检测。同时对1、2组予以染色。 结果超声微泡介导的DNA质粒对RB细胞的转染效率,与脂质体介导的质粒转染效率相似,明显高于其他实验组。一定能量和时间的超声波辐照,及适当浓度的微泡,对RB细胞的活性无明显抑制。 结论利用低频率和一定能量的超声击碎携带EGFP质粒的超声微泡造影剂,能够有效地提高DNA质粒在RB细胞中的转染效率。  相似文献   

10.
目的 探讨超声微泡造影剂在一定能量的超声波辐照下,介导质粒pEGFP-N1转染人牙周膜成纤维细胞(HPDLFs)的效率及安全性.方法 体外原代培养HPDLFs,以EGFP基因为报告基因,脂质微泡造影剂为载体,用超声辐照介导质粒pEGFP-N1转染HPDLFs.实验组超声+微泡+质粒组根据转染条件不同分成不同亚组,对照组为质粒组、微泡+质粒组、超声+质粒组和脂质体+质粒组.转染48 h后在倒置荧光显微镜下观察绿色荧光蛋白GFP表达.同时用MTT法检测HPDLFs的活力.结果 超声微泡介导的质粒对HPDLFs的转染效率与脂质体介导的质粒转染效率相似,明显高于其他对照组.超声+微泡+质粒组中HPDLFs的活力明显高于脂质体+质粒组.结论 在一定条件下,超声微泡能安全、有效地介导外源基因的转染与表达.  相似文献   

11.
Intramuscular injection of naked plasmid DNA is a safe approach to the systemic delivery of therapeutic gene products, but with limited efficiency. We have investigated the use of microbubble ultrasound to augment naked plasmid DNA delivery by direct injection into mouse skeletal muscle in vivo, in both young (4 weeks) and older (6 months) mice. We observed that the albumin-coated microbubble, Optison (licensed for echocardiography in patients), significantly improves the transfection efficiency even in the absence of ultrasound. The increase in transgene expression is age related as Optison improves transgene expression less efficiently in older mice than in younger mice. More importantly, Optison markedly reduces muscle damage associated with naked plasmid DNA and the presence of cationic polymer PEI 25000. Ultrasound at moderate power (3 W/cm2 1 MHz, 60 s exposure, duty cycle 20%), combined with Optison, increases transfection efficiency in older, but not in young, mice. The safe clinical use of microbubbles and therapeutic ultrasound and, particularly, the protective effect of the microbubbles against tissue damage provide a highly promising approach for gene delivery in muscle in vivo.  相似文献   

12.
Although clinical trials of stimulation of angiogenesis by transfection of angiogenic growth factors using naked plasmid DNA or adenoviral vector have been successful, there are still unresolved problems for human gene therapy such as low transfection efficiency and safety. From this viewpoint, it is necessary to develop safe and efficient novel nonviral gene transfer methods. As therapeutic ultrasound induces cell membrane permeabilization, ultrasound irradiation might increase the transfection efficiency of naked plasmid DNA into skeletal muscle. Thus, we examined the transfection efficiency of naked plasmid DNA using ultrasound irradiation with echo contrast microbubble (Optison) in vitro and in vivo experiments. First, we examined the feasibility of ultrasound-mediated transfection of naked plasmid DNA into skeletal muscle cells. Luciferase plasmid mixed with or without Optison was transfected into cultured human skeletal muscle cells using ultrasound (1 MHz; 0.4 W(2)) for 30 s. Interestingly, luciferase activity was markedly increased in cells treated with Optison, while little luciferase activity could be detected without Optison (P < 0.01). Electron microscopy demonstrated the transient formation of holes (less than 5 microM) in the cell surface, which could possibly explain the rapid migration of the transgene into the cells. Next, we studied the in vivo transfection efficiency of naked plasmid DNA using ultrasound with Optison into skeletal muscle. Two days after transfection, luciferase activity in skeletal muscle transfected with Optison using ultrasound was significantly increased about 10-fold as compared with plasmid alone. Successful transfection was also confirmed by beta-galactosidase staining. Finally, we examined the feasibility of therapeutic angiogenesis using naked hepatocyte growth factor (HGF) plasmid in a rabbit ischemia model using the ultrasound-Optison method. Five weeks after transfection, the angiographic score and the number of capillary density in rabbits transfected with Optison using ultrasound was significantly increased as compared with HGF plasmid alone (P < 0.01), accompanied by a significant increase in blood flow and blood pressure ratio (P < 0.01). Overall, the ultrasound transfection method with Optison enhanced the transfection efficiency of naked plasmid DNA in vivo as well as in vitro. Transfection of HGF plasmid by the ultrasound-Optison method could be useful for safe clinical gene therapy to treat peripheral arterial disease without a viral vector system.  相似文献   

13.
目的探讨空气型微泡造影剂Levovist介导基因转染小鼠骨骼肌细胞的作用。方法采用质粒GFP作为目的基因,超声(1MHz脉冲波,20%工作周期,空间时间峰值强度1W/cm^2)结合Levovist作用于小鼠H2K成肌细胞,照射时间分别为10s、20s、30s、40s、50S、60s,流式细胞仪测定GFP阳性细胞率,台盼蓝染色测定细胞生存率。超声结合Levovist作用于小鼠胫前肌,1周后处死小鼠,荧光显微镜测定GFP阳性肌纤维数,HE染色估计肌肉破坏面积。结果超声单独作用于H2K细胞显示出较佳的增强GFP基因表达的作用,加入微泡造影剂Levovist后,细胞死亡率显著增加,GFP基因表达水平降低;动物实验显示,Levovist结合或不结合超声均无增强GFP基因表达水平作用,但会增加肌肉损伤面积。结论本实验条件下,Levovist无增强骨骼肌细胞基因表达作用,却加重细胞损伤。  相似文献   

14.
目的 探讨超声靶向微泡破坏(UTMD)联合聚乙烯亚胺(PEI)增强裸鼠Hela细胞(人宫颈癌)移植瘤基因输送的可行性和应用价值.方法 分别将2种质粒DNA[红色荧光蛋白质粒(RFP)和荧光素酶质粒(pCMV-LUC)]与PEI以不同氮/磷酸盐比(N/P比)混合,利用凝胶阻滞实验对PEI/DNA复合物进行分析.经荷瘤裸鼠尾静脉分别注入PBS、质粒、质粒+Sono Vue微泡、PEI/DNA复合物+Sono Vue微泡,仅对一侧肿瘤行超声辐照(3 MHz、2 W/cm2、2 min、20%占空比),另一侧肿瘤作为对照,并对该转染方法 的靶向性进行分析.超声辐照3 d后处死动物,行RFP表达观察、荧光素酶活性检测和组织学检查.结果 琼脂糖凝胶电泳显示PEI可有效地缩合质粒DNA.与裸质粒组比较,UTMD(超声辐照+Sono Vue微泡)能明显提高RFP转染率.与非辐照对照侧比较,UTMD的运用使RFP表达明显增强,荧光素酶活性增加了14倍(P<0.01).UTMD联合PEI可显著增强基因转染,受辐照移植瘤的荧光素酶活性增加了10倍(P<0.01);与非联合PEI时比较,荧光素酶表达增加了111倍(P<0.01).无论有否超声照射,裸鼠其他器官组织中均无明显的基因表达(P>0.05),且未观察到明显的组织损伤.结论 UTMD联合PEI可显著增强报告基因在肿瘤组织的靶向传输和转染,是一种很有前景、新型而安全的体内基因输送方法.  相似文献   

15.
INTRODUCTION: The purpose of this study was to determine whether ultrasound exposure combined with microbubble destruction could be used to enhance non-viral gene delivery in human pancreatic carcinoma cells (PANC-1). METHODS: The study was performed with four experimental groups: Group P, plasmid alone; Group P+M, plasmid and microbubbles; Group P+U, plasmid and ultrasound; Group P+U+M, plasmid with ultrasound and microbubbles. Plasmid DNA encoding enhanced green fluorescent protein (pEGFP) was gently mixed with commercially available ultrasound microbubble contrast agents (SonoVue(R); Bracco Diagnostics Inc, Milan, Italy) in Group P+M and Group P+U+M. The different combinations of DNA and DNA plus microbubbles were added to cultured PANC-1 cells under different conditions. Transfection efficiency and cell viability were assessed by FACS analysis (Becton Dickinson, San Jose, CA, USA), confocal laser scanning microscopy, and trypan blue staining. RESULTS: The results demonstrated that microbubbles with ultrasound exposure could significantly enhance the reporter gene expression as compared with other groups (Group P+U+M, 21.4%+/-3.16%; Group P, 2.9%+/-0.45%; Group P+M, 3.1%+/-0.51%; Group P+U, 6.1%+/-1.27%; P<0.01). No statistically significant difference was observed in the PANC-1 cell viability between Group P+U+M and other groups (P>0.05). CONCLUSION: Our in-vitro findings suggest that ultrasound-mediated microbubble destruction has the potential to promote efficient gene transfer into PANC-1 cells without significant cell death. This non-invasive gene transfer method may be a useful tool for safe clinical gene therapy of pancreatic cancer in the future.  相似文献   

16.
In the search for an efficient nonviral gene therapy approach for the treatment of genetic disorders of cardiac and skeletal muscle such as Duchenne muscular dystrophy, ultrasound in combination with contrast enhancing microbubbles has emerged as a promising tool for safe and site-specific enhancement of gene delivery. Indeed, microbubble-enhanced gene transfer (MBGT) has been investigated for a wide variety of target sites using both reporter and therapeutic genes. Although a range of different microbubbles have been used for MBGT studies, comparison of their efficiencies is difficult because microbubble concentration and the ultrasound settings used for the application vary considerably. Only two studies to date have attempted a direct comparison of commercially available microbubbles, and both concluded that not all microbubbles show the same efficiencies with MBGT. Thus far, the reason for this is unclear. Here, the efficiency of three commercially available microbubbles—Optison, SonoVue and Sonazoid—was analyzed to understand the microbubble properties that are important for their function as an effective enhancer for gene transfer in vivo. In this study, plasmid DNA or antisense oligonucleotides were delivered by systemic injection with MBGT, focused on the heart. Gene delivery to the heart with equalized concentrations of the three microbubbles showed that Optison and Sonazoid are more efficient in MBGT compared with SonoVue, which showed the weakest gene transfer to the myocardium. Investigations into the properties of these microbubbles showed that size and shell composition did not directly influence MBGT, whereas the microbubbles with increased stability in an ultrasound field showed better MBGT results than those degrading faster. Moreover, the microbubble concentration used for MBGT was also found to be an important factor influencing the efficiency of MBGT. In conclusion, the stability of a microbubble was shown to be a major influential factor for its performance in MBGT, as is the concentration of the microbubbles used. These findings emphasize the importance of detailed investigations into the properties of microbubbles to allow the production of a microbubble specifically designed for optimum performance with MBGT. (E-mail: d.wells@imperial.ac.uk)  相似文献   

17.
Shen ZP  Brayman AA  Chen L  Miao CH 《Gene therapy》2008,15(16):1147-1155
Current ultrasound (US)-mediated gene delivery methods are inefficient due, in part, to a lack of US optimization. We systematically explored the use of microbubbles (MBs), US parameters and plasmid delivery routes to improve gene transfer into the mouse liver. Co-presentation of plasmid DNA (pDNA), 10% Optison MBs and pulsed 1-MHz US at a peak negative pressure of 4.3 MPa significantly increased luciferase gene expression with pDNA delivered by intrahepatic injection to the left liver lobe. Intraportal injection delivered pDNA and MBs to the whole liver; with insonation, all lobes expressed the transgene, thus increasing total gene expression. Gene expression was also dependent on acoustic pressure over the range of 0-4.3 MPa, with a peak effect at 3 MPa. An average of 85-fold enhancement in gene delivery was achieved. No enhancement was observed below 0.25 MPa. Increasing pulse length while decreasing pulse repetition frequency and exposure time to maintain a constant total energy during exposure did not further improve transfection efficiency, nor did extend the US exposure pre- or postinjection of pDNA. The results indicate that coupled with MBs, US can more efficiently and dose-dependently enhance gene expression from pDNA delivered via portal vein injection by an acoustic mechanism of inertial cavitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号