首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 340 毫秒
1.
Murine embryonic stem cells (mESCs) are pluripotent cells that can be propagated in an undifferentiated state in continuous culture on a feeder layer or without feeders in the presence of leukemia inhibitory factor (LIF). Although there has been a great advance since their establishment, ESC culture is still complex and expensive. Therefore, finding culture conditions that maintain the self-renewal of ESCs, preventing their differentiation and promoting their proliferation, is still an area of great interest. In this work, we studied the effects of the conditioned medium from a bovine granulosa cell line (BGC-CM) on the maintenance of self-renewal and pluripotency of mESCs. We found that this medium is able to maintain mESCs' self-renewal while preserving its critical properties without LIF addition. mESCs cultured in BGC-CM expressed the stem cell markers Oct4, Sox2, Nanog, SSEA-1, Klf4, Rex1, and ECAT1. Moreover, mESCs cultured in BGC-CM gave rise to embryoid bodies and teratomas that differentiated effectively to diverse cell populations from endoderm, mesoderm, and ectoderm. Further, we found that mESCs cultured in BGC-CM have an increased proliferation rate compared with cells grown in the mESC standard culture medium supplemented with LIF. These findings may provide a powerful tool to culture mESCs for long periods of time with high proliferation rate while preserving its basic characteristics, contributing to the application of these cells to assess potential tissue engineering and cellular therapy applications.  相似文献   

2.
Traditionally, human embryonic stem cells (hESCs) are propagated by mechanical dissection or enzymatic dissociation into clusters of cells. To facilitate up-scaling and the use of hESC in various experimental manipulations, such as fluorescence-activated cell sorting, electroporation, and clonal selection, it is important to develop new, stable culture systems based on single-cell enzymatic propagation. Here, we show that hESCs, which were derived and passaged by mechanical dissection, can be rapidly adjusted to propagation by enzymatic dissociation to single cells. As an indication of the stability of this culture system, we demonstrate that hESCs can be maintained in an undifferentiated, pluripotent, and genetically normal state for up to 40 enzymatic passages. We also demonstrate that a recombinant trypsin preparation increases clonal survival compared with porcine trypsin. Finally, we show that human foreskin fibroblast feeders are superior to the commonly used mouse embryonic fibroblast feeders in terms of their ability to prevent spontaneous differentiation after single-cell passaging. Importantly, the culture system is widely applicable and should therefore be of general use to facilitate reliable large-scale cultivation of hESCs, as well as their use in various experimental manipulations. Disclosure of potential conflicts of interest is found at the end of this article.  相似文献   

3.
Long-term cultures of human embryonic stem (hES) cells require a feeder layer for maintaining cells in an undifferentiated state and increasing karyotype stability. In routine hES cell culture, mouse embryonic fibroblast (MEF) feeders and animal component-containing media (FBS or serum replacement) are commonly used. However, the use of animal materials increases the risk of transmitting pathogens to hES cells and therefore is not optimal for use in cultures intended for human transplantation. There are other limitations with conventional feeder cells, such as MEFs, which have a short lifespan and can only be propagated five to six passages before senescing. Several groups have investigated maintaining existing hES cell lines and deriving new hES cell lines on human feeder layers. However, almost all of these human source feeder cells employed in previous studies were derived and cultured in animal component conditions. Even though one group previously reported the derivation and culture of human foreskin fibroblasts (HFFs) in human serum-containing medium, this medium is not optimal because HFFs routinely undergo senescence after 10 passages when cultured in human serum. In this study we have developed a completely animal-free method to derive HFFs from primary tissues. We demonstrate that animal-free (AF) HFFs do not enter senescence within 55 passages when cultured in animal-free conditions. This methodology offers alternative and completely animal-free conditions for hES cell culture, thus maintaining hES cell morphology, pluripotency, karyotype stability, and expression of pluripotency markers. Moreover, no difference in hES cell maintenance was observed when they were cultured on AF-HFFs of different passage number or independent derivations.  相似文献   

4.
Applications of human embryonic stem cells (hESCs) are limited by the use of mouse embryonic fibroblasts feeder and animal-derived components during culture. In this study, we demonstrated the potential use of extracellular matrix (ECM) derived from the autologous feeders to support long-term undifferentiated growth of hESCs in xeno-free, serum-free, and feeder-free conditions. Autologous H9 ebF (feeder cells derived from outgrowth of embryoid body [EB] predifferentiated from H9 hESCs) was derived from EBs predifferentiated from H9 hESCs through a direct-plating outgrowth system. The ECM comprising collagen VI, laminin, and fibronectin was extracted from H9 ebF through a freeze-thaw procedure. The autologous ECM together with animal component-free TeSR?2 medium was used to support long-term growth of H1 and H9 hESC lines for up to 20 passages. The maintenance of hESC undifferentiated state by autologous ECM was confirmed by the positive staining of hESC-specific markers (Oct4, SSEA-4, and Tra-1-60) and the expression of pluripotency marker genes (Oct4, Nanog, and Sox2). Flow cytometry further showed that more than 99% of hESCs retained the expression of SSEA-3/4 after long-term culture on autologous ECM. Pluripotency of hESCs on ECM was further proven by in vitro EB formation and in vivo teratoma assay. Overall, this study suggested a strategy for efficient propagation of clinically compliant hESCs in an autologous feeder-free culture system.  相似文献   

5.
Conventional human induced pluripotent stem cells (hiPSCs), reprogrammed from somatic cells by induced expression of Oct4, Sox2, Klf4, and c-Myc, are phenotypically different from mouse embryonic stem cells (ESCs). In mice, culture in N2B27 serum-free 2i media (mitogen-activated protein kinase/extracellular signal-regulated kinase and glycogen synthase kinase 3 inhibitors; PD0325901 and CHIR99021) plus leukemia inhibitory factor (LIF) (2i+LIF medium) enriches for germline competent ESCs. Here, we demonstrate that flat-shaped hiPSC colonies can be reprogrammed into bowl-shaped multi-potent stem cells (2i-hiPSCs) by using 2i+LIF medium. Mechanical dissociation of 2i-hiPSC colonies enables stable maintenance for >20 passages. Importantly, gene expression profiling demonstrated that 2i-hiPSCs more closely resemble primitive neural stem cells (PNSCs). Notably, this 2i-induced phenotype was generated from conventional hiPSCs, but not human ESCs (hESCs), thus correlating with the observation of neuroectodermal SOX1-positive colonies in conventional hiPSCs, but not hESCs in 2i+LIF medium. Thus, 2i-hiPSCs, which are nonteratoma forming PNSCs, may represent a safe source of cells for neural research and regenerative medicine.  相似文献   

6.
7.
Adipose tissue-derived stem cells are a powerful tool for in vitro study of adult stem cell biology. So far, they have not been extensively used for gain or loss of function studies since they are resistant to most common transfection methods. Herein, we tested several classic transfection methods on human multipotent adipose tissue-derived stem (hMADS) cells. Our results showed that lipofectants and calcium phosphate were poorly efficient for transgene delivery in hMADS cells. In contrast, nucleofection, an electroporation-based method that is assumed to target plasmid DNA directly to the cell nucleus, led to a significant transient transgene expression in hMADS cells (up to 76% enhanced green fluorescent protein [EGFP]-positive cells were detected). Furthermore, after selection of hMADS cells that were nucleofected with a selectable plasmid coding for EGFP, stable EGFP expressing clones could be propagated in culture and efficiently induced to differentiate into EGFP-positive adipocytes and osteoblasts. Finally, we verified that nucleofected hMADS cells could produce a functional, transgene-encoded, secreted protein. To this aim, hMADS cells were nucleofected with a plasmid coding for leukemia inhibitory factor (LIF). This protein was detected at high concentrations in supernatants from pCAG-LIF transfected hMADS cells. Moreover, supernatants were able to maintain mouse embryonic stem cells' undifferentiated phenotype, indicating that hMADS cells could secrete a functional LIF protein. Taken together, our data demonstrate that nucleofection allows both transient and stable gene expression in adipose tissue-derived stem cells, without impairing their differentiation potential.  相似文献   

8.
It was reported recently that human fibroblasts can be reprogrammed into a pluripotent state that resembles that of human embryonic stem (hES) cells. This was achieved by ectopic expression of four genes followed by culture on mouse embryonic fibroblast (MEF) feeders under a condition favoring hES cell growth. However, the efficiency of generating human induced pluripotent stem (iPS) cells is low, especially for postnatal human fibroblasts. We started supplementing with an additional gene or bioactive molecules to increase the efficiency of generating iPS cells from human adult as well as fetal fibroblasts. We report here that adding SV40 large T antigen (T) to either set of the four reprogramming genes previously used enhanced the efficiency by 23-70-fold from both human adult and fetal fibroblasts. Discernible hES-like colonies also emerged 1-2 weeks earlier if T was added. With the improved efficiency, we succeeded in replacing MEFs with immortalized human feeder cells that we previously established for optimal hES cell growth. We further characterized individually picked hES-like colonies after expansion (up to 24 passages). The majority of them expressed various undifferentiated hES markers. Some but not all the hES-like clones can be induced to differentiate into the derivatives of the three embryonic germ layers in both teratoma formation and embryoid body (EB) formation assays. These pluripotent clones also differentiated into trophoblasts after EB formation or bone morphogenetic protein 4 induction as classic hES cells. Using this improved approach, we also generated hES-like cells from homozygous fibroblasts containing the sickle cell anemia mutation Hemoglobin Sickle. Disclosure of potential conflicts of interest is found at the end of this article.  相似文献   

9.
Human embryonic stem (hES) cells are typically derived and serially propagated on inactivated murine embryonic fibroblast (MEF) feeders. The use of MEFs and other components of animal origin in the culture media for hES cell support substantially elevates the risk of contaminating these cell lines with infectious agents of animal origin thereby severely limiting their potential for clinical application. We have previously shown that it is possible to derive and establish new hES cell lines in a xeno-free culture system using human fetal muscle fibroblast feeders. In this report, we have comparatively evaluated a panel of 11 different human adult, fetal, and neonatal feeders for hES cell support and have ranked them as supportive and non-supportive. We report that two adult skin fibroblast cell lines established in-house from abdominal skin biopsies supported prolonged undifferentiated hES cell growth for over 30 weekly passages in culture. Furthermore, hES cell lines cultured on adult skin fibroblast feeders retain hES cell morphology and remain pluripotent. Also, differences in feeder support exist between human cell types and sources. The use of human adult skin feeders is convenient for hES cell support given the ease of obtaining skin biopsies.  相似文献   

10.
人胚胎生殖细胞在人胚胎成纤维细胞饲养层上的生长   总被引:4,自引:1,他引:3  
目的探讨以人胚胎成纤维细胞为饲养层分离、培养人胚胎生殖细胞的方法和条件。方法分离、培养3~4月胚胎成纤维细胞,取3~15代细胞经丝裂酶素处理后铺板备用;分离6.11周胚胎原始生殖细胞,将其置于人胚胎成纤维细胞饲养层上,在含生长因子、分化抑制因子的培养体系中培养胚胎生殖细胞;用免疫细胞化学方法检测胚胎生殖细胞表面标志SSEA-1和SSEA-4;钙-钴法检测碱性磷酸酶活性;RT-PCR检测转录因子Oct-4的表达。结果人胚胎成纤维细胞可连续传代25代以上(6月),3~15代细胞可以用作饲养层细胞。分离的胚胎生殖细胞在饲养层上可增殖形成典型胚胎生殖细胞集落,并能连续在体外培养超过8代。集落未分化标志检测显示SSEA—1、SSEA-4呈阳性,碱性磷酸酶活性呈强阳性,Oct-4表达阳性。结论用人胚胎成纤维细胞作为饲养层能获得可连续增殖的胚胎生殖细胞。  相似文献   

11.
目的:采用不同培养基和饲养层培养人胚胎干细胞H1,建立适合H1细胞增殖的最佳条件并分析其基本生物学特性。方法:鼠源性饲养层采用ICR品系小鼠胚胎成纤维细胞(MEF),人源性饲养层采用人胚胎成纤维细胞系(HFF-1)。H1基本培养基配制分别采用传统DMEM/F12和改良培养基Knock-outTM DMEM。实验共分为MEF DMEM/F12、MEF K-DMEM、HFF DMEM/F12、HFF K-DMEM组。H1基本生物学特性检测采用免疫荧光、RT-PCR、碱性磷酸酶和核型分析。结果:MEF DMEM/F12组中H1克隆形态规则,不发生分化,增殖速度快;而MEF K-DMEM组细胞克隆传代后第4日发生分化;HFF DMEM/F12组和HFF K-DMEM组细胞传代后第3日就显示出分化趋势,克隆变扁。MEF DMEM/F12组中H1细胞保持正常核型和基本生物学特性。结论:不同的人胚胎干细胞系最佳培养条件是不同的,建立的MEF DMEM/F12组培养条件最适合H1细胞增殖。  相似文献   

12.
Human embryonic stem (hES) cells have the potential as starting materials for a wide variety of applications in cell therapy, drug discovery and development. However, the challenge is to produce large numbers of well-characterized hES cells that are pluripotent and of high quality. This is needed to be capable of producing future cell therapies that are safe, effective, and affordable for use in routine clinical practice. A major bottleneck is the present requirement for complex culturing regimes that are very labor intensive and unscalable. hES cells have traditionally been grown on feeder layers made from inactivated mouse or human embryonic fibroblasts, in medium containing serum and other nondefined factors. This makes conditions difficult to reproduce over multiple passages. With a view to simplifying culture conditions we have tested a novel proprietary good manufacturing practice-based system that circumvents the use of feeders completely. The system consists of a matrix and a formulated medium that, in combination, demonstrate a reliable and reproducible way to culture hES cells without the use of feeders. We have been able to grow hES cells (Shef3 and Shef6) for over 20 passages, in this system, without loss of pluripotency, capacity to differentiate, or acquisition of karyotypic abnormalities. Furthermore, we have demonstrated the feasibility of propagating hES cells at clonal dilutions from single cells using this system.  相似文献   

13.
Human leukemia inhibitory factor (LIF) was immobilized into insect virus-derived microcrystals (polyhedra) to generate LIF polyhedra (LIF-PH) that can slowly release LIF into embryonic stem (ES) cell culture media and thus maintain ES cells in an undifferentiated state. Assays of the biological activities of LIF-PH indicated that a single addition of LIF-PH to the ES cell culture medium can support the proliferation of mouse ES and induced pluripotent stem (iPS) cells continuously for 14 days, and suggest that LIF-PH can be successfully used in the place of a periodic addition of recombinant LIF to the media every 2-3 days. The release of LIF protein from LIF-PH was determined by enzyme-linked immunosorbent assay (ELISA). Maintenance of undifferentiated state of mouse ES and iPS cells cultured with LIF-PH was determined by the detection of pluripotency-related biomarkers Oct3/4 and stage-specific embryonic antigen-1 (SSEA-1) through immunostaining and measurement of alkaline phosphatase activity. In this paper, we propose a closed culture system for mass production of ES and iPS cells that utilize a slow-releasing agent of LIF.  相似文献   

14.
Phenotypic guidance of embryonic stem (ES) cell fate is paramount if these cells are to be used for tissue repair and regeneration. Our objective was to compare two different cell culture feeders and their effect on proliferation, apoptosis, and differentiation of human (h) ES cells. HSF-6 hES cells were grown in Knockout Dulbecco's modified Eagle medium (DMEM) on mouse embryonic fibro-blasts (MEFs) or U87 glioblastoma cells at densities of 50,000, 100,000, and 150,000 cells/well of a six-well plate for 7, 12, and 19 days. Immunocytochemistry was performed for bromodeoxyuridine (BrdU), TUNEL, and neural differentiation markers including class III beta-tubulin, NeuN, nestin, and doublecortin. Slides were examined by laser confocal microscopy with semiquantitative analyses of marker expression. BrdUand TUNEL-positive cells were primarily, but not exclusively, at edges and between established colonies. BrdU expression was higher on U87 feeders at low and intermediate densities at day 19. Both feeders demonstrated higher BrdU expression at day 7 compared to days 12 and 19. U87 produced more TUNEL-positive cells than MEFs with increasing numbers with increasing density and time in culture. Nuclear Oct-4 staining was seen only at day 7. MEFs appeared to promote greater neural differentiation of hES cells than U87. We conclude hES cells grown on U87 feeders demonstrate greater numbers of apoptotic cells and BrdU-positive cells at day 19. Independent of the feeders, proliferation and apoptosis may be positively correlated. We speculate differences in proliferation, apoptosis, and neural differentiation may be due to differential elaboration of specific cytokines by MEFs and U87.  相似文献   

15.
Stem cell growth and differentiation is controlled by intrinsic and extrinsic factors. The latter includes growth factors, which are conventionally supplied in?vitro in media exchanged daily. Here, we illustrate the use of affinity targeted biodegradable nanoparticles to mediate paracrine stimulation as an alternative approach to sustain the growth and pluripotency of mouse embryonic stem cells. Leukaemia Inhibitory Factor (LIF) was encapsulated in biodegradable nanoparticles and targeted to the cell surface using an antibody to the oligosaccharide antigen SSEA-1. Sustained release of LIF from nanoparticles composed of a solid Poly(lactide-co-glycolic acid) polyester or a hydrogel-based liposomal system, we term Nanolipogel, replenished once after each cell passage, proved as effective as daily replenishment with soluble LIF for maintenance of pluripotency after 5 passages using 10(4)-fold less LIF. Our study constitutes an alternative paradigm for stem cell culture, providing dynamic microenvironmental control of extrinsic bioactive factors benefiting stem cell manufacturing.  相似文献   

16.
Interleukin-6 (IL-6) and leukemia inhibitory factor (LIF) promoted the survival of acetylcholinesterase (AChE)-positive neurons in culture from embryonic E15 rat spinal cord. Half of the AChE-positive neurons died during 3-7 days in culture in the absence of IL-6 and LIF. However, IL-6 at a concentration of 5 ng/ml completely prevented the death of AChE-positive neurons. LIF at a concentration of 5 U/ml also stimulated the survival of neurons, although to a lesser extent than IL-6. IL-6 and LIF also increased the numbers of process-bearing neuron-like cells in culture. The dose-dependencies of IL-6 and LIF with regard to the survival of total neuron-like cells were different from those for AChE-positive neurons.  相似文献   

17.
Co-culture of human embryonic stem (ES) cells on mouse fibroblast feeders is the commonly used method for in vitro expansion of human ES cells in an undifferentiated state. However, it has potential risks of pathogen transmission from animals; thus, human cell-derived feeders have been employed to minimize this problem. In this study, we compared human placenta-derived feeders with bone marrow to demonstrate its effectiveness as feeders for in vitro long-term culture of human ES cells. We cultured a human ES cell line, SNUhES3, on human placenta-derived mesenchymal stem cell feeders and compared their culture efficiency with human bone marrow-derived feeders and control group (mouse fibroblast feeders, STO). The mean number of human ES cell colonies was 166 +/- 35 in the placenta feeders; this was significantly higher than bone marrow-derived feeders (87 +/- 16, p < 0.05). We could propagate the culture of SNUhES3 on the placenta feeders past the 50th week similar to control group. During the culture, the maintenance of undifferentiated state of SNUhES3 was demonstrated by the expression of SSEA-4, TRA-1-81, TRA-1-60, and Oct-4. However, we failed to propagate the culture of human ES cells on the human bone marrow-derived feeders past the 5th week. The efficiency of embryoid body formation was similar between placenta and control group, indicating the preservation of differentiation ability. Thus, placenta-derived feeders are more efficient for the long-term in vitro culture of human ES cells than bone marrow-derived feeders suggesting the possible role of placenta as a source for human cell-derived feeders.  相似文献   

18.
Dogs provide a more clinically relevant model of human disease than rodents, particularly with respect to hereditary diseases. Thus, the availability of canine stem cells will greatly facilitate the use of the dog in the development of stem cell-based gene therapies and regenerative medicine. In this study we describe the production of canine induced pluripotent stem cells (ciPSCs) from adult dermal fibroblasts. These cells have a morphology resembling previously described canine embryonic stem cells, a normal karyotype, and express pluripotency markers including alkaline phosphatase, Nanog, Oct4, Telomerase, SSEA1, SSEA4, TRA1-60, TRA1-81, and Rex1. Furthermore, the inactive X chromosome is reactivated indicating a ground-state pluripotency. In culture they readily form embryoid bodies, which in turn give rise to cell types from all 3 embryonic germ layers, as indicated by expression of the definitive endoderm markers Cxcr4 and α-fetoprotein, mesoderm markers Collagen IIA and Gata2, and ectoderm markers βIII-tubulin, Enolase, and Nestin. Of particular significance is the observation that these ciPSCs are dependent only on leukemia inhibitory factor (LIF), making them similar to mouse and canine embryonic stem cells, but strikingly unlike the ciPSCs recently described in two other studies, which were dependent on both basic fibroblast growth factor and LIF in order to maintain their pluripotency. Thus, our ciPSCs closely resemble mouse ESCs derived from the inner cell mass of preimplantation embryos, while the previously described ciPSCs appear to be more representative of cells from the epiblast of mouse postimplantation embryos.  相似文献   

19.
This article describes an in vitro culture system for embryonic stem (ES) cells, which are expected to serve as a cell source for transplantation because of their potential for indefinite expansion and pluripotency. We present a serial passaging protocol that permits the enrichment of undifferentiated ES cells by culturing them on a surface modified with a synthesized dendrimer having d-glucose as a functional ligand. The d-glucose-displaying dendrimer (GLU/D) surface caused mouse ES cells to form loosely attached spherical colonies, and the frequency of such colonies increased gradually with the number of passages. Analyses of alkaline phosphatase activity and the gene expression of pluripotency and early differentiation markers revealed that the spherical colony cells passaged four times (a total of 16days in culture) on the GLU/D surface acquired more of the characteristics of undifferentiated cells than the cells cultured on a conventional gelatin-coated surface. Moreover, the cells cultured on the GLU/D surface retained their germ-line transmission ability after four passages. These results indicate that this modified culture surface may be a useful tool for obtaining enriched preparations of undifferentiated ES cells.  相似文献   

20.
The unsolved enigmas of leukemia inhibitory factor   总被引:29,自引:0,他引:29  
Leukemia inhibitory factor (LIF) is a polyfunctional glycoprotein cytokine whose inducible production can occur in many, perhaps all, tissues. LIF acts on responding cells by binding to a heterodimeric membrane receptor composed of a low-affinity LIF-specific receptor and the gp130 receptor chain also used as the receptor for interleukin-6, oncostatin M, cardiotrophin-1, and ciliary neurotrophic factor. LIF is essential for blastocyst implantation and the normal development of hippocampal and olfactory receptor neurons. LIF is used extensively in experimental biology because of its key ability to induce embryonic stem cells to retain their totipotentiality. LIF has a wide array of actions, including acting as a stimulus for platelet formation, proliferation of some hematopoietic cells, bone formation, adipocyte lipid transport, adrenocorticotropic hormone production, neuronal survival and formation, muscle satellite cell proliferation, and acute phase production by hepatocytes. Unwanted actions of LIF can be minimized by circulating soluble LIF receptors and by intracellular suppression by suppressors of cytokine-signaling family members. However, the outstanding problems remain of how the induction of LIF is mediated in response to demands from such a heterogeneity of target tissues and why it makes design sense to use LIF in the regulation of such a diverse and unrelated series of biological processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号