首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
张斌  谢满江 《心脏杂志》2019,31(2):190-194
血管平滑肌细胞(VSMCs)具有很强的可塑性,当外界环境因素变化时可发生“收缩表型”和“合成表型”之间的转换。VSMCs表型转换是血管损伤后修复、高血压、动脉粥样硬化等众多血管疾病发生与发展中的关键起始步骤。研究证实生长因子、转录因子、缺氧、机械应力等因素能够调节VSMCs的表型转换。此外,microRNAs被证实广泛参与了VSMCs表型转换的调节,特别地是存在一类microRNAs可以感受细胞外力学因素的改变从而参与调节VSMCs的表型转换。航天飞行中,微重力环境可通过力学敏感性microRNA调控脑动脉VSMCs的表型转换,最终导致航天飞行后心血管功能的失调。因此,力学敏感性microRNA可为航天飞行后心血管功能失调提供潜在的药物靶点,对长期载人航天的医学保障具有重要意义。  相似文献   

2.
Atherosclerosis demonstrates an increased rate of vascular smooth muscle cells (VSMC) plasticity characterized by switching from the differentiated contractile phenotype to a de-differentiated synthetic state. In healthy blood vessels, phenotypic switching represents a fundamental property of VSMC in maintaining vascular homeostasis. However, in atherosclerosis, it is an initial and necessary step in VSMC-derived foam cell formation. These foam cells play a decisive role in atherosclerosis progression since approximately half of all the foam cells are of VSMC origin. Our recent work showed that interferon-gamma (IFN-γ), a primary inflammatory cytokine in progressive atherosclerosis, mediates VSMC phenotype switching exclusively through upregulating mini-tryptophanyl-tRNA synthetase (mini-TrpRS). Here, we discuss the pro-atherosclerotic implication of this phenomenon that inevitably occurs in the context of a more complex regulation mediated by IFN-γ. An emerging therapeutic option for patients with progressive atherosclerosis is also discussed.  相似文献   

3.
Atherosclerosis is a progressive and chronic inflammatory response to pathological fatty deposits in the arterial wall. The resulting disease spectrum ranges from angina pectoris, myocardial infarction, and sudden cardiac death to peripheral vascular disease and stroke. Vascular smooth muscle cells (VSMCs) are one of the major cell types contributing to neointimal formation of the affected arteries leading to atherosclerosis and in-stent restenosis. The severity of this disease has been linked to the cellular plasticity of VSMCs. At least two phenotypic states have been described: a contractile state, in which cells have increased cytoplasmic myofilaments and are involved in maintaining vascular tone, and a synthetic state, in which cells have relatively few contractile elements but in contrast upregulate the machinery required for protein synthesis and extracellular matrix secretion. In healthy vessels, VSMC can switch between these states, but regulation of this switch is disrupted in atherosclerosis and thought to contribute to the progression of disease.Our aim was to characterise the epigenetic signature of these VSMC phenotypes to better understand the pathophysiology of atherosclerosis. We used primary mouse VSMC from aorta and characterised the phenotypic changes occurring in response to transforming growth factor β, which promote the contractile phenotype, and platelet-derived growth factor that is involved in VSMC proliferation and migration. First we showed that VSMC develop into a contractile or synthetic phenotype in response to growth factor stimulation. We then characterised the gene expression profile and pattern of epigenetic histone modifications of VSMC selective genes. This identified novel histone modification proteins which could be involved in promoting the atherosclerotic phenotype. We have also shown that key VSMC selective genes are regulated through different epigenetic gene regulation mechanisms. This cell model will be used to investigate the molecular pathways involved in VSMC phenotypic regulation and identify novel candidates for future therapeutic intervention.FundingUK National Health Service and British Heart Foundation.  相似文献   

4.
Loss of the differentiated (contractile) phenotype of vascular smooth muscle cells (VSMCs) heightens their migratory activity. Integrins, as the main integrators of cell-extracellular matrix, regulate different aspects of cell behavior including migration and differentiation. alpha 8 beta 1 Integrin being expressed in cell types with contractile abilities is downregulated during VSMC phenotype modulation. In this report the ability of alpha 8 beta 1 integrin to induce the characteristics of the contractile phenotype as well as suppression of VSMC migratory activity was investigated. Forced expression of alpha 8 integrin in passage-5 rat VSMCs resulted in lower migratory activity. Western blot and immunoconfocal studies revealed that alpha 8 integrin overexpression was associated with the reappearance of VSMC contractile hallmarks including upregulation of contractile markers, assembly of stress fibres, and increased number of focal adhesions. alpha 8 Integrin overexpression in fibroblast-like Rat1 cells also induced SMC-like characteristics. alpha 8 Integrin-induced reappearance of the contractile hallmarks in de-differentiated VSMCs was impaired by RhoA inhibitors. These results provide evidences that alpha 8 integrin overexpression may assist phenotype-modulated VSMCs to revert to the contractile phenotype possibly via RhoA signaling pathway. Our findings suggest a dynamic role for alpha 8 beta 1 integrin to induce contractile phenotype as well as suppression of VSMC migration, a key player during arterial stenosis.  相似文献   

5.
In response to biological and mechanical injury, or in vitro culturing, vascular smooth muscle cells (VSMCs) undergo phenotypic modulation from a differentiated "contractile" phenotype to a dedifferentiated "synthetic" one. This results in the capacity to proliferate, migrate, and produce extracellular matrix proteins, thus contributing to neointimal formation. Cyclic nucleotide phosphodiesterases (PDEs), by hydrolyzing cAMP or cGMP, are critical in the homeostasis of cyclic nucleotides that regulate VSMC growth. Here, we demonstrate that PDE1A, a Ca2+-calmodulin-stimulated PDE preferentially hydrolyzing cGMP, is predominantly cytoplasmic in medial "contractile" VSMCs but is nuclear in neointimal "synthetic" VSMCs. Using primary VSMCs, we show that cytoplasmic and nuclear PDE1A were associated with a contractile marker (SM-calponin) and a growth marker (Ki-67), respectively. This suggests that cytoplasmic PDE1A is associated with the "contractile" phenotype, whereas nuclear PDE1A is with the "synthetic" phenotype. To determine the role of nuclear PDE1A, we examined the effects loss-of-PDE1A function on subcultured VSMC growth and survival using PDE1A RNA interference and pharmacological inhibition. Reducing PDE1A function significantly attenuated VSMC growth by decreasing proliferation via G1 arrest and inducing apoptosis. Inhibiting PDE1A also led to intracellular cGMP elevation, p27Kip1 upregulation, cyclin D1 downregulation, and p53 activation. We further demonstrated that in subcultured VSMCs redifferentiated by growth on collagen gels, cytoplasmic PDE1A regulates myosin light chain phosphorylation with little effect on apoptosis, whereas inhibiting nuclear PDE1A has the opposite effects. These suggest that nuclear PDE1A is important in VSMC growth and survival and may contribute to the neointima formation in atherosclerosis and restenosis.  相似文献   

6.
7.
OBJECTIVE: Migration of vascular smooth muscle cells (VSMCs) from the tunica media to the intima is a key event in neointima formation after coronary artery angioplasty. The central dogma in VSMC migration is cell modulation from the contractile to the noncontractile phenotype. Increased alpha8beta1 integrin expression, observed in situations where the majority of cells are in the contractile phenotype, led us to hypothesize that a decrease of alpha8beta1 integrin may play an important role in the migratory state of VSMCs. METHODS AND RESULTS: To test this hypothesis, neointima formation was induced in the left common carotid artery of adult male Sprague-Dawley rats by balloon dilatation. Immunohistochemical and Western blotting analysis showed reduced expression for up to 4 weeks of both the alpha8 and beta1 integrin subunits as well as smooth muscle alpha-actin in the tunica media following balloon injury. Moreover, ex vivo culture of carotid VSMCs revealed diminished alpha8 integrin expression in the platelet-derived growth-factor-dependent migratory state with an increase in the angiotensin-II-induced contractile state. To ascertain the functional role of alpha8 integrin in VSMC migration and proliferation, alpha8 gene expression was reduced by nearly 70% by short interference RNA (siRNA). Decreased alpha8 expression resulted in a significant increase of carotid VSMC migration but not of proliferation. CONCLUSIONS: Our results are consistent with those of other studies demonstrating that alpha8 integrin could be used as an appropriate differentiation marker. In addition, depressed alpha8 integrin expression (after vascular injury or siRNA knockdown) was correlated with heightened cell migratory activity, demonstrating its potential role in neointima formation.  相似文献   

8.
Objective: Cigarette smoking is a known risk factor for arteriosclerosis. In atheromatous plaques, vascular smooth muscle cells (VSMCs) display a phenotype that is different from the contractile type under normal conditions. Nicotine is the major pharmacological agent in cigarette smoke. However, any direct effect of nicotine on VSMCs remains uncertain. Because nicotine promotes VSMC migration, its phenotype may change due to nicotine. Approach and results: We used human aorta primary smooth muscle cells (HuAoSMCs), differentiated with transforming growth factor-β, to investigate changes in the protein levels of differentiation markers and in the activity of mitogen-activated protein kinases (MAPKs) after exposure to 0.1 μM of nicotine for 48 h. After nicotine exposure, the protein levels of myosin II 10 (2.93-fold) and β-actin (1.66-fold), synthetic type markers, were increased. In contrast, the levels of the contractile type markers, myosin II 11 (0.63-fold), high-molecular-weight caldesmon (0.40-fold) and SM22 (0.66-fold), which concern differentiated VSMC, were decreased. Moreover, nicotine exposure induced enhanced activation of p38 MAPK (1.30-fold) and extracellular signal-regulated kinase (1.91-fold). These results indicated that the phenotype of HuAoSMCs had changed to a synthetic-like type because of nicotine exposure. Thus, nicotine is one factor that can alter protein expression of differentiation markers in VSMCs. Besides, the increase of intracellular Ca2+ levels suggested that these effects of nicotine were mediated through nicotinic acetylcholine receptors. Conclusion: Nicotine has already been reported to promote VSMC migration from the tunica media to atheromatous plaques in the vascular intima. This phenomenon may occur because nicotine directly induces VSMC transformation from contractile type to synthetic-like type via nicotinic acetylcholine receptors and G protein-coupled receptors.  相似文献   

9.
Phenotype transformation of vascular smooth muscle cells (VSMCs) is known to be modulated by mechanical strain. The present study was designed to investigate how different frequencies of mechanical strain affected VSMC phenotype. VSMCs were subjected to the strains of 10% elongation at 0, 0.5, 1 and 2 Hz for 24 h using a Flexercell strain unit. VSMC phenotype was assessed by cell morphology, measurement of two-dimensional cell area, Western blotting for protein and RT-PCR for mRNA expression of differentiation markers. Possible protein kinases involved were evaluated by Western blotting with their specific antibodies. The strains at certain frequencies could induce a contractile morphology in VSMC with almost perpendicular alignment to the strain direction. The strains also regulated protein and mRNA expression of several differentiation markers, as well as the activation of extracellular signal-regulated kinases (ERKs), p38 MAP kinase and protein kinase B (Akt) in a frequency-dependent manner. Furthermore, the inhibition of the p38 pathway could block the frequency-induced phenotype modulation of VSMCs, but not inhibition of ERK or Akt pathways. These results indicate that the frequency of cyclic strain can result in the differentiated phenotype of VSMCs, and it is mediated at least partly by the activation of the p38 pathway.  相似文献   

10.
Vascular smooth muscle cell (VSMC) proliferation and migration are underlying factors in the development and progression of cardiovascular disease. Studies have shown that altered expression of vascular integrins and extracellular matrix proteins may contribute to the vascular remodeling observed after arterial injury and during disease. We have recently shown that loss of the alpha7beta1 integrin results in VSMC hyperplasia. To investigate the cellular mechanisms underlying this phenotype, we have examined changes in cell signaling pathways associated with VSMC proliferation. Several studies have demonstrated the mitogen-activated protein kinase signaling pathway is activated in response to vascular injury and disease. In this study, we show that loss of the alpha7 integrin in VSMCs results in activation of the extracellular signal-regulated kinase and translocation of the activated kinase to the nucleus. Forced expression of the alpha7 integrin or use of the mitogen-activated protein kinase kinase 1 inhibitor U0126 in alpha7 integrin-deficient VSMCs suppressed extracellular signal-regulated kinase activation and restored the differentiated phenotype to alpha7 integrin-null cells in a manner dependent on Ras signaling. Alpha7 integrin-null mice displayed profound vascular remodeling in response to injury with pronounced neointimal formation and reduced vascular compliance. These findings demonstrate that the alpha7beta1 integrin negatively regulates extracellular signal-regulated kinase activation and suggests an important role for this integrin as part of a signaling complex regulating VSMC phenotype switching.  相似文献   

11.
Background and aimsSmooth muscle and endothelial cell-enriched migration/differentiation-associated lncRNA (SENCR) has been reported to be associated with some cardiovascular diseases; however, its function and exact molecular mechanism in aortic dissection (AD) remain undefined. Thus, we investigated the effects of SENCR on AD and its potential mechanisms.Methods and resultsSENCR expression in aortic media specimens from AD patients was detected by quantitative real-time PCR (qPCR). The roles of SENCR in vascular smooth muscle cell (VMSC) proliferation and migration as well as in the regulation of contractile phenotype genes were studied using CCK-8, wound healing, Transwell, qPCR and Western blot assays. Dual-luciferase reporter assays were performed to identify the regulatory correlation between SENCR, miR-206 and myocardin. Furthermore, mouse AD models were constructed with ApoE?/- mice, and the effect of upregulated SENCR on phenotypic switching in the AD model was detected using hematoxylin and eosin (H&E) staining and immunohistochemistry (IHC) assays. SENCR overexpression inhibited VSMC proliferation, migration and synthetic phenotype-related gene expression; decreased miR-206 expression; increased myocardin expression; and suppressed rupture of the aortic media in mice. SENCR knockdown had the opposite effects. Our results further suggested that miR-206 upregulation could reverse the inhibitory roles of SENCR upregulation and that myocardin upregulation could restore the function of SENCR upregulation in VSMCs. Dual-luciferase reporter assays confirmed that SENCR regulated miR-206, which directly targeted myocardin in VSMCs.ConclusionSENCR overexpression suppressed VMSC proliferation and migration, maintained the contractile phenotype and suppressed aortic dilatation via the miR-206/myocardin axis.  相似文献   

12.
Fareh J  Martel R  Kermani P  Leclerc G 《Circulation》1999,99(11):1477-1484
BACKGROUND: Although endovascular radiotherapy inhibits neointimal hyperplasia, the exact cellular alterations induced by beta irradiation remain to be elucidated. METHODS AND RESULTS: We investigated in vitro the ability of 32P-labeled oligonucleotides to alter (1) proliferation of human and porcine vascular smooth muscle cells (VSMCs) and human coronary artery endothelial cells (ECs), (2) cell cycle progression, (3) cell viability and apoptosis, (4) cell migration, and (5) cell phenotype and morphological features. beta radiation significantly reduced proliferation of VSMCs (ED50 1.10 Gy) and ECs (ED50 2.15 Gy) in a dose-dependent manner. Exposure to beta emission interfered with cell cycle progression, with induction of G0/G1 arrest in VSMCs, without evidence of cell viability alteration, apoptosis, or ultrastructural changes. This strategy also proved to efficiently inhibit VSMC migration by 80% and induce contractile phenotype appearance, as shown by the predominance of alpha-actin immunostaining in beta-irradiated cells compared with control cells. CONCLUSIONS: 32P-labeled oligonucleotide was highly effective in inhibiting proliferation of both VSMCs and ECs in a dose-dependent fashion, with ECs showing a higher resistance to these effects. beta irradiation-induced G1 arrest was not associated with cytotoxicity and apoptosis, thus demonstrating a potent cytostatic effect of beta-based therapy. This effect, coupled to that on VSMC migration inhibition and the appearance of a contractile phenotype, reinforced the potential of ionizing radiation to prevent neointima formation after angioplasty.  相似文献   

13.
OBJECTIVE: Vascular smooth muscle cell (VSMC) de-differentiation is a prerequisite for migration from the tunica media to the intima after vascular injury. Integrin cell adhesion molecules participate in VSMC phenotype modulation. Alpha 8 beta 1 integrin is a differentiation marker of VSMCs and its knockdown heightens migration. In the present study, we examined whether or not alpha 8 integrin is required for the maintenance of VSMC differentiated phenotype. METHODS: Alpha 8 integrin in rat VSMC was knocked down by short interference RNA (siRNA) targeting alpha 8 integrin in comparison to a non-silencing siRNA. Cytoskeletal and morphological changes in VSMC were examined by immunofluorescence staining. The expression of phenotype-dependent markers was analyzed by immunoblotting. RESULTS: Alpha 8 integrin gene silencing evoked drastic changes in characteristics of the VSMC differentiated phenotype, including VSMC morphology, actin fibre organization, focal adhesion assembly and the expression of phenotype-dependent markers in favor of de-differentiation. Then, we investigated whether or not phenotype modulation induced by alpha 8 integrin gene silencing could be reversed by an inducer of VSMC differentiation. Transforming growth factor-beta (TGF-beta) failed to upregulate smooth muscle-myosin heavy chain as well as the assembly of parallel actin fibres in VSMCs transfected by siRNA-alpha 8. In addition, TGF-beta-induced vinculin localization at the tip of the cells was impaired by alpha 8 integrin gene silencing. CONCLUSION: These data suggest that alpha 8 integrin expression is required for maintenance of the VSMC differentiated phenotype, a state that is crucial for non-motile VSMCs.  相似文献   

14.
We previously demonstrated that homogeneous cultures of vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats produce angiotensin II (Ang II) in response to increases in the levels of angiotensinogen, cathepsin D, and angiotensin-converting enzyme (ACE). The change of VSMCs from the contractile to the synthetic phenotype increased the amount of synthetic organelles, resulting in the production of proteases and growth factors. To evaluate the contribution of the synthetic phenotype to the generation of Ang II, we examined the effect of fibronectin (FN), which reportedly induces the synthetic phenotype, on the Ang II-generating system in VSMCs. Cultured VSMCs from Wistar-Kyoto rats were incubated with an active fragment of FN, Arg-Gly-Asp-Ser, for 24, 48, or 72 hours after synchronization of the cell cycle with 0. 2% calf serum for 48 hours. Immunofluorescence and protein levels of alpha-smooth muscle (SM) actin and expression of SM22alpha mRNA, apparent in the contractile phenotype, were suppressed by FN, whereas expression of matrix Gla mRNA and osteopontin mRNA and protein, apparent in the synthetic phenotype, was increased. FN (1 to 1000 microg/mL) dose-dependently increased DNA synthesis in the VSMCs, which was inhibited by the Ang II type 1 receptor antagonist CV-11974. Ang II-like immunoreactivity as determined by radioimmunoassay was significantly increased in conditioned medium from the VSMCs. In addition, mRNA for the Ang II-generating proteases cathepsin D and ACE was increased by FN. Expression of transforming growth factor-beta1, platelet-derived growth factor A-chain, and basic fibroblast growth factor mRNAs was also increased by FN. These results indicate that the changes accompanying the alteration to the synthetic phenotype in homogeneous cultures of VSMCs increase expression of proteases such as cathepsin D and ACE, which then produce Ang II, and that these changes increase expression of growth factors that then induce growth of VSMCs.  相似文献   

15.
16.
Vascular smooth muscle cells (VSMCs) are the stromal cells of the vascular wall, continually exposed to mechanical signals and biochemical components generated in the blood compartment. They are involved in all the physiological functions and the pathological changes taking place in the vascular wall. Owing to their contractile tonus, VSMCs of resistance vessels participate in the regulation of blood pressure and also in hypertension. VSMCs of conduit arteries respond to hypertension-induced increases in wall stress by an increase in cell protein synthesis (hypertrophy) and extracellular matrix secretion. These responses are mediated by complex signalling pathways, mainly involving RhoA and extracellular signal-regulated kinase1/2. Serum response factor and miRNA expression represent main mechanisms controlling the pattern of gene expression. Ageing also induces VSMC phenotypic modulation that could have influence on cell senescence and loss of plasticity and reprogramming. In the early stages of human atheroma, VSMCs support the lipid overload. Endocytosis/phagocytosis of modified low-density lipoproteins, free cholesterol, microvesicles, and apoptotic cells by VSMCs plays a major role in the progression of atheroma. Migration and proliferation of VSMCs in the intima also participate in plaque progression. The medial VSMC is the organizer of the inwardly directed angiogenic response arising from the adventitia by overexpressing vascular endothelial growth factor in response to lipid-stimulated peroxisome proliferator-activated receptor-γ, and probably also the organizer of the adventitial immune response by secreting chemokines. VSMCs are also involved in the response to proteolytic injury via their ability to activate blood-borne proteases, to secrete antiproteases, and to clear protease/antiprotease complexes.  相似文献   

17.
18.
19.
The calcium channel blocker amlodipine continues to be of interest due to its potential proven ability to hinder the progression of atherosclerosis and reduce the number of clinical ischemic events. Vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) are useful in the study of atherosclerosis because they show exaggerated growth with production of angiotensin II (Ang II) by conversion to the synthetic phenotype. To clarify mechanisms of the antiproliferative effects of amlodipine, we evaluated effects of the expression of growth factors, the changes in phenotype, and the proliferation of VSMC from SHR. Amlodipine significantly inhibited basal DNA synthesis and proliferation of VSMC from SHR. Amlodipine also inhibited expression of platelet-derived growth factor (PDGF) A-chain, transforming growth factor beta1 (TGF-beta1) and basic fibroblast growth factor (bFGF) mRNAs in VSMC from SHR. Decreases in levels of PDGF A-chain and bFGF mRNAs in VSMC from SHR were greater with amlodipine than with nifedipine. Amlodipine significantly inhibited expression of the synthetic phenotype markers osteopontin and matrix Gla mRNAs, indicating that it inhibited the exaggerated growth of VSMC from SHR and suppressed the change from the contractile phenotype to the synthetic phenotype. Thus, amlodipine may be a beneficial therapeutic agent for patients with hypertensive vascular diseases.  相似文献   

20.
Vascular calcification is a common problem among the elderly and those with chronic kidney disease (CKD) and diabetes. The process of tunica media vascular calcification in CKD appears to involve a phenotypic change in the vascular smooth muscle cell (VSMC) resulting in cell-mediated mineralization of the extracellular matrix. The bone morphogenetic proteins (BMPs) are important regulators in orthotopic bone formation, and their localization at sites of vascular calcification raises the question of their role. In this review, we will discuss the actions of the BMPs in vascular calcification. Although the role of BMP-2 in vascular calcification is not proven, it has been the most studied member of the BMP family in this disease process. The role of BMP-2 may be through inducing osteoblastic differentiation of VSMCs through induction of MSX-2, or by inducing apoptosis of VSMCs, a process thought critical in the initiation of vascular calcification. Additionally, BMP-2 may be related to loss of regulation of the matrix Gla protein. A second BMP, BMP-7, less studied than BMP-2 may have opposing actions in vascular calcification. In postnatal life, BMP-7 is expressed primarily in the kidney, and expression is diminished by renal injury. BMP-7 is an important regulator of skeletal remodeling and the VSMC phenotype. BMP-7 restores skeletal anabolic balance in animal models of CKD with disordered skeletal modeling, also reducing serum phosphate in the process. BMP-7 also reverses vascular calcification in CKD, and reduction in vascular calcification is due, in part, to reduced serum phosphate, an important inducer of VSMC-mediated vascular mineralization and in part to direct actions on the VSMC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号