首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study evaluated the ability of insulin to regulate free fatty acid (FFA) concentrations in healthy nondiabetic subjects selected to be either insulin-resistant or -sensitive on the basis of insulin-mediated glucose disposal by muscle. Comparisons of steady-state plasma glucose (SSPG), insulin (SSPI), and FFA concentrations were made at the end of 3 infusion periods: (1) under basal insulin conditions (approximately 10 microU/mL), (2) in response to isoproterenol-induced stimulation of lipolysis at the same basal insulin concentration, and (3) following inhibition of isoproterenol-induced lipolysis by a 2-fold increase in the insulin concentration. The results showed that steady-state FFA concentrations were significantly higher under basal conditions (360 +/- 73 v 158 +/- 36 microEq/L, P = .02), in response to isoproterenol-induced lipolysis (809 +/- 92 v433 +/- 65 microEq/L, P = .005), and following insulin inhibition of isoproterenol-induced lipolysis (309 +/- 65 v 159 +/- 37 microEq/L, P = .06). These differences were found despite the fact that SSPG concentrations were also higher in insulin-resistant individuals during all 3 infusion periods. These results demonstrate that the ability of insulin to regulate plasma FFA concentrations is impaired in healthy subjects with muscle insulin resistance, indicating that insulin-resistant individuals share defects in the ability of insulin to stimulate muscle glucose disposal and to inhibit adipose tissue lipolysis.  相似文献   

2.
To evaluate the stability of insulin-mediated glucose disposal, over time, we measured the steady-state plasma insulin (SSPI) and steady-state plasma glucose (SSPG) concentrations in response to a continuous infusion of SRIF (5 microg/min), insulin (25 microU/m2 x min), and dextrose (240 microg/m2 x min). These measurements were made in 15 healthy volunteers, studied before and after a mean (+/-SEM) interval of 48 +/- 2 months. The mean (+/-SEM) weight of the volunteers did not increase with time (75.4 +/- 3.1 vs. 76.6 +/- 3.2 kg), and there was no significant variation between the 2 mean (+/-SEM) values of either SSPI (324 +/- 18 vs. 372 +/- 24 pmol/L) or SSPG (8.4 +/- 1.0 vs. 8.2 +/- 1.0 mmol/L). Given the similarity of both SSPI and SSPG concentrations at baseline and follow-up, it can be concluded that insulin-mediated glucose disposal was stable in these 15 individuals over an interval of approximately 4 yr.  相似文献   

3.
Resistance to insulin-stimulated-glucose uptake in patients with hypertension   总被引:10,自引:0,他引:10  
Plasma glucose and insulin responses to a glucose challenge and insulin-stimulated glucose uptake were measured in 24 age-, weight-, and sex-matched Chinese men (8 with normal blood pressure, 8 with untreated hypertension, and 8 patients with hypertension treated with thiazide and beta-adrenergic antagonist drugs). Plasma glucose and insulin responses were determined by measuring plasma glucose and insulin concentrations before and at 30-min intervals for 2 h after a 75-g oral glucose dose. Insulin-stimulated glucose uptake was estimated by measuring the steady state plasma glucose (SSPG) and insulin (SSPI) concentrations achieved during the last 60 min of a 180-min continuous infusion of somatostatin, insulin, and glucose (insulin suppression test). Under these conditions endogenous insulin secretion was suppressed, and similar SSPI concentrations were achieved in all men; thus, the differences in the resultant SSPG concentrations allowed direct comparison of insulin's ability to stimulate disposal of an identical glucose load in different individuals. The results indicated that the men with hypertension, whether treated or untreated, had significantly elevated plasma glucose (P less than 0.001) and insulin (P less than 0.001) responses to the oral glucose dose compared to the normal men. Mean (+/- SE) SSPG concentrations were also higher (P less than 0.001) in the men with either untreated hypertension [219 +/- 9 mg/dL (12.2 +/- 0.5 mmol/L)] or treated hypertension [211 +/- 18 mg/dL (11.7 +/- 1.0 mmol/L)] than in the normal men [134 +/- 13 mg/dL (7.4 +/- 0.7 mmol/L)]. Since the mean SSPI concentrations were similar in the 3 groups [approximately 70 microU/mL (502 pmol/L)], insulin was less effective in promoting glucose disposal in both groups with hypertension. These results document the fact that patients with hypertension, whether treated or untreated, are insulin resistant, hyperglycemic, and hyperinsulinemic compared to a well-matched control group.  相似文献   

4.
We studied the influence of hyperglycemia on glucose homeostasis in man by determining the effect of graded hyperglycemia on peripheral glucose uptake and systemic metabolism in the presence of basal and increased serum insulin concentrations in 10 normal men. This was achieved by the simultaneous application of forearm and clamp techniques (euglycemic and hyperglycemic) during the combined iv infusion of somatostatin, glucagon, and insulin. While mean (+/- SE) basal serum insulin levels (14 +/- 2 microU/ml) were maintained, the elevation of fasting arterial glucose concentrations (90 +/- 1 mg/dl) to 146 +/- 1 and 202 +/- 1 mg/dl (each for 120 min) increased forearm glucose uptake (FGU) only modestly from 0.06 +/- 0.01 to 0.15 +/- 0.02 and then to 0.24 +/- 0.03 mg/100 ml forearm X min, respectively. During physiological hyperinsulinemia (47 +/- 3 microU/ml), the influence of similar graded hyperglycemia on FGU was considerably enhanced. At plasma glucose concentrations of 90 +/- 1, 139 +/- 1, and 206 +/- 1 mg/dl, FGU rose to 0.33 +/- 0.05, 0.59 +/- 0.07, and 0.83 +/- 0.12 mg/100 ml forearm X min, respectively. The glucose infusion rate required to maintain the glucose clamp with basal insulin levels was 1.08 +/- 0.20 and 2.67 +/- 0.39 mg/kg X min at glucose concentrations of 146 +/- 1 and 202 +/- 1 mg/dl, respectively. During physiological hyperinsulinemia, however, the glucose infusion rate required was 4.15 +/- 0.39, 9.45 +/- 1.05, and 12.70 +/- 0.81 mg/kg X min at glucose levels of 90 +/- 1, 139 +/- 1, and 206 +/- 1 mg/dl, respectively. Lactate concentrations rose significantly during hyperglycemia, but the rise in the presence of increased insulin concentrations (from 0.72 +/- 0.06 to 1.31 +/- 0.11 mmol/liter; P less than 0.001) considerably exceeded the increment (from 0.74 +/- 0.05 to 0.92 +/- 0.03 mmol/liter) with basal insulin levels. While both FFA and glycerol concentrations were immediately reduced by euglycemic hyperinsulinemia, the fall in FFA during hyperglycemia in the presence of basal insulin levels preceded the decrease in glycerol concentrations by 45 min. Forearm oxygen consumption did not change throughout the study.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
This study was initiated to test the hypothesis that plasma concentrations of remnant lipoproteins would be higher after an overnight fast in insulin-resistant compared to insulin-sensitive volunteers. Forty-three healthy nonobese women were studied, divided into insulin-resistant (n = 21) and insulin-sensitive (n = 22) groups on the basis of their steady state plasma glucose (SSPG) concentration at the end of a 180-min infusion of octreotide acetate, insulin, and glucose. Under these conditions, steady state plasma insulin concentrations are similar in all subjects (approximately 60 microU/mL), and the higher the SSPG concentrations, the more insulin resistant the individual. By selection, mean (+/-SEM) SSPG concentrations were significantly higher (P < 0.001) in the insulin-resistant group (210 +/- 7 vs. 78 +/- 3 mg/dL). In addition, the insulin-resistant group had higher triglycerides (198 +/- 27 vs. 101 +/- 12 mg/dL; P < 0.005) and lower high density lipoprotein cholesterol (48 +/- 4 vs. 60 +/- 4 mg/dL; P < 0.05) concentrations. Finally, insulin resistance was associated with higher remnant lipoprotein particle concentrations of cholesterol (7.2 +/- 0.8 vs. 4.4 +/- 0.3; P < 0.005) and triglycerides (22.2 +/- 3.4 vs. 8.5 +/- 1.0; P < 0.001). All of these differences were seen despite the fact that the two groups were similar in terms of age and body mass index. These results identify additional abnormalities in lipoprotein metabolism that may contribute to the increased risk of coronary heart disease seen in insulin-resistant, nondiabetic subjects (syndrome X).  相似文献   

6.
We tested whether FFAs influence glucose uptake by human peripheral tissues in vivo. Whole body glucose uptake, FFA turnover, energy expenditure and substrate oxidation rates, forearm glucose and FFA uptake, and nonoxidative glycolysis (net release of alanine and lactate) were measured in 14 normal male subjects in the basal state (0-240 min; serum insulin, approximately 5 microU/mL) and during euglycemic hyperinsulinemia (240-360 min; approximately 75 microU/mL) on 2 separate occasions, once during elevation of plasma FFA by infusions of Intralipid and heparin (plasma FFA, 4.6 +/- 0.1 vs. 4.2 +/- 0.4 mmol/L; 180-240 vs. 300-360 min) and once during infusion of saline (plasma FFA, 0.50 +/- 0.07 vs. 0.02 +/- 0.07 mmol/L, respectively). In the basal state, whole body glucose disposal remained unchanged, but the fate of glucose was significantly altered toward diminished oxidation (7.3 +/- 0.8 vs. 5.6 +/- 0.5 mumol/kg.min; P less than 0.05, saline vs. Intralipid) and increased nonoxidative glycolysis (P less than 0.05). Elevation of plasma FFA significantly increased forearm glucose uptake (1.0 +/- 0.6 vs. 2.4 +/- 0.7 mumol/kg.min; P less than 0.01) and nonoxidative glycolysis (net release of alanine and lactate, 0.4 +/- 0.5 vs. 1.2 +/- 0.4 mumol glucose equivalents/kg.min; P less than 0.05). During hyperinsulinemia, FFA decreased whole body glucose disposal (38 +/- 2 vs. 30 +/- 3 mumol/kg.min; P less than 0.001) due to a decrease in glucose oxidation (13 +/- 1 vs. 7 +/- 1 mumol/kg.min; P less than 0.01, saline vs. Intralipid), and forearm glucose uptake (31 +/- 4 vs. 24 +/- 6 mumol/kg.min; P less than 0.01, saline vs. Intralipid). Under these conditions, 7 +/- 2% and 3 +/- 1% (P less than 0.05) of forearm glucose uptake could be accounted for by nonoxidative glycolysis in the Intralipid and saline studies, respectively. In summary, 1) elevation of plasma FFA concentrations suppresses the rate of carbohydrate oxidation to a rate that, both basally and during hyperinsulinemia, is similar to that reported for insulin-independent glucose oxidation in the brain; 2) basally, forearm glucose uptake is increased by FFA; and 3) during hyperinsulinemia, FFA inhibit glucose uptake by forearm tissues. We conclude that the interaction between glucose and FFA fuels in human forearm tissues is dependent upon the ambient insulin concentration; the increase in basal glucose uptake would be compatible with the increase need of glucose for FFA reesterification; the decrease in insulin-stimulated glucose uptake supports operation of the glucose-FFA cycle in human forearm tissues.  相似文献   

7.
The relationship between insulin-mediated glucose disposal and daylong free fatty acid (FFA) concentrations before and after sibutramine-assisted weight loss was investigated in 24 healthy, normotensive, nondiabetic, obese women (body mass index [BMI] >30.0 kg/m(2)). The 24 volunteers were defined as being insulin-resistant (IR) or insulin-sensitive (IS) on the basis of their steady-state plasma glucose (SSPG) concentration in response to a 180-minute continuous intravenous infusion of octreotide, insulin, and glucose. The mean (+/- SEM) SSPG concentrations were significantly higher (P <.001) in the IR group (219 +/- 7 v 69 +/- 6 mg/dL) at baseline. The IR group also had significantly higher plasma glucose (P =.002), insulin (P <.001), and FFA (P =.02) concentrations measured at hourly intervals from 8 AM to 4 PM, before and after breakfast (8 AM) and lunch (noon). Weight loss in response to an energy-restricted diet for 4 months and sibutramine (15 mg/d) was comparable in the 2 experimental groups (8.6 +/- 1.3 v 7.9 +/- 1.4 kg). SSPG concentrations decreased significantly (P <.001) following weight loss (219 +/- 7 to 144 +/- mg/dL) in the IR group, but there was no change in the SSPG of the IS group (69 +/- 6 to 73 +/- 7 mg/dL. The improvement in insulin sensitivity in the IR group after weight loss was associated with a significant decline in daylong plasma glucose (P >.001) and insulin (P =.02) concentrations, without a weight-loss-associated decrease in daylong plasma FFA responses. In contrast, there was no significant change in plasma glucose, insulin, and FFA concentrations following weight loss in the IS group. These results indicate that daylong FFA concentrations vary substantially in obese individuals as a function of whether they are IR or IS. Furthermore the observation that the IR group was more insulin-sensitive after weight loss, associated with lower daylong insulin concentrations in the absence of a significant decrease in circulating FFA concentrations, suggests that resistance to insulin-mediated glucose disposal in obese individuals cannot be entirely due to high FFA levels.  相似文献   

8.
This study was carried out to determine whether hepatic glucose production (HGP) could be suppressed in normal subjects by infusing different amounts of glucose, in the absence of significant changes in steady state plasma glucose (SSPG) or insulin (SSPI) concentrations. Consequently, subjects were infused with somatostatin (215 nmol/h), insulin (28.7 pmol/m2.min), and amounts of glucose varying from 0-200 mumol/m2.min in the absence or presence of glucagon (5.2 pmol/m2.min). SSPI concentrations were constant (60-70 pmol/L) during these studies, and values for the total glucose appearance rate (glucose infusion rate plus HGP) and SSPG did not vary significantly as a function of the rate of exogenous glucose infusion. However, values for HGP fell in response to increases in glucose infusion rate and could be suppressed to approximately 50% of the original value despite the fact that SSPG, SSPI, and glucose appearance rate did not change significantly. These data indicate that HGP can be regulated by varying the rate of exogenous glucose infusion during glucose clamp studies.  相似文献   

9.
We evaluated insulin action in skeletal muscle (glucose disposal), liver (glucose production), and adipose tissue (lipolysis) in 5 extremely obese women with acanthosis nigricans (AN), who had normal oral glucose tolerance, and 5 healthy lean subjects, by using a 5-stage pancreatic clamp and stable isotopically labeled tracer infusion. Basal plasma insulin concentration was much greater in obese subjects with AN than lean subjects (54.8 +/- 4.5 vs 8.0 +/- 1.3 microU/mL, P < .001), but basal glucose and free fatty acid concentrations were similar in both groups. During stage 1 of the clamp, glucose rate of appearance (R(a)) (2.6 +/- 0.3 vs 3.7 +/- 0.3 micromol x kg FFM(-1) x min(-1), P = .02) and palmitate R(a) (2.4 +/- 0.6 vs 7.0 +/- 1.5 micromol x kg FFM(-1) x min(-1), P < .05) were greater in obese subjects with AN than lean subjects despite slightly greater plasma insulin concentration in subjects with AN (3.0 +/- 0.7 vs 1.1 +/- 0.4 microU/mL, P < .05). The area under the curve for palmitate R(a) (1867 +/- 501 vs 663 +/- 75 micromol x kg FFM(-1) x 600 min(-1), P = .03) and glucose R(a) (1920 +/- 374 vs 1032 +/- 88 micromol x kg FFM(-1) x 600 min(-1), P = .02) during the entire clamp procedure was greater in subjects with AN than lean subjects. During intermediate insulin conditions (plasma insulin, approximately 35 microU/mL), palmitate R(a) was 5-fold greater in subjects with AN than in lean subjects (2.6 +/- 1.1 vs 0.5 +/- 0.2 micromol x kg FFM(-1) x min(-1), P = .05). Maximal glucose disposal was markedly lower in obese subjects with AN than in lean subjects (13.0 +/- 0.8 vs 23.4 +/- 1.8 mg x kg FFM(-1) x min(-1), P = .01) despite greater peak plasma insulin concentration (1842 +/- 254 vs 598 +/- 38 microU/mL, P < .05). These data demonstrate obese young adults with AN have marked insulin resistance in multiple tissues. However, marked insulin hypersecretion can compensate for impaired insulin action, resulting in normal glucose and fatty acid metabolism during basal conditions.  相似文献   

10.
The primary goal of this investigation was to see whether plasminogen activator inhibitor-1 (PAI-1) concentrations varied as a function of differences in insulin-mediated glucose disposal in 2 groups of healthy women matched for every other variable that might play a role in regulation of PAI-1. For this purpose, we recruited 32 healthy women, divided on the basis of their steady-state plasma glucose (SSPG) concentrations during the insulin suppression test into an insulin-resistant (SSPG=216+/-12 mg/dL, n=16) and an insulin-sensitive (94+/-6 mg/dL, n=16) group. PAI-1 antigen concentrations were significantly higher (26+/-4 versus 14+/-3 ng/mL, P<0.02) in the insulin-resistant group. In addition, fasting plasma insulin (18+/-3 versus 11+/-2 microU/mL, P<0.02) and triglyceride (160+/-19 versus 93+/-10 mg/dL, P<0.001) concentrations were higher in the insulin-resistant individuals, whereas HDL concentrations were lower (44+/-3 versus 58+/-3 mg/dL, P<0.005). However, the 2 groups were essentially identical in terms of age, menopausal status, hormone replacement therapy, body mass index (BMI), ratio of waist-to-hip girth, and blood pressure. When the experimental population was considered as 1 group, there were statistically significant correlations between PAI-1 antigen and the following variables: adjusting for differences in age and BMI, SSPG (r=0.56, P<0.001); triglyceride (r=0.39, P<0.05); and HDL cholesterol (r=-0. 65, P<0.001) concentrations. Finally, multiple regression analysis revealed the major determinants of PAI-1 to be insulin resistance, or insulin concentration, and HDL cholesterol. These results: 1) demonstrate that PAI-1 concentrations are higher in healthy, insulin-resistant women as compared with insulin-sensitive individuals, independent of differences in BMI or ratio of waist-to-hip girth; and 2) provide another mechanism by which insulin-resistant individuals are at increased thrombotic cardiovascular risk.  相似文献   

11.
In non-insulin-dependent diabetes mellitus (NIDDM), both liver and peripheral tissues are resistant to insulin, but the relative severity and contribution of these abnormalities to fasting hyperglycemia are poorly understood. We, therefore, determined the dose-response characteristics for insulin-mediated suppression of hepatic glucose production (GP) and stimulation of peripheral glucose uptake (GU) in 14 NIDDM subjects and 14 age- and weight-matched nondiabetic volunteers (NV) using the glucose clamp sequential insulin infusion technique along with isotopic estimation of glucose flux. Postabsorptive rates of both GP (94 +/- 7 v 72 +/- 2 mg/M2/min in NV, P less than .01) and GU (88 +/- 5 v 72 +/- 2 in NV, P less than .01) were significantly increased in NIDDM subjects. The ED50 (half-maximally effective plasma insulin concentration) in NIDDM subjects for suppression of GP (64 +/- 14 microU/mL) and stimulation of GU (118 +/- 20 microU/mL were both increased more than twofold above normal (26 +/- 2 and 58 +/- 5 microU/mL, respectively, both P less than .01) and were significantly correlated with one another (r = .68, P less than .01). Although GP could be totally suppressed in the NIDDM subjects, their maximal GU was reduced 30% (287 +/- 20 v 372 +/- 15 mg/m2/min in NV, P less than .01). Nevertheless, at all physiologically relevant plasma insulin concentrations studied, there was comparable impairment in GP and GU responses. Moreover, fasting plasma glucose concentrations in NIDDM subjects were highly correlated with their increased basal rates of GP (r = .81, P less than .005) but not with their reduced GU.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Raised levels of free fatty acids (FFA) compete with glucose for utilization by insulin-sensitive tissues, and, therefore, they may induce insulin resistance in the normal subject. The influence of experimental elevations in FFA levels on glucose metabolism in native insulin-resistant states is not known. We studied seven women with moderate obesity (63% above their ideal body weight) but normal glucose tolerance with the use of the insulin clamp technique with or without an infusion of Intralipid + heparin. Upon raising plasma insulin levels to approximately 60 microU/mL while maintaining euglycemia, whole body glucose utilization (3H-3-glucose) rose similarly without (from 66 +/- 7 to 113 +/- 11 mg/min m2, P less than .02) or with (from 70 +/- 7 to 137 +/- 19 mg/min m2, P less than .02) concomitant lipid infusion. In contrast, endogenous glucose production was considerably (73%) suppressed (from 66 +/- 7 to 15 +/- 8 mg/min m2, P less than .001) during the clamp without lipid, but declined only marginally (from 70 +/- 7 to 48 +/- 7 mg/min m2, NS) with lipid administration. The difference between the control and the lipid study was highly significant (P less than .02), and amounted to an average of 3.8 g of relative glucose overproduction during the second hour of the clamp. Blood levels of lactate rose by 34 +/- 15% (.1 greater than P greater than .05) in the control study but only by 17 +/- 10% (NS) during lipid infusion. Blood pyruvate concentrations fell in both sets of experiments (by approximately 45% at the end of the study) with similar time courses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Antiinsulin receptor antibodies were detected in the serum of a patient with insulin-resistant diabetes. Fasting hypoglycemia and postprandial hyperglycemia recurred every day. The plasma insulin level was 553 +/- 359 pmol/L [77 +/- 50 microU/mL (mean +/- SD)] in the fasting state and rose above 7500 pmol/L postprandially. The glycemic clamp at 2.8 mmol/L (50 mg/dL) without insulin infusion revealed that the half-life of plasma endogenous insulin was 173 min, indicating severely impaired plasma insulin clearance. During the clamp the glucose infusion rate was almost constant (0.9-1.2 mg/kg.min) despite an exponential decline in the plasma insulin level from 460 pmol/L (65 microU/mL) to 129 pmol/L (18 microU/mL). Intravenous insulin administration did not appreciably accelerate the basal constant decrease in the plasma glucose level during the postabsorptive period. These results indicate the coexistence of marked insulin resistance and constant ability to decrease plasma glucose level. In in vitro experiments, antireceptor immunoglobulin G from this patient increased the fructose 2,6-bisphosphate concentration in the presence of glucagon (less than 0.1 nmol/L) in primary cultured rat hepatocytes. The antireceptor immunoglobulin G stimulated autophosphorylation of rat liver insulin receptor. We conclude that antiinsulin receptor antibodies could impair plasma insulin clearance, resulting in persistent hyperinsulinemia, and that continuous receptor stimulation by the antibodies was responsible for the development of hypoglycemia.  相似文献   

14.
Several popular books have recently been published stating that being insulin-resistant favors weight gain and/or prevents weight loss. Because this view seems to have gained widespread support in the general population, we thought it important to perform the current study testing the hypothesis that differences in insulin-mediated glucose disposal do not affect weight loss in response to calorie-restricted diets. For this purpose, we studied the change in weight and risk factors for coronary heart disease (CHD) in healthy women volunteers, defined as being obese on the basis of a body mass index (BMI) greater than 30.0 kg/m(2). The insulin suppression test was used to stratify obese women at baseline into insulin-resistant and insulin-sensitive subgroups on the basis of their steady-state plasma glucose (SSPG) concentration at the end of a 180-minute infusion of octreotide, exogenous insulin, and glucose. They were then instructed on a calorie-restricted diet plus sibutraminine (15 mg/day) for a total period of 4 months. Baseline measurements also included determination of fasting lipid and lipoprotein concentrations, and hourly (8 AM to 4 PM) determinations of plasma glucose and insulin concentrations before and after breakfast and lunch. Twenty-four women completed the 4-month period of calorie restriction: 13 classified as insulin-resistant (SSPG = 219 +/- 7 mg/dL) and 11 as insulin-sensitive (SSPG = 69 +/- 6 mg/dL). The insulin-resistant group also had higher (P =.03) plasma triglyceride (TG) concentrations and a higher ratio of total to high-density lipoprotein (HDL) cholesterol concentration (P =.02) at baseline. Both groups lost a significant amount of weight during the study, and there was no difference between the weight loss in the insulin-resistant (8.6 +/- 1.3 kg) and insulin-sensitive (7.9 +/- 1.4 kg) groups. Weight loss in the insulin-resistant group was also associated with a significant decrease in SSPG concentration (219 +/- 7 to 144 +/- 14 mg/dL), associated with significantly lower fasting TG concentrations (P <.001) and day-long concentrations of plasma glucose and insulin (P <.005). None of these variables changed in the insulin-sensitive group. These results indicate that: (1) CHD risk factors in obese women vary as a function of being insulin-resistant or insulin-sensitive; (2) dramatic variations in insulin-mediated glucose disposal do not modulate weight loss in response to calorie-restricted diets, and (3) weight loss is effective in reducing CHD risk in insulin-resistant, obese women. Given these data, it seems obvious that attempts to reduce CHD risk factors by weight loss should focus on obese individuals who are also insulin-resistant.  相似文献   

15.
In type 2 diabetes renal and hepatic glucose release are increased and free fatty acids (FFA) clearance is reduced. Restoration of normoglycemia by exogenous insulin replacement normalizes overall glucose release and plasma FFA concentrations. However, it is unclear to what extent normalization of overall glucose release is due to suppression of hepatic (HGR) and renal glucose release (RGR) and whether the abnormal FFA clearance is improved. We therefore determined overall, renal, and hepatic glucose release, as well as systemic FFA release and clearance by tracer techniques in type 2 diabetic subjects with (DM(+)) and without (DM(-)) physiologic overnight insulin infusion and in nondiabetic volunteers (NV). Insulin infusion normalized plasma glucose (5.3 +/- 0.1 v 5.2 +/- 0.1 mmol/L in NV) and overall glucose release (10.1 +/- 0.7 v 10.6 +/- 0.4 micromol x kg(-1) x min(-1) in NV), (both P >.9). Values in DM(-) were 9.1 +/- 0.6 mmol/L and 14.6 +/- 0.8 micromol x kg(-1) x min(-1), respectively (both P <.001 v DM(+) and NV). The correction of overall glucose release in DM(+) was due to suppression of HGR to rates below normal (6.11 +/- 0.53 v 8.67 +/- 0.44 micromol x kg(-1) x min(-1) in NV, P <.03). RGR remained increased (3.91 +/- 0.38 v 1.90 +/- 0.28 micromol x kg(-1) x min(-1) in NV, P <.002) and was similar to DM(-) (3.97 +/- 0.33 micromol x kg(-1) x min(-1), P >.9). Insulin infusion also normalized plasma FFA levels (450 +/- 45 v 476 +/- 42 in NV, P >.9 and v613 +/- 33 micromol/L in DM(-), P <.04). This was due to suppression of FFA release to below normal (4.04 +/- 0.45 v 5.25 +/- 0.25 micromol x kg(-1) x min(-1) in NV, P <.04). Plasma FFA clearance remained reduced (7.2 +/- 1.0 v 11.4 +/- 1.2 mL x kg(-1) x min(-1) in NV, P <.04) and was similar to DM(-) (7.3 +/- 0.5 mL x kg(-1) x min(-1), P >.9). We conclude that in contrast to the excessive HGR, excessive RGR and impaired FFA clearance are not corrected by acute exogenous insulin replacement.  相似文献   

16.
Elevations in plasma triglyceride (TG) and free fatty acid (FFA) concentrations are generally thought to play a role in the pathogenesis of insulin-resistant diabetes. The objective of this study was to investigate the relationship between hypertriglyceridemia and glucose-stimulated insulin responsiveness in non-diabetic patients. Forty subjects were divided into three BMI-matched groups as follows: one group consisted of 8 patients with a lipoprotein lipase (LPL) deficiency, another consisted of 12 patients with hypertriglyceridemia and a third consisted of 20 subjects with normal TG levels. In response to a 75 g oral glucose tolerance test, plasma insulin levels in the LPL-deficient subjects were higher (106+/-11 microU/ml) than those in the hypertriglyceridemic (69+/-16 microU/ml) and normolipidemic (29+/-3 microU/ml) subjects, at 30 min. On the other hand, their plasma glucose levels (127+/-6 mg/dl) were less than those seen in the normolipidemic group (165+/-9 mg/dl) after 90 min. Thus, LPL-deficient subjects with hypertriglyceridemia displayed an enhanced glucose-stimulated insulin response as well as lower blood glucose levels, the latter of which is not generally seen in those with hypertriglyceridemia and normolipidemia.  相似文献   

17.
To determine whether the anti-insulin effect of epinephrine is due to a direct antagonism on target tissues or is mediated by indirect mechanisms (systemic substrate and/or hormone changes), insulin and epinephrine were infused intrabrachially in five normal volunteers using the forearm perfusion technique. Insulin (2.5 mU/min) was infused alone for 90 minutes and in combination with epinephrine (25 ng/min) for an additional 90 minutes, so as to increase the local concentrations of these hormones to physiological levels (60 to 75 microU/mL and 200 to 250 pg/mL for insulin and epinephrine, respectively). Systemic plasma glucose and free fatty acids (FFA) concentrations remained stable at their basal values during local hormone infusion. Forearm glucose uptake (FGU) increased in response to insulin alone from 0.8 +/- 0.2 mg.L-1.min-1 to 4.3 +/- 0.8. Addition of epinephrine completely abolished the insulin effect on FGU, which returned to its preinfusion value (0.7 +/- 0.2). Forearm lactate release was slightly increased by insulin alone, but rose markedly on addition of epinephrine (from 5.2 +/- 0.8 mumol.L-1.min-1 to 17 +/- 2; P less than .02). During infusion of insulin alone, forearm FFA release (FFR) decreased significantly from the postabsorptive value of 1.76 +/- 0.25 mumol.L-1.min-1 to 1.05 +/- 0.11 (P less than .01). Epinephrine addition reverted insulin suppression of FFR, which returned to values slightly above baseline (2.06 +/- 0.47 mumol.L-1.min-1; P less than .05 v insulin alone). The data demonstrate that epinephrine is able to antagonize directly insulin action on forearm tissues with respect to both stimulation of glucose uptake and inhibition of FFA mobilization.  相似文献   

18.
The effects of insulin resistance on glucose and amino acid metabolism were studied in obese nondiabetic women (body mass index [BMI], (32.8 +/- 2) and in lean controls. Glucose disposal rate, hepatic glucose production, and leucine carbon flux and oxidation were simultaneously measured during the postabsorptive state and during euglycemic hyperinsulinemia, by means of primed, constant infusions of D-[6,6-2H2]glucose and L-[1-13C]leucine. Each subject participated in two insulin clamp studies on separate days, at infusion rates of 10 and 40 mU (m2.min)-1, producing plasma insulin levels of 20 to 25 and 70 to 80 microU/mL, respectively. Fat-free mass (FFM) was calculated from underwater weighing measurements. Insulin-mediated glucose disposal rate was significantly slower in the obese group: 2.05 +/- 0.05 versus 3.84 +/- 0.18 mg (kg.min)-1 in controls during the 10-mU insulin clamp, and 3.80 +/- 0.23 versus 9.16 +/- 0.47 mg (kg.min)-1 during the 40-mU clamp. The insulin-induced decrease in plasma levels of branched chain amino acids was also significantly blunted in the obese group. Baseline leucine flux was similar in lean and obese subjects (78 +/- 3 and 71 +/- 2 mumol (kg.h)-1, respectively), and its decline in response to insulin infusion was also comparable (8% and 10% during the 10-mU/m2 clamp, and of 17% and 18% during the 40-mU/m2 clamp in lean and obese, respectively). Basal leucine carbon oxidation (from [13C]leucine and [13C]alpha ketoisocaproate [alpha-KIC] plasma enrichments) was also similar in lean and obese, and did not change significantly with insulin infusion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
In the present study we evaluated the regulation of plasma free fatty acid (FFA) concentration by glucose and insulin in human obesity. To this purpose we measured plasma FFA concentration in normoglycemic, normoinsulinemic obese (n = 8) and nonobese (n = 8) healthy subjects during 240 min of exogenous hyperglycemia (hyperglycemic glucose clamp) in presence of both glucose-stimulated (0-120 min and 180-240 min) and somatostatin-inhibited (120-180 min) insulin secretion. We found that plasma FFA curves were roughly parallel in the 0-120 min period and FFA values of obese subjects were constantly higher throughout the experimental period. Moreover, the difference between the two groups was significant when individual data were expressed as a percent of fasting FFA value (P less than 0.0001 from 0 to 120 min). Plasma insulin levels were similar in the two groups during the entire study. The amount of glucose metabolized during the 80-120 min period was significantly lower in obese than in nonobese subjects (172 +/- 7 v. 341 +/- 11 mg/m2.min, P less than 0.01; means +/- s.e.). During the somatostatin period (120-180 min) plasma insulin was lowered close to basal values in both groups (116 +/- 15 and 109 +/- 11 pmol/l) and plasma FFA concentrations rose in a linear fashion. Our data suggest that suppression of plasma FFA concentrations by glucose and insulin is qualitatively similar in healthy nonobese and obese subjects, the latter having higher FFA values. Insulin action on FFA metabolism isn ot grossly impaired in obese subjects who are clearly insulin resistant as far as glucose metabolism is concerned.  相似文献   

20.
In order to evaluate simultaneously in thyrotoxic subjects the relative contributions of insulin secretion, insulin-sensitivity (SI) and glucose-mediated (SG) glucose disposal to overall glucose tolerance, seven non-obese patients with thyrotoxicosis were studied by the minimal model analysis of the frequently sampled intravenous glucose tolerance test, before and greater than 1 month after being rendered euthyroid, and compared with eight healthy control subjects. Basal glucose, C-peptide and glucagon levels were similar in all groups but, in the toxic and euthyroid states, basal insulin levels were significantly elevated compared to the control group (11.2 +/- 2.0 and 7.9 +/- 1.1 vs 5.1 +/- 0.6 microU/ml, mean +/- SE, P less than 0.02). FFA levels were raised in the thyrotoxic subjects prior to treatment (0.95 +/- 0.11 vs 0.68 +/- 0.08 and 0.54 +/- 0.08 mmol/l, P less than 0.02). Glucose tolerance (Kg) was reduced in the thyrotoxic subjects compared to the euthyroid state (1.16 +/- 0.12 vs 1.44 +/- 0.13 per min, P less than 0.025) and control group (1.44 +/- 1.0 per min, 0.05 less than P less than 0.1). First phase (phi 1) and second phase (phi 2) insulin release were both significantly elevated in the thyrotoxic and euthyroid states compared to the control group (phi 1 7.10 +/- 1.88 and 5.29 +/- 1.03 vs 1.72 +/- 0.17 microU/mg/min X 10(-2), P less than 0.01; phi 2 18.64 +/- 3.14 and 16.74 +/- 4.48 vs 9.23 +/- 0.74 microU/mg/min X 10(-2) respectively, P less than 0.02). SG was similar in all groups but SI was significantly reduced in the thyrotoxic subjects compared to the control group (2.24 +/- 0.62 vs 5.92 +/- 1.50/min/microU/ml X 10(4), P less than 0.02) and rose post-treatment in the euthyroid subjects (4.23 +/- 1.75/min/microU/ml X 10(4)). In the thyrotoxic subjects before and after treatment, log SI correlated negatively with basal FFA levels (r = -0.57, P less than 0.05) and with phi 2 (r = -0.58, P less than 0.05). The fractional clearance rate of insulin was unaltered by the thyrotoxic state. It is concluded that in thyrotoxicosis the impairment of Kg is due to reduced insulin sensitivity in the presence of enhanced insulin secretion, but glucose-mediated glucose disposal is unaltered by the toxic state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号