首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 967 毫秒
1.

Objective

We recently discovered that leucine deprivation increases hepatic insulin sensitivity via general control nondepressible (GCN) 2/mammalian target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) pathways. The goal of the present study was to investigate whether the above effects were leucine specific or were also induced by deficiency of other branched chain amino acids including valine and isoleucine.

Methods

Following depletion of BCAAs, changes in metabolic parameters and the expression of genes and proteins involved in regulation of insulin sensitivity and glucose metabolism were analyzed in mice and cell lines including human HepG2 cells, primary mouse hepatocytes and a mouse myoblast cell line C2C12.

Results

Valine or isoleucine deprivation for 7 days has similar effect on improving insulin sensitivity as leucine, in wild type and insulin-resistant mice models. These effects are possibly mediated by decreased mTOR/S6K1 and increased AMPK signaling pathways, in a GCN2-dependent manner. Similar observations were obtained in in vitro studies. In contrast to leucine withdrawal, valine or isoleucine deprivation for 7 days significantly decreased fed blood glucose levels, possibly due to reduced expression of a key gluconeogenesis gene, glucose-6-phosphatase. Finally, insulin sensitivity was rapidly improved in mice 1 day following maintenance on a diet deficient for any individual BCAAs.

Conclusions

Our results show that while improvement on insulin sensitivity is a general feature of BCAAs depletion, individual BCAAs have specific effects on metabolic pathways, including those that regulate glucose level. These observations provide a conceptual framework for delineating the molecular mechanisms that underlie amino acid regulation of insulin sensitivity.  相似文献   

2.
3.
4.
The obesity epidemic imposes a significant health burden on human beings. Current understanding of the mechanisms underlying the development of obesity is incomplete and contemporary treatment is often ineffective. Gastrointestinal hormones are important regulators of food intake and energy metabolism. Previous studies indicate that the mammalian target of rapamycin signaling pathway in the gastric mucosa is crucially involved in fuel sensing in the gastrointestinal tract and plays a critical role in the coordination of nutrient availability and ingestive behavior via the production of gastric hormones. As an important component of the brain-gut axis regulating food intake and energy homeostasis, energy sensing in the gastrointestinal tract may provide a novel insight into our understanding of the precise coordination between the organism and cellular energy state.  相似文献   

5.
Rapamycin is an immunosuppressive agent used after organ transplantation, but its molecular effects on glucose metabolism needs further evaluation. We explored rapamycin effects on glucose uptake and insulin signalling proteins in adipocytes obtained via subcutaneous (n=62) and omental (n=10) fat biopsies in human donors. At therapeutic concentration (0.01 μM) rapamycin reduced basal and insulin-stimulated glucose uptake by 20-30%, after short-term (15 min) or long-term (20 h) culture of subcutaneous (n=23 and n=10) and omental adipocytes (n=6 and n=7). Rapamycin reduced PKB Ser473 and AS160 Thr642 phosphorylation, and IRS2 protein levels in subcutaneous adipocytes. Additionally, it reduced mTOR-raptor, mTOR-rictor and mTOR-Sin1 interactions, suggesting decreased mTORC1 and mTORC2 formation. Rapamycin also reduced IR Tyr1146 and IRS1 Ser307/Ser616/Ser636 phosphorylation, whereas no effects were observed on the insulin stimulated IRS1-Tyr and TSC2 Thr1462 phosphorylation. This is the first study to show that rapamycin reduces glucose uptake in human adipocytes through impaired insulin signalling and this may contribute to the development of insulin resistance associated with rapamycin therapy.  相似文献   

6.
The adenosine monophosphate-activated protein kinase (AMPK) and p70 ribosomal S6 kinase-1 pathway may serve as a key signaling flow that regulates energy metabolism; thus, this pathway becomes an attractive target for the treatment of liver diseases that result from metabolic derangements. In addition, AMPK emerges as a kinase that controls the redox-state and mitochondrial function, whose activity may be modulated by antioxidants. A close link exists between fuel metabolism and mitochondrial biogenesis. The relationship between fuel metabolism and cell survival strongly implies the existence of a shared signaling network, by which hepatocytes respond to challenges of external stimuli. The AMPK pathway may belong to this network. A series of drugs and therapeutic candidates enable hepatocytes to protect mitochondria from radical stress and increase cell viability, which may be associated with the activation of AMPK, liver kinase B1, and other molecules or components. Consequently, the components downstream of AMPK may contribute to stabilizing mitochondrial membrane potential for hepatocyte survival. In this review, we discuss the role of the AMPK pathway in hepatic energy metabolism and hepatocyte viability. This information may help identify ways to prevent and/or treat hepatic diseases caused by the metabolic syndrome. Moreover, clinical drugs and experimental therapeutic candidates that directly or indirectly modulate the AMPK pathway in distinct manners are discussed here with particular emphasis on their effects on fuel metabolism and mitochondrial function.  相似文献   

7.
The maintenance of energy homeostasis is essential for life, and its dysregulation leads to a variety of metabolic disorders. Under a fed condition, mammals use glucose as the main metabolic fuel, and short-chain fatty acids (SCFAs) produced by the colonic bacterial fermentation of dietary fiber also contribute a significant proportion of daily energy requirement. Under ketogenic conditions such as starvation and diabetes, ketone bodies produced in the liver from fatty acids are used as the main energy sources. To balance energy intake, dietary excess and starvation trigger an increase or a decrease in energy expenditure, respectively, by regulating the activity of the sympathetic nervous system (SNS). The regulation of metabolic homeostasis by glucose is well recognized; however, the roles of SCFAs and ketone bodies in maintaining energy balance remain unclear. Here, we show that SCFAs and ketone bodies directly regulate SNS activity via GPR41, a Gi/o protein-coupled receptor for SCFAs, at the level of the sympathetic ganglion. GPR41 was most abundantly expressed in sympathetic ganglia in mouse and humans. SCFA propionate promoted sympathetic outflow via GPR41. On the other hand, a ketone body, β-hydroxybutyrate, produced during starvation or diabetes, suppressed SNS activity by antagonizing GPR41. Pharmacological and siRNA experiments indicated that GPR41-mediated activation of sympathetic neurons involves Gβγ-PLCβ-MAPK signaling. Sympathetic regulation by SCFAs and ketone bodies correlated well with their respective effects on energy consumption. These findings establish that SCFAs and ketone bodies directly regulate GPR41-mediated SNS activity and thereby control body energy expenditure in maintaining metabolic homeostasis.  相似文献   

8.
哺乳动物雷帕霉素靶蛋白(mTOR)是细胞内感受细胞外营养、能量水平以及生长因子等信号变化的一种丝/苏氨酸蛋白激酶,参与凋节细胞生长、分化、增殖以及蛋白质合成等过程,并且与胰岛素抵抗(IR)的发生、发展关系密切.本文对mTOR/S6K1信号通路的调控机制与IR发生、发展过程的关系,以及运动对mTOR信号通路的影响加以综述,以期为探寻合理的运动手段以及药物作用靶点作为治疗由细胞代谢紊乱引起的IR、2型糖尿病等代谢性疾病提供理沦依据.  相似文献   

9.
10.
The adipocyte as an active participant in energy balance and metabolism   总被引:5,自引:0,他引:5  
Badman MK  Flier JS 《Gastroenterology》2007,132(6):2103-2115
Obesity is responsible for the mounting incidence of metabolic disease in adult and pediatric populations. Understanding of the pathogenesis and maintenance of the obese state has advanced rapidly over the past 10 years. Bodily energy reserves are managed actively by complex systems that regulate food intake, substrate partitioning, and energy expenditure. An underlying assumption that circulating factors released from storage organs were able to signal bodily energy reserves was confirmed with the discovery of the leptin system. This proof of concept has spurred on the discovery of a multitude of other adipocyte-generated factors. These circulating factors signal to the brain and other organs of metabolic importance, including adipose tissue, liver, muscle, and the immune system. Adipose-derived factors have numerous implications for the basic biology of obesity and provide prospective targets for the amelioration of obesity and its adverse metabolic consequences. In this review we detail the current understanding of leptin as a prototypical adipose tissue-derived hormone related to appetite and obesity. We also describe other important adipose-derived factors in relation to their metabolic effect.  相似文献   

11.
12.

Background

The mammalian target of rapamycin is a conserved protein kinase known to regulate protein synthesis, cell size and proliferation. Aberrant regulation of mammalian target of rapamycin activity has been observed in hematopoietic malignancies, including acute leukemias and myelodysplastic syndromes, suggesting that correct regulation of mammalian target of rapamycin is critical for normal hematopoiesis.

Design and Methods

An ex vivo granulocyte differentiation system was utilized to investigate the role of mammalian target of rapamycin in the regulation of myelopoiesis.

Results

Inhibition of mammalian target of rapamycin activity, with the pharmacological inhibitor rapamycin, dramatically reduced hematopoietic progenitor expansion, without altering levels of apoptosis or maturation. Moreover, analysis of distinct hematopoietic progenitor populations revealed that rapamycin treatment inhibited the expansion potential of committed CD34+ lineage-positive progenitors, but did not affect early hematopoietic progenitors. Further examinations showed that these effects of rapamycin on progenitor expansion might involve differential regulation of protein kinase B and mammalian target of rapamycin signaling.

Conclusions

Together, these results indicate that mammalian target of rapamycin activity is essential for expansion of CD34+ hematopoietic progenitor cells during myelopoiesis. Modulation of the mammalian target of rapamycin pathway may be of benefit in the design of new therapies to control hematologic malignancies.  相似文献   

13.
The present study examined the effect of insulin-mediated activation of the mammalian target of rapamycin complex 1 (MTORC1) signaling network on the proliferation of primary culture of theca-interstitial (T-I) cells. Our results show that insulin treatment increased proliferation of the T-I cells through the MTORC1-dependent signaling pathway by increasing cell cycle regulatory proteins. Inhibition of ERK1/2 signaling caused partial reduction of insulin-induced phosphorylation of RPS6KB1 and RPS6 whereas inhibition of PI3-kinase signaling completely blocked the insulin response. Pharmacological inhibition of MTORC1 with rapamycin abrogated the insulin-induced phosphorylation of EIF4EBP1, RPS6KB1 and its downstream effector, RPS6. These results were further confirmed by demonstrating that knockdown of Mtor using siRNA reduced the insulin-stimulated MTORC1 signaling. Furthermore, insulin-stimulated T-I cell proliferation and the expression of cell cycle regulatory proteins CDK4, CCND3 and PCNA were also blocked by rapamycin. Taken together, the present studies show that insulin stimulates cell proliferation and cell cycle regulatory proteins in T-I cells via activation of the MTORC1 signaling pathway.  相似文献   

14.
The mechanistic target of rapamycin(mTOR)integrates growth factor signals with cellular nutrient and energy levels and coordinates cell growth,proliferation and survival.A regulatory network with multiple feedback loops has evolved to ensure the exquisite regulation of cell growth and division.Colorectal cancer is the most intensively studied cancer because of its high incidence and mortality rate.Multiple genetic alterations are involved in colorectal carcinogenesis,including oncogenic Ras activation,phosphatidylinositol 3-kinase pathway hyperactivation,p 53 mutation,and dysregulation of wnt pathway.Many oncogenic pathways activate the mTOR pathway.mTOR has emerged as an effective target for colorectal cancer therapy.In vitro and preclinical studies targeting the mTOR pathway for colorectal cancer chemotherapy have provided promising perspectives.However,the overall objective response rates in major solid tumors achieved with single-agent rapalog therapy have been modest,especially in advanced metastatic colorectal cancer.Combination regimens of mTOR inhibitor with agents such as cytotoxic chemotherapy,inhibitors of vascular endothelial growth factor,epidermal growth factor receptor and Mitogen-activated protein kinase kinase(MEK)inhibitors are being intensively studied and appear to be promising.Further understanding of the molecular mechanism in mTOR signaling network is needed to develop optimized therapeutic regimens.In this paper,oncogenic gene alterations in colorectal cancer,as well as their interaction with the mTOR pathway,are systematically summarized.The most recent preclinical and clinical anticancer therapeutic endeavors are reviewed.New players in mTOR signaling pathway,such as nonsteroidal anti-inflammatory drug and metformin with therapeutic potentials are also discussed here.  相似文献   

15.
Perinuclear aggresome formation is a key mechanism to dispose of misfolded proteins that exceed the degradative capacity of ubiquitin–proteasome and autophagy–lysosome systems. Functional blockade of either degradative system leads to an enhanced aggresome formation. The tuberous sclerosis complex–Ras homologue enriched in brain–mammalian target of rapamycin (TSC–Rheb–mTOR) pathway is known to play a central role in modulating protein synthesis and autophagy. However, in spite of the constitutive activation of mTOR and the abrogated autophagy activity in TSC1- or TSC2-deficient cells, the TSC mutant cells are defective in aggresome formation and undergo apoptosis upon misfolded protein accumulation both in vitro and in vivo. High Rheb activity in TSC mutant cells inhibits aggresome formation and sensitizes cell death in response to misfolded proteins. Surprisingly, this previously unrecognized function of Rheb is independent of TOR complex 1. Active Rheb disrupts the interaction between dynein and misfolded protein cargos, and therefore blocks aggresome formation by inhibiting dynein-dependent transportation of misfolded proteins. This study reveals a function of Rheb in controlling misfolded protein metabolism by modulating aggresome formation.  相似文献   

16.
目的探讨1,25-二羟基维生素D3[12,5-(OH)2D3]对大鼠肾小球系膜细胞(MC)增殖的影响及机制,为其临床应用提供依据。方法将体外培养的对数生长期大鼠MC分为对照组和观察组。观察组采用1,25-(OH)2D3(浓度为10-8mol/L)干预,对照组不干预。采用四甲基偶氮唑蓝(MTT)比色法检测细胞增殖情况,流式细胞仪检测细胞周期,免疫荧光染色法检测蛋白激酶(Akt)/哺乳动物雷帕霉素靶蛋白(mTOR)表达。结果与对照组比较,观察组MC增殖受抑,细胞周期阻滞于G1期;Akt、mTOR蛋白表达降低,P均〈0.05。结论 1,25-(OH)2D3可抑制大鼠肾小球MC增殖,其作用机制可能为抑制磷脂酰肌醇-3激酶/Akt/mTOR信号传导通路。  相似文献   

17.
Zhao L  Wang F  Gui B  Hua F  Qian Y 《Experimental gerontology》2011,46(12):1031-1036
Postoperative cognition impairment is a perishing complication in elderly patients undergone surgeries. Lithium is widely used in psychiatric patients for its role in neuronal protection, whereas whether or not it could attenuate surgery-associated postoperative cognition dysfunction used prophylactically is not well defined. After approval by the Institutional Animal Care and Use Committee, 48 male Sprague-Dawley rats aged 18months old were randomly divided into three groups with 16 each: i, no surgeries and drugs were given; ii, surgical procedures were performed only without drug delivery; iii, prophylactic 2mM/kg lithium chloride was given intraperitoneally once a day for seven days before surgeries. The change in spatial memory was assessed with Morris Water Maze (MWM), and the activation of PI3K/AKT/mTOR pathway was detected, and the levels of hippocampal glycogen synthase kinase-3β (p-GSK-3β) phosphorylation at serine 9 and interleukin-1β (IL-1β) were measured. The MWM detection showed that both swimming latency and distance were considerably prolonged by the surgeries, but these changes could be markedly shortened by prophylactic lithium administration. Meanwhile, the changes in the hippocampal PI3K cascades and p-GSK-3β and IL-1β expression displayed corresponding changes that were parallel to the alterations of spatial memory, and inhibition of PI3K and GSK-3β suggested upstream PI3K activation leads to downstream change in p-GSK-3β and IL-1β. These results indicate, at least in part, that prophylactic lithium can alleviate surgery-associated impairment of the spatial memory in aged rats which is strongly associated with the reduced levels of hippocampal p-GSK-3β and IL-1β resulted from the activation of PI3K/AKT/mTORC2 pathway.  相似文献   

18.
19.
The immediate and direct regulation of insulin release by circulating nutrients, especially glucose, is thought to be mediated in the pancreatic B-cell by a sequence of metabolic, ionic, and motile events. On the basis of previous work, it is assumed that the process by which glucose is recognized as an insulinotropic agent entirely depends on the metabolic changes evoked by the sugar in the islet cells. Several factors are considered as possible candidates for the coupling between these metabolic changes and subsequent ionic events such as altered phosphate, chloride, sodium, potassium, and calcium handling. It is acknowledged that changes in the concentrations of glycolytic intermediates and cyclic nucleotides (adenosine- or guanosine-3', 5'-cyclic monophosphate), or both, could play a modulatory role upon stimulated insulin release. However, the initiation of insulin release seems to depend on the generation of two essential coupling factors: H+ and reduced pyridine nucleotides. The changes in H+ fluxes may account for the glucose-induced decrease in K+ and Ca2+ fractional outflow rate, all three parameters displaying hyperbolic-like dose-response curves with half-maximal values at noninsulinotropic glucose concentrations. The changes in NAD(P)H concentration may account for a glucose-induced Ca2+--Ca2+ exchange process due to a change in affinity of a native ionophoretic system. The dose-response curves for these parameters yield a sigmoidal pattern analogous to that which depicts the rate of insulin release at increasing glucose concentrations. It is proposed that such a coupling between metabolic and cationic events is operative in response to other insulinotropic nutrients and that its time course may be relevant to the phasic aspect of insulin release. Thus, the nutrient-induced release of insulin (and possibly other pancreatic hormones), which is essential for the regulation of fuel homeostasis, would depend on the capacity of circulating nutrients to act as a fuel in the islet cells. This concept raises a question as to the existence and nature of feedback mechanisms regulating the metabolic fluxes in the islet cells as a function of their energy expenditure.  相似文献   

20.
The cilium serves as a cellular antenna by coordinating upstream environmental cues with numerous downstream signaling processes that are indispensable for the function of the cell. This role is supported by the revelation that defects of the cilium underlie an emerging class of human disorders, termed "ciliopathies." Although mounting interest in the cilium has demonstrated the essential role that the organelle plays in vertebrate development, homeostasis, and disease pathogenesis, the mechanisms regulating cilia morphology and function remain unclear. Here, we show that the target-of-rapamycin (TOR) growth pathway modulates cilia size and function during zebrafish development. Knockdown of tuberous sclerosis complex 1a (tsc1a), which encodes an upstream inhibitor of TOR complex 1 (Torc1), increases cilia length. In contrast, treatment of embryos with rapamycin, an inhibitor of Torc1, shortens cilia length. Overexpression of ribosomal protein S6 kinase 1 (S6k1), which encodes a downstream substrate of Torc1, lengthens cilia. Furthermore, we provide evidence that TOR-mediated cilia assembly is evolutionarily conserved and that protein synthesis is essential for this regulation. Finally, we demonstrate that TOR signaling and cilia length are pivotal for a variety of downstream ciliary functions, such as cilia motility, fluid flow generation, and the establishment of left-right body asymmetry. Our findings reveal a unique role for the TOR pathway in regulating cilia size through protein synthesis and suggest that appropriate and defined lengths are necessary for proper function of the cilium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号