首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
OBJECTIVE: To study the time course of oscillatory EEG activity and corticospinal excitability of the ipsilateral primary motor cortex (iM1) during self-paced phasic extension movements of fingers II-V. METHODS: We designed an experiment in which cortical activation, measured by spectral-power analysis of 28-channel EEG, and cortical excitability, measured by transcranial magnetic stimulation (TMS), were assessed during phasic self-paced extensions of the right fingers II-V in 28 right-handed subjects. TMS was delivered to iM1 0-1500 ms after movement onset. RESULTS: Ipsilateral event-related desynchronization (ERD) during finger movement was paralleled by increased cortical excitability of iM1 from 0-200 ms after movement onset and by increased intracortical facilitation (ICF) without changes in intracortical inhibition (ICI) or peripheral measures (F waves). TMS during periods of post-movement event-related synchronization (ERS) revealed no significant changes in cortical excitability in iM1. CONCLUSIONS: Our findings indicate that motor cortical ERD ipsilateral to the movement is associated with increased corticospinal excitability, while ERS is coupled with its removal. These data are compatible with the concept that iM1 contributes actively to motor control. No evidence for inhibitory modulation of iM1 was detected in association with self-paced phasic finger movements. SIGNIFICANCE: Understanding the physiological role of iM1 in motor control.  相似文献   

2.
In patients with Gilles de la Tourette syndrome (GTS) alterations of motor cortex (M1) excitability at rest have been evidenced. In contrast, there has so far been little research into changes of motor cortical reactivity during the time course of voluntary movements in GTS patients. The present study investigates neuromagnetic event‐related desynchronization (ERD) and event‐related synchronization (ERS) of bilateral M1 in 11 GTS patients and 11 healthy control subjects. ERD represents motor cortical activation, whereas ERS most likely indicates its inhibition. Subjects performed a self‐paced finger movement task while magnetoencephalography was used to record neuromagnetic activity. In GTS patients, ERD at beta frequency was significantly increased in the contralateral hemisphere before and during movements, whereas ERS following movement termination was increased in M1 ipsilateral. Ipsilateral ERS was inversely correlated with tic severity as determined by the Yale Global Tic Severity Rating Scale. The data of the present study support the hypothesis that during voluntary movements, motor cortical reactivity is pathologically altered in GTS patients. The observed pattern of increased activation (ERD) prior to and during movement execution followed by increased inhibition (ERS) after movement termination at beta frequency suggests abnormally increased motor cortical activation, possibly driving stronger inhibition. The stronger this inhibition is, the better symptoms appear to be controlled. © 2010 Movement Disorder Society  相似文献   

3.
We used transcranial magnetic stimulation (TMS) to study the time course of corticospinal excitability before and after brisk thumb abduction movements, either in a simple reaction time (RT) paradigm or self-paced. Premovement increase in corticospinal excitability began about 20 msec earlier for self-paced compared with simple RT movements. For both simple RT and self-paced movements after electromyographic (EMG) offset, there was a first period of increased excitability from 0 to 100 msec, followed by a second period from 100 to 160 msec. Corticospinal excitability was decreased from about 500 to 1,000 msec after EMG offset for both types of movements. Our results show that motor preparation that begins 1.5 to 2 seconds before self-paced movement is not associated with increased corticospinal excitability. The first phase of increased corticospinal excitability after EMG offset may be due to activity of motor cortex neuron subthreshold for activating spinal motor neurons, and the second phase may reflect a subthreshold second agonist burst. The period of decreased corticospinal excitability after movement corresponds to the onset of event-related synchronization (ERS) of electroencephalographic signals in the 20-Hz band, and supports the hypothesis that ERS may be related to an inactive, idling state of the motor cortex.  相似文献   

4.
The excitability of the motor cortex is modulated before and after voluntary movements. Transcranial magnetic stimulation studies showed increased corticospinal excitability from about 80 and 100 ms before EMG onset for simple reaction time and self-paced movements, respectively. Following voluntary movements, there are two phases of increased corticospinal excitability from 0 to approximately 100 ms and from approximately 100 to 160 ms after EMG offset. The first phase may correspond to the frontal peak of motor potential in movement-related cortical potentials studies and the movement-evoked magnetic field I (MEFI) in magnetoencephalographic (MEG) studies, and likely represents a time when decreasing output from the motor cortex falls below that required for activation of spinal motoneurons, but is still above resting levels. The second phase of increased corticospinal excitability may be due to peripheral proprioceptive inputs or may be centrally programmed representing a subthreshold, second agonist burst. This may correspond to the MEFII in MEG studies. Corticospinal excitability was reduced below baseline levels from about 500 to 1,000 ms after EMG offset, similar to the timing of increase in the power (event-related synchronization, ERS) of motor cortical rhythm. Similarly, motor cortex excitability is reduced at the time of ERS of motor cortical rhythm following median nerve stimulation. These findings support the hypothesis that ERS represents an inactive, idling state of the cortex. The time course of cortical activation is abnormal in movement disorders such as Parkinson's disease and dystonia, reflecting abnormalities in both movement preparation and in cortical excitability following movement.  相似文献   

5.
6.
ObjectivesThe time course of mu and beta sensorimotor rhythms, with event-related desynchronisation (ERD) to preparation and execution of voluntary movement followed by synchronisation (ERS) after movement, is considered to indicate cortical activation and idling, respectively. We investigated ERD and ERS in amyotrophic lateral sclerosis (ALS) patients and the relationship with anatomical and neurophysiological measures of corticospinal tract damage.MethodsPre-movement mu and beta ERD, and post-movement beta ERS were analysed in 16 ALS patients and 15 healthy controls performing self-paced brisk right thumb extensions. Apparent diffusion coefficient (ADC) of corticospinal tract was measured with magnetic resonance imaging (MRI). Motor-evoked potentials (MEPs) to the right abductor pollicis brevis were obtained using transcranial magnetic stimulation (TMS).ResultsMovement-related electromyographic activity was similar in the two groups. Post-movement ERS was significantly reduced in ALS group and negatively correlated with the amount of corticospinal damage as from MRI and TMS measures. ERD did not significantly differ between groups.ConclusionsAlterations of cortical activity in ALS patients were limited to the post-movement phase, as indicated by reduced ERS, and could be linked to reduced cortical inhibition rather than to generalised hyperexcitability.SignificanceThe correlation between ERS and corticospinal damage severity might be interpreted as a functional compensation or dysfunction of inhibitory systems paralleling corticospinal damage.  相似文献   

7.
Cortical electroencephalographic rhythms reactivity may be quantified using event-related desynchronization (ERD) and synchronization (ERS) methods. We therefore studied cortical activation occurring during programming and performance of voluntary movement in healthy subjects. EEG power evolution within the reactive frequency bands (mu and beta central rhythms) was averaged before, during and after a minimum of 50 self-paced flexions of the thumb. Recordings in 18 normal adults showed that ERD (decrease in power) of mu rhythm started 2,000 ms before movement onset, while ERD of beta rhythm started 1,500 ms before movement onset. Early ERD of mu and beta rhythms were located over the contralateral central region covering primary motor cortex. They were followed by bilateral ERD occurring over ipsilateral and contralateral central regions during performance of the movement. At the end of the movement, an ERS (increase in power) of beta rhythm occurred. These results suggest that programming of voluntary movement induces early activation in contralateral sensorimotor areas, while performance of the movement induces bilateral activation in sensorimotor areas. ERS of beta rhythm occurring at the end of the movement could correspond to inactivation of motor areas activated by movement. Based on EEG activity, ERD and ERS prove to be useful methods to analyze cortical activation during programming and performance of voluntary movements with good spatial and temporal resolution.  相似文献   

8.
OBJECTIVE: (1) To determine if there are changes in event-related desynchronization/event-related synchronization (ERD/ERS) patterns when the movement is sustained? (2) To determine, from a technical point of view for ERD calculation, if it is possible to take the reference period during muscular activation? METHODS: Eight healthy subjects performed two series of brief and sustained self-paced extensions with their dominant wrist. The end of the sustained movement was externally triggered by the examinator. ERD/ERS was calculated in mu and beta bands from 13 source derivations covering motor areas, computed from 29 scalp electrodes. Movement onset and offset were determined by electromyographic activity (EMG) of wrist extensors. RESULTS: When the movement was sustained, power in the mu and beta bands returned to baseline values within 4-5 s. Movement duration had little effect, if at all, on both pre and post-movement periods. Compared to brief movement, after the onset of the prolonged movement, mu ERD just returned to baseline, without synchronization. In contrast, beta ERS was still present though earlier and much lower. CONCLUSIONS: The reference period for ERD calculation may be taken during muscular activation if its duration is long enough. Beta synchronization may occur despite a non-deactivated motor cortex, suggesting a contribution from afferent somesthetic inputs.  相似文献   

9.
Abstract In the orienting of attention paradigm, inhibition of return (IOR) refers to slowed responses to targets presented at the same location as a preceding stimulus. No consensus has yet been reached regarding the stages of information processing underlying the inhibition. We report the results of an electro-encephalogram experiment designed to examine the involvement of response inhibition in IOR. Using a cue-target design and a target-target design, we addressed the role of response inhibition in a location discrimination task. Event-related changes in beta power were measured because oscillatory beta activity has been shown to be related to motor activity. Bilaterally located sources in the primary motor cortex showed event-related beta desynchronization (ERD) both at cue and target presentation and a rebound to event-related beta synchronization (ERS) after movement execution. In both designs, IOR arose from an enhancement of beta synchrony. IOR was related to an increase of beta ERS in the target-target design and to a decrease of beta ERD in the cue-target design. These results suggest an important role of response inhibition in IOR.  相似文献   

10.
OBJECTIVE: To use the neural signals preceding movement and motor imagery to predict which of the four movements/motor imageries is about to occur, and to access this utility for brain-computer interface (BCI) applications. METHODS: Eight na?ve subjects performed or kinesthetically imagined four movements while electroencephalogram (EEG) was recorded from 29 channels over sensorimotor areas. The task was instructed with a specific stimulus (S1) and performed at a second stimulus (S2). A classifier was trained and tested offline at differentiating the EEG signals from movement/imagery preparation (the 1.5-s preceding movement/imagery execution). RESULTS: Accuracy of movement/imagery preparation classification varied between subjects. The system preferentially selected event-related (de)synchronization (ERD/ERS) signals for classification, and high accuracies were associated with classifications that relied heavily on the ERD/ERS to discriminate movement/imagery planning. CONCLUSIONS: The ERD/ERS preceding movement and motor imagery can be used to predict which of the four movements/imageries is about to occur. Prediction accuracy depends on this signal's accessibility. SIGNIFICANCE: The ERD/ERS is the most specific pre-movement/imagery signal to the movement/imagery about to be performed.  相似文献   

11.
《Clinical neurophysiology》2014,125(8):1689-1699
ObjectiveThis study explored event-related desynchronization (ERD) and synchronization (ERS) in amyotrophic lateral sclerosis (ALS) to quantify cortical sensorimotor processes during volitional movements. We furthermore compared ERD/ERS measures with clinical scores and movement-related cortical potential (MRCP) amplitudes.MethodsElectroencephalograms were recorded while 21 ALS patients and 19 controls performed two self-paced motor tasks: sniffing and right index finger flexion. Based on Wavelet analysis the alpha and beta frequency bands were selected for subsequent evaluation.ResultsPatients generated significantly smaller resting alpha spectral power density (SPD) and smaller beta ERD compared to controls. Additionally patients exhibited merely unilateral post-movement ERS (beta rebound) whereas this phenomenon was bilateral in controls. ERD/ERS amplitudes did not correlate with corresponding MRCPs for either patients or controls.ConclusionsThe smaller resting alpha SPD and beta ERD and asymmetrical appearance of beta ERS in patients compared to controls could be the result of pyramidal cell degeneration and/or corpus callosum involvement in ALS.SignificanceThese results support the notion of reduced movement preparation in ALS involving also areas outside the motor cortex. Furthermore post-movement cortical inhibition seems to be impaired in ALS. ERD/ERS and MRCP are found to be independent measures of cortical motor functions in ALS.  相似文献   

12.
A number of electroencephalographic (EEG) studies report on motor event-related desynchronization and synchronization (ERD/ERS) in the beta band, i.e. a decrease and increase of spectral amplitudes of central beta rhythms in the range from 13 to 35 Hz. Following an ERD that occurs shortly before and during the movement, bursts of beta oscillations (beta ERS) appear within a 1-s interval after movement offset. Such a post-movement beta ERS has been reported after voluntary hand movements, passive movements, movement imagination, and also after movements induced by functional electrical stimulation. The present study compares ERD/ERS patterns in paraplegic patients (suffering from a complete spinal cord injury) and healthy subjects during attempted (active) and passive foot movements. The aim of this work is to address the question, whether patients do have the same focal beta ERD/ERS pattern during attempted foot movement as healthy subjects do. The results showed midcentral-focused beta ERD/ERS patterns during passive, active, and imagined foot movements in healthy subjects. This is in contrast to a diffuse and broad distributed ERD/ERS pattern during attempted foot movements in patients. Only one patient showed a similar ERD/ERS pattern. Furthermore, no significant ERD/ERS patterns during passive foot movement in the group of the paraplegics could be found.  相似文献   

13.
《Clinical neurophysiology》2022,52(6):413-426
ObjectiveThe study aimed to examine the clinical and neurophysiological predictors of motor event-related desynchronization (ERD) and synchronization (ERS) in patients with chronic pain due to knee osteoarthritis (KOA).MethodsWe performed a cross-sectional analysis of our cohort study (DEFINE cohort), KOA arm, with 71 patients, including demographic, functionality, genetic and neurophysiological measures. ERD/ERS was evaluated during hand motor tasks (motor execution, active and passive observation, and imagery). Multivariate regression models were used to explore predictors of ERD/ERS.ResultsAlthough we found an altered ERD/ERS pattern during motor execution and active observation, the ERS pattern could only be clearly differentiated after passive observation.`. We found no predictors of ERD (excitatory biomarker). For ERS (inhibitory biomarker), our results showed that the main predictors differ across EEG frequency bands. Considering pain measures, we found that visual analogue scale (VAS, right knee) and chronicity of pain negatively predict low beta and high beta ERS, respectively. Pain threshold was positively correlated with alpha ERS, while 36-Item Short Form Survey (SF-36) emotional domain positively predicted beta ERS. Regarding transcranial magnetic stimulation (TMS) markers, intracortical inhibition (ICF) negatively predicted beta and low beta ERS, and left hemisphere cortical silent period (CSP) negatively predicted low beta ERS.ConclusionConsidering that higher power of ERS indicates a stronger cortical organization and inhibitory drive, our results show that limitation of activities due to emotional factors, lower pain threshold, higher VAS pain, and longer duration of pain are associated with lower ERS power (in alpha and beta frequencies), thus indicating a lower inhibitory drive. In the same direction, a lower inhibitory drive as indicated by higher ERS power is associated with higher ICF amplitude. Although there was a negative association between ERS and CSP, this may indicate that ICF values are adjusting CSP results. Our findings support the idea that a less organized cortical response as indicated by changes to the ERS is associated with higher pain correlates in subjects with KOA.  相似文献   

14.
OBJECTIVE: Abnormal low- and high-frequency oscillatory activities have been linked to abnormal movement control in Parkinson's disease. We aimed to study how low- and high-frequency oscillatory activities are modulated by movement in the contralateral and ipsilateral subcorticocortical loops. METHODS: We studied mu, beta and gamma rhythm event-related desynchronisation (ERD) and synchronisation (ERS) recorded from electrode contacts in the subthalamic nucleus (STN) areas and over the primary sensorimotor (PSM) cortex. RESULTS: Mu and beta ERD/ERS patterns were very similar when comparing PSM cortex and STN areas and very different when comparing contralateral and ipsilateral structures. Beta rhythm ERS was more predominant over contralateral structures than over ipsilateral ones. Gamma rhythm ERS was only recorded from the contralateral STN area (particularly following administration of L-Dopa). For all patients, the best bipolar derivations - as defined by the earliest mu and beta ERD and the strongest beta and gamma ERS - always included the STN electrode contacts that produced the best clinical results. CONCLUSIONS: Movement-related activity is involved in the movement preparation in the contralateral subthalamo-cortical loop and in the movement execution in the bilateral subthalamo-cortical loops. SIGNIFICANCE: Contralateral beta rhythm ERD seemed to be related to bradykinesia of the limb performing the movement.  相似文献   

15.
OBJECTIVE: To localize the sources of mu, beta and gamma rhythms and to explore the functional significance of their reactivity. METHODS: We used the method of quantification of event-related desynchronization (ERD) and synchronization (ERS) to analyze the reactivity of intracerebral rhythms recorded in stereoelectroencephalography within the sensorimotor areas during the preparation and the execution of a simple self-paced hand movement. We recorded 3 epileptic subjects who were explored before a surgical treatment. RESULTS: An ERD of mu and beta rhythms has been recorded before the movement onset in the precentral gyrus, spreading then to the postcentral gyrus and to the frontal medial cortex. The frontal lateral cortex was inconstantly involved during the movement. The movement offset was followed by an important and focused beta ERS which was found within the pre- and post-central gyrus and the frontal medial cortex. Within the beta band, we observed several narrower bands with different reactivities and locations. Focused gamma reactivity was also found in the precentral and postcentral gyri. CONCLUSIONS: The reactivities of mu and beta rhythms are different but their locations overlap. Mu ERD is a diffuse phenomenon that reflects the activation of all the sensorimotor areas during a simple movement. Beta band is likely to be composed of different rhythms with different functional significance. The primary motor area seems to contain two distinct areas with different reactivity to the movement preparation and execution.  相似文献   

16.
《Clinical neurophysiology》2009,120(3):484-496
ObjectiveFor motor activities, visual information is crucial for organizing a movement with respect to a given situation. The present study investigates how cognitive information processing is associated with this visuomotor process.MethodsBrain dynamics in executing two perceptual-motor tasks were examined in terms of event-related synchronization (ERS) and event-related desynchronization (ERD) of EEG. Those tasks were (1) reaching toward and grasping a visual object with a pinch grip, and (2) matching the pinch grip size with respect to the perceived object size.ResultsAccording to the aperture size in the task execution, both the tasks were affected by the perceived object size inducing the Ebbinghaus illusion. The alpha-ERD patterns were associated with the movement execution and appeared to be identical in both the tasks, whilst the gamma-ERS appeared only for the grasping motion.ConclusionsThese results suggest that cognitive processing was involved not only in the matching task but also in the grasping task. These ERD/ERS patterns are thought to reflect the similarity and difference in the perceptual-motor processes between the two tasks.SignificanceThe analysis of ERD/ERS can provide insight on the qualitative feature in a visuomotor process associated with the involvement of cognitive processing.  相似文献   

17.
OBJECTIVE: Here, we investigate whether the event-related desynchronization (ERD) of spectral components of the cortical EEG in the beta (13-30 Hz) frequency range may, in part, index motor selection processes. Specifically, we sought evidence for a contralaterally dominant component of the beta ERD that is limited to trials in which motor selection is possible prior to any imperative cue to move, with attendant behavioural advantage. METHODS: We measured reaction time and assessed the lateralization of beta ERD in 12 healthy volunteers as they performed pre-cued choice reaction time tasks, in which warning S1 cues were either fully predictive about the laterality of a subsequent imperative S2 signal or provided no laterality information. We calculated 'lateralized ERD index' (LERDI), a parallel measure to the lateralized readiness potential in the time domain. RESULTS: Trials with 100% S1-S2 congruency produced significantly shorter reaction times than trials with 50% S1-S2 congruency, where laterality information was unreliable. Beta LERDI indicated significantly greater lateralisation of the ERD in the warning-go interval and of event-related synchronization (ERS) following movement in the 100% condition than in the 50% condition. The lateralization of the beta ERD with respect to hand persisted, even when subjects were instructed to make movements of opposite laterality to those prompted. CONCLUSIONS: Lateralized EEG changes occur in the beta band in the S1-S2 interval prior to movement, but only when informative warning cues allow early motor selection, as suggested by the shortening of reaction time. Furthermore, the enhanced contralateral ERS with 100% S1-S2 congruency suggests that this phenomenon is at least partly independent of afferent feedback, as the same movement was made in the 100 and 50% conditions. SIGNIFICANCE: Lateralized suppression of beta power prior to externally generated movements is associated with motor selection.  相似文献   

18.
Oscillations in the alpha and beta bands can display either an event-related blocking response or an event-related amplitude enhancement. The former is named event-related desynchronization (ERD) and the latter event-related synchronization (ERS). Examples of ERS are localized alpha enhancements in the awake state as well as sigma spindles in sleep and alpha or beta bursts in the comatose state. It was found that alpha band activity can be enhanced over the visual region during a motor task, or during a visual task over the sensorimotor region. This means ERD and ERS can be observed at nearly the same time; both form a spatiotemporal pattern, in which the localization of ERD characterizes cortical areas involved in task-relevant processing, and ERS marks cortical areas at rest or in an idling state.  相似文献   

19.
Oscillations in the alpha and beta bands can display either an event-related blocking response or an event-related amplitude enhancement. The former is named event-related desynchronization (ERD) and the latter event-related synchronization (ERS). Examples of ERS are localized alpha enhancements in the awake state as well as sigma spindles in sleep and alpha or beta bursts in the comatose state. It was found that alpha band activity can be enhanced over the visual region during a motor task, or during a visual task over the sensorimotor region. This means ERD and ERS can be observed at nearly the same time; both form a spatiotemporal pattern, in which the localization of ERD characterizes cortical areas involved in task-relevant processing, and ERS marks cortical areas at rest or in an idling state.  相似文献   

20.
OBJECTIVE: In order to better understand the spatio-temporal interaction of the activated cortical areas when the movement is visuo-guided and to assess the age effect on the spatio-temporal pattern of cortical activity, we have compared a proximo-distal movement with visual-motor control and hand-eye coordination (targeting movement) with a distal and a proximal movement. METHODS: Brain's electrical activity was studied using the analysis of event-related (de)synchronizations (ERD/S) of cortical mu and beta rhythms in 17 subjects, 8 young and 9 elderly subjects. RESULTS: In both populations, we found an earlier and broader mu and beta ERD during the preparation of the targeting movement compared to distal and proximal movements, principally involving the contralateral parietal region. During the execution, a spreading over the parietocentral region during proximal movement and over the parietal region during targeting movement was observed. After the execution of proximal and targeting movements, a wider and higher beta ERS was observed only in the young subjects. In the elderly subjects, our results showed a significant decrease of beta ERS during the targeting task. CONCLUSIONS: These results suggest there was a larger recruitment of cortical areas, involving notably the parietal cortex when the movement is visuo-guided. Moreover, cerebral aging-related changes in the spatio-temporal beta ERS pattern suggests an impaired sensory integration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号