首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
Thin-layer cell spectroelectrochemistry, featuring rigorous potential control and rapid redox equilibration within the cell, was used to measure the redox potential Em(Phe a/Phe a) of pheophytin (Phe) a, the primary electron acceptor in an oxygen-evolving photosystem (PS) II core complex from a thermophilic cyanobacterium Thermosynechococcus elongatus. Interferences from dissolved O2 and water reductions were minimized by airtight sealing of the sample cell added with dithionite and mercury plating on the gold minigrid working electrode surface, respectively. The result obtained at a physiological pH of 6.5 was Em(Phe a/Phe a) = −505 ± 6 mV vs. SHE, which is by ≈100 mV more positive than the values measured ≈30 years ago at nonphysiological pH and widely accepted thereafter in the field of photosynthesis research. Using the P680* − Phe a free energy difference, as estimated from kinetic analyses by previous authors, the present result would locate the Em(P680/P680+) value, which is one of the key parameters but still resists direct measurements, at approximately +1,210 mV. In view of these pieces of information, a renewed diagram is proposed for the energetics in PS II.  相似文献   

2.
The composition of photosystem II (PSII) in the chlorophyll (Chl) d-dominated cyanobacterium Acaryochloris marina MBIC 11017 was investigated to enhance the general understanding of the energetics of the PSII reaction center. We first purified photochemically active complexes consisting of a 47-kDa Chl protein (CP47), CP43' (PcbC), D1, D2, cytochrome b(559), PsbI, and a small polypeptide. The pigment composition per two pheophytin (Phe) a molecules was 55 +/- 7 Chl d, 3.0 +/- 0.4 Chl a, 17 +/- 3 alpha-carotene, and 1.4 +/- 0.2 plastoquinone-9. The special pair was detected by a reversible absorption change at 713 nm (P713) together with a cation radical band at 842 nm. FTIR difference spectra of the specific bands of a 3-formyl group allowed assignment of the special pair. The combined results indicate that the special pair comprises a Chl d homodimer. The primary electron acceptor was shown by photoaccumulation to be Phe a, and its potential was shifted to a higher value than that in the Chl a/Phe a system. The overall energetics of PSII in the Chl d system are adjusted to changes in the redox potentials, with P713 as the special pair using a lower light energy at 713 nm. Taking into account the reported downward shift in the potential of the special pair of photosystem I (P740) in A. marina, our findings lend support to the idea that changes in photosynthetic pigments combine with a modification of the redox potentials of electron transfer components to give rise to an energetic adjustment of the total reaction system.  相似文献   

3.
At the heart of photosynthetic reaction centers (RCs) are pairs of chlorophyll a (Chla), P700 in photosystem I (PSI) and P680 in photosystem II (PSII) of cyanobacteria, algae, or plants, and a pair of bacteriochlorophyll a (BChla), P870 in purple bacterial RCs (PbRCs). These pairs differ greatly in their redox potentials for one-electron oxidation, E(m). For P680, E(m) is 1,100-1,200 mV, but for P700 and P870, E(m) is only 500 mV. Calculations with the linearized Poisson-Boltzmann equation reproduce these measured E(m) differences successfully. Analyzing the origin for these differences, we found as major factors in PSII the unique Mn(4)Ca cluster (relative to PSI and PbRC), the position of P680 close to the luminal edge of transmembrane alpha-helix d (relative to PSI), local variations in the cd loop (relative to PbRC), and the intrinsically higher E(m) of Chla compared with BChla (relative to PbRC).  相似文献   

4.
We report (13)C magic angle spinning NMR observation of photochemically induced dynamic nuclear spin polarization (photo-CIDNP) in the reaction center (RC) of photosystem II (PS2). The light-enhanced NMR signals of the natural abundance (13)C provide information on the electronic structure of the primary electron donor P(680) (chlorophyll a molecules absorbing around 680 nm) and on the p(z) spin density pattern in its oxidized form, P(680)(.+). Most centerband signals can be attributed to a single chlorophyll a (Chl a) cofactor that has little interaction with other pigments. The chemical shift anisotropy of the most intense signals is characteristic for aromatic carbon atoms. The data reveal a pronounced asymmetry of the electronic spin density distribution within the P(680)(.+). PS2 shows only a single broad and intense emissive signal, which is assigned to both the C-10 and C-15 methine carbon atoms. The spin density appears shifted toward ring III. This shift is remarkable, because, for monomeric Chl a radical cations in solution, the region of highest spin density is around ring II. It leads to a first hypothesis as to how the planet can provide itself with the chemical potential to split water and generate an oxygen atmosphere using the Chl a macroaromatic cycle. A local electrostatic field close to ring III can polarize the electronic charge and associated spin density and increase the redox potential of P(680) by stabilizing the highest occupied molecular orbital, without a major change of color. This field could be produced, e.g., by protonation of the keto group of ring V. Finally, the radical cation electronic structure in PS2 is different from that in the bacterial RC, which shows at least four emissive centerbands, indicating a symmetric spin density distribution over the entire bacteriochlorophyll macrocycle.  相似文献   

5.
Photosystem I has two branches of cofactors down which light-driven electron transfer (ET) could potentially proceed, each consisting of a pair of chlorophylls (Chls) and a phylloquinone (PhQ). Forward ET from PhQ to the next ET cofactor (FX) is described by two kinetic components with decay times of approximately 20 and approximately 200 ns, which have been proposed to represent ET from PhQB and PhQA, respectively. Immediately preceding each quinone is a Chl (ec3), which receives a H-bond from a nearby tyrosine. To decrease the reduction potential of each of these Chls, and thus modify the relative yield of ET within the targeted branch, this H-bond was removed by conversion of each Tyr to Phe in the green alga Chlamydomonas reinhardtii. Together, transient optical absorption spectroscopy performed in vivo and transient electron paramagnetic resonance data from thylakoid membranes showed that the mutations affect the relative amplitudes, but not the lifetimes, of the two kinetic components representing ET from PhQ to F(X). The mutation near ec3A increases the fraction of the faster component at the expense of the slower component, with the opposite effect seen in the ec3B mutant. We interpret this result as a decrease in the relative use of the targeted branch. This finding suggests that in Photosystem I, unlike type II reaction centers, the relative efficiency of the two branches is extremely sensitive to the energetics of the embedded redox cofactors.  相似文献   

6.
Photosynthetic bacterial reaction centers convert light excitation into chemical free energy. The initial electron transfer leads to the consecutive semireductions of the primary (Q(A)) and secondary (Q(B)) quinone acceptors. The Q(A)(-) and Q(B)(-) formations induce proton uptake from the bulk. Their magnitudes (H(+)/Q(A)(-) and H(+)/Q(B)(-), respectively) probe the electrostatic interactions within the complex. The pH dependence of H(+)/Q(A)(-) and H(+)/Q(B)(-) were studied in five single mutants modified at the L209 site (L209P-->F,Y,W,E,T). This residue is situated at the border of a continuous chain of water molecules connecting Q(B) to the bulk. In the wild type (WT), a proton uptake band is present at high pH in the H(+)/Q(A)(-) and H(+)/Q(B)(-) curves and is commonly attributed to a cluster of acidic groups situated nearby Q(B). In the H(+)/Q(A)(-) curves of the L209 variants, this band is systematically absent but remains in the H(+)/Q(B)(-) curves. Moreover, notable increase of H(+)/Q(B)(-) is observed in the L209 mutants at neutral pH as compared with the WT. The large effects observed in all L209 mutants are not associated with significant structural changes (Kuglstatter, A., Ermler, U., Michel, H., Baciou, L. & Fritzsch, G. Biochemistry (2001) 40, 4253-4260). Our data suggest that, in the L209 mutants, the Q(B) cluster does not respond to the Q(A)(-) formation as observed in the WT. We propose that, in the mutants, removal of the rigid proline L209 breaks a necessary hydrogen bonding connection between the quinone sites. These findings suggest an important role for structural rigidity in ensuring a functional interaction between quinone binding sites.  相似文献   

7.
We tested the hypothesis that cyclic changes in membrane potential (E(m)) underlie spontaneous vasomotion in cheek pouch arterioles of anesthetized hamsters. Diameter oscillations (approximately 3 min(-1)) were preceded (approximately 3 s) by oscillations in E(m) of smooth muscle cells (SMC) and endothelial cells (EC). Oscillations in E(m) were resolved into six phases: (1) a period (6 +/- 2 s) at the most negative E(m) observed during vasomotion (-46 +/- 2 mV) correlating (r = 0.87, p < 0.01) with time (8 +/- 2 s) at the largest diameter observed during vasomotion (41 +/- 2 microm); (2) a slow depolarization (1.8 +/- 0.2 mV s(-1)) with no diameter change; (3) a fast (9.1 +/- 0.8 mV s(-1)) depolarization (to -28 +/- 2 mV) and constriction; (4) a transient partial repolarization (3-4 mV); (5) a sustained (5 +/- 1 s) depolarization (-28 +/- 2 mV) correlating (r = 0.78, p < 0.01) with time (3 +/- 1 s) at the smallest diameter (27 +/- 2 microm) during vasomotion; (6) a slow repolarization (2.5 +/- 0.2 mV s(-1)) and relaxation. The absolute change in E(m) correlated (r = 0.60, p < 0.01) with the most negative E(m). Sodium nitroprusside or nifedipine caused sustained hyperpolarization and dilation, whereas tetraethylammonium or elevated PO(2) caused sustained depolarization and constriction. We suggest that vasomotion in vivo reflects spontaneous, cyclic changes in E(m) of SMC and EC corresponding with cation fluxes across plasma membranes.  相似文献   

8.
The kinetics of reduction of benzoquinone (Q) to hydroquinone (H(2)Q) by the Os(IV) hydrazido (trans-[Os(IV)(tpy)(Cl)(2)(N(H)N(CH(2))(4)O)]-PF(6) = [1]PF(6), tpy = 2,2':6',2"-terpyridine), sulfilimido (trans-[Os(IV)-(tpy)(Cl)(2)(NS(H)-4-C(6)H(4)Me)]PF(6) = [2]PF(6)), and phosphoraniminato (trans-[Os(IV)(Tp)(Cl)(2)(NP(H)(Et)(2))] = [3], Tp(-) = tris(pyrazolyl)-borate) complexes have been studied in 1:1 (vol/vol) CH(3)CN/H(2)O and CH(3)CN/D(2)O (1.0 M in NH(4)PF(6)/KNO(3) at 25.0 +/- 0.1 degrees C). The reactions are first order in both [Q] and Os(IV) complex and occur by parallel pH-independent (k(1)) and pH-dependent (k(2)) pathways that can be separated by pH-dependent measurements. Saturation kinetics are observed for the acid-independent pathway, consistent with formation of a H-bonded intermediate (K(A)) followed by a redox step (k(red)). For the pH-independent pathway, k(1)(H(2)O)/k(1)(D(2)O) kinetic isotope effects are 455 +/- 8 for [1(+)], 198 +/- 6 for [2(+)], and 178 +/- 5 for [3]. These results provide an example of colossal kinetic isotope effects for proton-coupled electron transfer reactions involving nitrogen, sulfur, and phosphorus as proton-donor atoms.  相似文献   

9.
Flowering plants require light for chlorophyll synthesis. Early studies indicated that the dependence on light for greening stemmed in part from the light-dependent reduction of the chlorophyll intermediate protochlorophyllide to the product chlorophyllide. Light-dependent reduction of protochlorophyllide by flowering plants is contrasted by the ability of nonflowering plants, algae, and photosynthetic bacteria to reduce protochlorophyllide and, hence, synthesize (bacterio) chlorophyll in the dark. In this report, we functionally complemented a light-independent protochlorophyllide reductase mutant of the eubacterium Rhodobacter capsulatus with an expression library composed of genomic DNA from the cyanobacterium Synechocystis sp. PCC 6803. The complemented R. capsulatus strain is capable of synthesizing bacteriochlorophyll in the light, thereby indicating that a chlorophyll biosynthesis enzyme can function in the bacteriochlorophyll biosynthetic pathway. However, under dark growth conditions the complemented R. capsulatus strain fails to synthesize bacteriochlorophyll and instead accumulates protochlorophyllide. Sequence analysis demonstrates that the complementing Synechocystis genomic DNA fragment exhibits a high degree of sequence identity (53-56%) with light-dependent protochlorophyllide reductase enzymes found in plants. The observation that a plant-type, light-dependent protochlorophyllide reductase enzyme exists in a cyanobacterium indicates that light-dependent protochlorophyllide reductase evolved before the advent of eukaryotic photosynthesis. As such, this enzyme did not arise to fulfill a function necessitated either by the endosymbiotic evolution of the chloroplast or by multicellularity; rather, it evolved to fulfill a fundamentally cell-autonomous role.  相似文献   

10.
The reaction center from Rhodobacter sphaeroides uses light energy for the reduction and protonation of a quinone molecule, Q(B). This process involves the transfer of two protons from the aqueous solution to the protein-bound Q(B) molecule. The second proton, H(+)(2), is supplied to Q(B) by Glu-L212, an internal residue protonated in response to formation of Q(A)(-) and Q(B)(-). In this work, the pathway for H(+)(2) to Glu-L212 was studied by measuring the effects of divalent metal ion binding on the protonation of Glu-L212, which was assayed by two types of processes. One was proton uptake from solution after the one-electron reduction of Q(A) (DQ(A)-->D(+)Q(A)(-)) and Q(B) (DQ(B)-->D(+)Q(B)(-)), studied by using pH-sensitive dyes. The other was the electron transfer k(AB)((1)) (Q(A)(-)Q(B)-->Q(A)Q(B)(-)). At pH 8.5, binding of Zn(2+), Cd(2+), or Ni(2+) reduced the rates of proton uptake upon Q(A)(-) and Q(B)(-) formation as well as k(AB)((1)) by approximately an order of magnitude, resulting in similar final values, indicating that there is a common rate-limiting step. Because D(+)Q(A)(-) is formed 10(5)-fold faster than the induced proton uptake, the observed rate decrease must be caused by an inhibition of the proton transfer. The Glu-L212-->Gln mutant reaction centers displayed greatly reduced amplitudes of proton uptake and exhibited no changes in rates of proton uptake or electron transfer upon Zn(2+) binding. Therefore, metal binding specifically decreased the rate of proton transfer to Glu-L212, because the observed rates were decreased only when proton uptake by Glu-L212 was required. The entry point for the second proton H(+)(2) was thus identified to be the same as for the first proton H(+)(1), close to the metal binding region Asp-H124, His-H126, and His-H128.  相似文献   

11.
Five positions in the Escherichia coli malate dehydrogenase (eMDH) sequence, which distinguish MDH from lactate dehydrogenase (LDH) activity, were identified through a combination of Venn diagrams constructed from whole genomic data and from unbiased representative sequences from terminal clades. Incorporation of the five changes in eMDH sufficed to convert the enzyme from one with (k(cat)/K(m)(pyruvate))/(k(cat)/K(m)(oxaloacetate)) = 6.1 x 10(-9) to one with that ratio = 28. The substrate specificity was thus changed by a factor of 4.6 x 10(9). The k(cat)/K(m)(pyruvate) value for the pentamutant (eMDH I12V/R81Q/M85E/G210A/V214I) is 3,500 M(-1).s(-1), which is approximately equal 1/1,000 of the values found for typical wild-type LDHs. The procedure isolates an intersection of "strong forcing sets" that should prove to be of general use in switching paralog function.  相似文献   

12.
Few studies have been published on gas distribution in the lung during acute and stable airway obstruction in children. Multiple breath nitrogen (N(2)) washout is an established method for assessing ventilation inhomogeneity, while the tidal breathing capnogram may be used as an indicator of ventilation-perfusion (V(')(A)/Q) mismatch. We hypothesized that significant V(')(A)/Q mismatch is not seen in stable airway obstruction unless obstruction is severe, and that stable and induced airway obstruction of similar severity would result in different degrees of V(')(A)/Q mismatch. To test this hypothesis, we performed spirometry measurements of forced expiratory volume in 1 sec (FEV(1)), multiple breath N(2) washout, and tidal breathing capnography in 11 young patients (9-30 years) with cystic fibrosis, 37 asthmatic patients (8-18 years), and 34 healthy subjects (7-20 years). Lung function was measured at rest, after airway obstruction induced by cold dry air hyperventilation or methacholine challenge, and after beta(2)-agonist treatment. V(')(A)/Q mismatch was assessed from the slopes of the phases II and III of the capnogram. We observed a normal capnogram during stable obstruction of moderate severity despite significant ventilation inhomogeneity. In patients with severe stable obstruction and in those with induced airway obstruction significant ventilation inhomogeneity and pathological capnograms were seen. Induced airway obstruction, resulted in a more pathological capnogram than stable obstruction of similar severity. beta(2)-agonist treatment reduced ventilation inhomogeneity, but did not improve the capnogram. Our findings are compatible with the presence of an efficient pulmonary blood flow regulatory mechanism that adequately compensates for chronic ventilation inhomogeneity of moderate severity, but not for severe or sudden airway obstruction.  相似文献   

13.
Photosynthetic oxygen evolution takes place in the thylakoid protein complex known as photosystem II. The reaction center core of this photosystem, where photochemistry occurs, is a heterodimer of homologous polypeptides called D1 and D2. Besides chlorophyll and quinone, photosystem II contains other organic cofactors, including two known as Z and D. Z transfers electrons from the site of water oxidation to the oxidized reaction center primary donor, P+.680, while D+. gives rise to the dark-stable EPR spectrum known as signal II. D+. has recently been shown to be a tyrosine radical. Z is probably a second tyrosine located in a similar environment. Indirect evidence indicates that Z and D are associated with the D1 and D2 polypeptides, respectively. To identify the specific tyrosine residue corresponding to D, we have changed Tyr-160 of the D2 polypeptide to phenylalanine by site-directed mutagenesis of a psbD gene in the cyanobacterium Synechocystis 6803. The resulting mutant grows photosynthetically, but it lacks the EPR signal of D+.. We conclude that D is Tyr-160 of the D2 polypeptide. We suggest that the C2 symmetry in photosystem II extends beyond P680 to its immediate electron donor and conclude that Z is Tyr-161 of the D1 polypeptide.  相似文献   

14.
Studies of initial activities of carbon monoxide dehydrogenase (CODH) from Rhodospirillum rubrum show that CODH is mostly inactive at redox potentials higher than -300 mV. Initial activities measured at a wide range of redox potentials (0--500 mV) fit a function corresponding to the Nernst equation with a midpoint potential of -316 mV. Previously, extensive EPR studies of CODH have suggested that CODH has three distinct redox states: (i) a spin-coupled state at -60 to -300 mV that gives rise to an EPR signal termed C(red1); (ii) uncoupled states at <-320 mV in the absence of CO(2) referred to as C(unc); and (iii) another spin-coupled state at <-320 mV in the presence of CO(2) that gives rise to an EPR signal termed C(red2B). Because there is no initial CODH activity at potentials that give rise to C(red1), the state (C(red1)) is not involved in the catalytic mechanism of this enzyme. At potentials more positive than -380 mV, CODH recovers its full activity over time when incubated with CO. This reductant-dependent conversion of CODH from an inactive to an active form is referred to hereafter as "autocatalysis." Analyses of the autocatalytic activation process of CODH suggest that the autocatalysis is initiated by a small fraction of activated CODH; the small fraction of active CODH catalyzes CO oxidation and consequently lowers the redox potential of the assay system. This process is accelerated with time because of accumulation of the active enzyme.  相似文献   

15.
Absorption spectra of the purified cytochrome b(6)f complex from Chlamydomonas reinhardtii were monitored as a function of the redox potential. Four spectral and redox components were identified: in addition to heme f and the two b hemes, the fourth component must be the new heme c(i) (also denoted x) recently discovered in the crystallographic structures. This heme is covalently attached to the protein, but has no amino acid axial ligand. It is located in the plastoquinone-reducing site Q(i) in the immediate vicinity of a b heme. Each heme titrated as a one-electron Nernst curve, with midpoint potentials at pH 7.0 of -130 mV and -35 mV (hemes b), +100 mV (heme c(i)), and +355 mV (heme f). The reduced minus oxidized spectrum of heme c(i) consists of a broad absorption increase centered approximately 425 nm. Its potential has a dependence of -60 mV/pH unit, implying that the reduced form binds one proton in the pH 6-9 range. The Q(i) site inhibitor 2-n-nonyl-4-hydroxyquinoline N-oxide, a semiquinone analogue, induces a shift of this potential by about -225 mV. The spectrum of c(i) matches the absorption changes previously observed in vivo for an unknown redox center denoted "G." The data are discussed with respect to the effect of the membrane potential on the electron transfer equilibrium between G and heme b(H) found in earlier experiments.  相似文献   

16.
At room temperature the delayed fluorescence (luminescence) of spinach chloroplasts, in which the acceptor Q is prereduced, consists of a component with a lifetime of 0.7 μs and a more rapid component, presumably with a lifetime of 100-200 ns and about the same integrated intensity as the 0.7- μs component. Between 4.2 and 200 K only a 100- to 200-ns luminescence component was found, with an integrated intensity appreciably larger than that at room temperature. At 77 K the 150-ns component approached 63% of saturation at roughly the same energy as the variable fluorescence of photosystem II at room temperature. At 77 K the emission spectra of prompt fluorescence but not that of the 150-ns luminescence had a preponderant additional band at about 735 nm. The 150-ns emission also occurred in the photosystem I-lacking mutant FL5 of Chlamydomonas. These experiments indicate that the 150-ns component originates from photosystem II. At room temperature a magnetic field of 0.22 T stimulated the 0.7-μs delayed fluorescence by about 10%. At 77 K the field-induced increase of the 150-ns component amounted to 40-50%, being responsible for the observed ≈2% increase of the total emission; the magnetic field increased the lifetime about 20%. In order to explain these phenomena a scheme for photosystem II is presented with an intermediary acceptor W between Q and the primary donor chlorophyll P-680; recombination of P-680+ and W- causes the fast luminescence. The magnetic field effect on this emission is discussed in terms of the radical pair mechanism.  相似文献   

17.
In bacterial photosynthetic reaction centers, the protonation events associated with the different reduction states of the two quinone molecules constitute intrinsic probes of both the electrostatic interactions and the different kinetic events occurring within the protein in response to the light-generated introduction of a charge. The kinetics and stoichiometries of proton uptake on formation of the primary semiquinone Q(A)(-) and the secondary acceptor Q(B)(-) after the first and second flashes have been measured, at pH 7.5, in reaction centers from genetically modified strains and from the wild type. The modified strains are mutated at the L212Glu and/or at the L213Asp sites near Q(B); some of them carry additional mutations distant from the quinone sites (M231Arg --> Leu, M43Asn --> Asp, M5Asn --> Asp) that compensate for the loss of L213Asp. Our data show that the mutations perturb the response of the protein system to the formation of a semiquinone, how distant compensatory mutations can restore the normal response, and the activity of a tyrosine residue (M247Ala --> Tyr) in increasing and accelerating proton uptake. The data demonstrate a direct correlation between the kinetic events of proton uptake that are observed with the formation of either Q(A)(-) or Q(B)(-), suggesting that the same residues respond to the generation of either semiquinone species. Therefore, the efficiency of transferring the first proton to Q(B) is evident from examination of the pattern of H(+)/Q(A)(-) proton uptake. This delocalized response of the protein complex to the introduction of a charge is coordinated by an interactive network that links the Q(-) species, polarizable residues, and numerous water molecules that are located in this region of the reaction center structure. This could be a general property of transmembrane redox proteins that couple electron transfer to proton uptake/release reactions.  相似文献   

18.
A mutant strain of the cyanobacterium Synechocystis 6803, TolE4B, was constructed by genetic deletion of the protein that links phycobilisomes to thylakoid membranes and of the CP43 and CP47 proteins of photosystem II (PSII), leaving the photosystem I (PSI) center as the sole chromophore in the photosynthetic membranes. Both intact membrane and detergent-isolated samples of PSI were characterized by time-resolved and steady-state fluorescence methods. A decay component of approximately 25 ps dominates (99% of the amplitude) the fluorescence of the membrane sample. This result indicates that an intermediate lifetime is not associated with the intact membrane preparation and the charge separation in PSI is irreversible. The decay time of the detergent-isolated sample is similar. The 600-nm excited steady-state fluorescence spectrum displays a red fluorescence peak at approximately 703 nm at room temperature. The 450-nm excited steady-state fluorescence spectrum is dominated by a single peak around 700 nm without 680-nm "bulk" fluorescence. The experimental results were compared with several computer simulations. Assuming an antenna size of 130 chlorophyll molecules, an apparent charge separation time of approximately 1 ps is estimated. Alternatively, the kinetics could be modeled on the basis of a two-domain antenna for PSI, consistent with the available structural data, each containing approximately 65 chlorophyll a molecules. If excitation can migrate freely within each domain and communication between domains occurs only close to the reaction center, a charge separation time of 3-4 ps is obtained instead.  相似文献   

19.
Mutations in the gene encoding the melanocortin 4 receptor (MC4R) are associated with the most common monogenic form of obesity. We examined 750 Danish men with juvenile-onset obesity (body mass index 33.3 +/- 2.4 kg/m(2)) and 706 control subjects (body mass index 21.4 +/- 2.1 kg/m(2)) for mutations in MC4R. A total of 14 different mutations were identified of which two, Ala219Val and Leu325Phe, were novel variants. The variant receptor, Leu325Phe, was unable to bind [Nle4,d-Phe7]-alphaMSH, whereas the Ala219Val variant showed a significantly impaired melanotan II induction of cAMP, compared with the wild-type receptor. The remaining 11 mutations have previously been reported, but selected MC4R variants were further characterized in vitro in the present study. A previously identified nonsense mutation, Tyr35stop, had a relatively high allele frequency (0.6%), suggesting a possible founder effect in the Danish population. This study shows a carrier frequency of 2.5% of pathogenic mutations in the MC4R gene in a population-based study of obese men. Thus, variation in this gene is the most common known specific genetic cause of obesity among Scandinavian men.  相似文献   

20.
Familial Mediterranean fever (FMF) is an autosomal recessive disorder characterized by recurrent and self-limited fever attacks and serositis/arthritis. The M694V, M694I, M680I, V726A, and E148Q mutations in MEFV, the gene responsible for FMF, account for most FMF cases in Mediterranean populations. In Japan, M694I and E148Q are most frequently detected; M694V, M680I, and V726A have not been identified so far. We report the first case of FMF associated with M680I in Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号