首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
2.
3.
The estrogen-dependent process of vitellogenesis is a key function on oviparous fish reproduction and it has been widely used as an indicator of xenoestrogen exposure. The two estrogen receptor (ER) subtypes, ERalpha and ERbeta, are often co-expressed in the liver of fish. The relative contribution of each ER subtype to modulate vitellogenin production by hepatocytes was studied using selected compounds known to preferentially interact with specific ER subtypes: propyl-pyrazole-triol (PPT) an ERalpha selective agonist, methyl-piperidino-pyrazole (MPP) an ERalpha selective antagonist, and diarylpropionitrile (DPN) an ERbeta selective agonist. First, the relative binding affinity of the test compounds to estradiol for rainbow trout hepatic nuclear ER was determined using a competitive ligand binding assay. All the test ligands achieved complete displacement of specific [(3)H]-estradiol binding from the nuclear ER extract. This indicates that the test ligands have the potential to modify the ER function in the rainbow trout liver. Secondly, the ability of the test compounds to induce or inhibit vitellogenin production by primary cultures of rainbow trout hepatocytes was studied. Estradiol and DPN were the only compounds that induced a dose-dependent increase on vitellogenin synthesis. The lack of vitellogenin induction by PPT indicates that ERalpha could not have a role on this reproductive process whereas the ability of DPN to induce vitellogenin production supports the participation of ERbeta. In addition, this hypothesis is reinforced by the results obtained from MPP plus estradiol. On one hand, the absence of suppressive activity of MPP in the estradiol-induced vitellogenin production does not support the participation of ERalpha. On the other hand, once blocked ERalpha with MPP, the only manifestation of agonist activity of estradiol would be achieved via ERbeta. In conclusion, the present results indicate that vitellogenin production is mainly mediated through ERbeta, implying, furthermore that compounds which only exhibit ERalpha selectivity are not detected by vitellogenin bioassay.  相似文献   

4.
5.
Estrogen action is mediated via two estrogen receptor (ER) subtypes, ERalpha and ERbeta. Selective ER modulators with balanced high affinity for ERalpha and ERbeta have been developed as therapeutics for the treatment of a variety of diseases, including hormone-responsive breast cancer and osteoporosis. Recent data based primarily on the evaluation of ER-knockout mice have revealed that ERalpha and ERbeta may regulate separate and distinct biological processes. The identification of ERbeta specific ligands could further enhance our understanding of ERbeta biology. In addition, compounds targeting ERbeta may prove useful as therapeutic agents with activity profiles distinguishable from that of estradiol. To discover novel selective ligands for ERbeta, we developed and characterized a cell-based Gal4-ERbeta beta-lactamase reporter gene assay (GERTA) in CHO cells for the ligand-induced activation of the human ERbeta. The sensitivity and selectivity of this assay were found to be comparable to those of an ER ligand-binding assay. The assay was optimized for screening in an ultra high throughput 3456-well nanoplate format and was successfully used to screen a large compound collection for ERbeta agonists. Compounds identified in a primary screen were tested in an in vitro ligand-binding assay to characterize further the selectivity and potency for ERbeta.  相似文献   

6.
7.
8.
Recent reports that a wide variety of natural and man-made compounds are capable of competing with natural hormones for estrogen receptors serve as timely examples of the need to advance screening techniques to support human health and ascertain ecological risk. Quantitative structure-activity relationships (QSARs) can potentially serve as screening tools to identify and prioritize untested compounds for further empirical evaluations. Computer-based QSAR molecular models have been used to describe ligand-receptor interactions and to predict chemical structures that possess desired pharmacological characteristics. These have recently included combined and differential relative binding affinities of potential estrogenic compounds at estrogen receptors (ER) alpha and beta. In the present study, artificial neural network (ANN) QSAR models were developed that were able to predict differential relative binding affinities of a series of structurally diverse compounds with estrogenic activity. The models were constructed with a dataset of 93 compounds and tested with an additional dataset of 30 independent compounds. High training correlations (r(2)=0.83-0.91) were observed while validation results for the external compounds were encouraging (r(2)=0.62-0.86). The models were used to identify structural features of phytoestrogens that are responsible for selective ligand binding to ERalpha and ERbeta. Numerous structural characteristics are required for complexation with receptors. In particular, size, shape and polarity of ligands, heterocyclic rings, lipophilicity, hydrogen bonding, presence of quaternary carbon atom, presence, position, length and configuration of a bulky side chain, were identified as the most significant structural features responsible for selective binding to ERalpha and ERbeta.  相似文献   

9.
10.
11.
The discovery and synthesis of dihydrobenzoxathiins as potent, ERalpha subtype selective ligands are described. The most active analogue, 4-D, was found to be 50-fold selective in a competitive binding assay and 100-fold selective in a transactivation assay in HEK-293 cells. The alpha selectivity was postulated to lie in the interaction of the sulfur atom of the benzoxathiin ring with the two discriminating residues in the binding pocket of the receptor isoforms.  相似文献   

12.
Estrogen receptor beta (ERbeta), a less active ER subtype that appears to have a restraining effect on the more active ERalpha, could be a factor that determines the level of estrogen action in certain estrogen target tissues. ERbeta is found in breast cancer, and its levels relative to ERalpha decline with disease progression. Thus, the independent quantification of ERalpha and ERbeta levels in breast cancer by imaging might be predictive of responses to different hormone therapies. To develop an imaging agent for ERbeta, we synthesized a fluoroethyl analogue of DPN (2,3-bis(4-hydroxyphenyl)propanonitrile), a known ERbeta-selective ligand. This analogue, FEDPN (5-fluoro-(2R,3S)-2,3-bis(4-hydroxyphenyl)pentanenitrile), has an 8.3-fold absolute affinity preference for ERbeta. [18F]Fluoride-labeled FEDPN was prepared from a toluenesulfonate precursor, which provided [18F]FEDPN with a specific activity greater than 3100 Ci/mmol after HPLC purification. Biodistribution studies in immature female rats using estradiol as a blocking agent revealed specific uptake of [18F]FEDPN in the uterus and ovaries. Experiments using ERalpha- and ERbeta-knockout mice demonstrated the expected ERalpha-subtype dependence in the tissue uptake of the known 16alpha-[18F]fluoro-17beta-estradiol ([18F]FES), which has a 6.3-fold preference for ERalpha. The tissue uptake of [18F]FEDPN in the ER knockout mice showed some evidence of mediation by ERbeta, but the levels of specific uptake of this agent were relatively modest. Based on our results, imaging of ERalpha can be done effectively with [18F]FES, but imaging of ERbeta will likely require agents with more optimized ERbeta binding affinity and selectivity than [18F]FEDNP.  相似文献   

13.
We previously demonstrated differential interactions of the methoxychlor metabolite 2,2-bis(p-hydroxyphenyl)-1,1, 1-trichloroethane (HPTE) with estrogen receptor alpha (ERalpha), ERbeta, and the androgen receptor (AR). In this study, we characterize the ERalpha, ERbeta, and AR activity of structurally related methoxychlor metabolites. Human hepatoma cells (HepG2) were transiently transfected with human ERalpha, ERbeta, and AR plus an appropriate steroid-responsive luciferase reporter vector. After transfection, cells were treated with various concentrations of HPTE or structurally related compounds in the presence (for detecting antagonism) and absence (for detecting agonism) of 17beta-estradiol and dihydrotestosterone. The monohydroxy analog of methoxychlor, as well as monohydroxy and dihydroxy analogs of 2, 2-bis(p-hydroxyphenyl)-1,1-dichloroethylene, had ERalpha agonist activity and ERbeta and AR antagonist activity similar to HPTE. The trihydroxy metabolite of methoxychlor displayed only weak ERalpha agonist activity and did not alter ERbeta or AR activities. Replacement of the trichloroethane or dichloroethylene group with a methyl group resulted in a compound with ERalpha and ERbeta agonist activity that retained antiandrogenic activities. This study identifies some of the structural requirements for ERalpha and ERbeta activity and demonstrates the complexity involved in determining the mechanism of action of endocrine-active chemicals that simultaneously act as agonists or antagonists through one or more hormone receptors.  相似文献   

14.
In this work, we introduce a four-step scoring and filtering procedure, furnishing target specific virtual screening (TS-VS), which serves to minimize false positives resulting from conformational artifacts of the docking process and is optimized to converge on novel chemotypes of estrogen receptor alpha (ERalpha). As a proof of concept, VS of a commercial compound database was undertaken (SPECs database release: Aug 2005, 202 054 compounds in total), resulting in the identification of both previously known and novel putative ER scaffolds. Application of distance constraints within TS-VS allowed facile identification of three novel active ligands with ERalpha binding affinities (IC50) of 1.4 microM, 57 nM, and 53 nM. Importantly, they all exhibited ERalpha over ERbeta selectivity, with the most selective being 17-fold. The ligands also displayed low micomolar antiproliferative activity (7-15 microM) in the human MCF-7 breast cancer cell line.  相似文献   

15.
The study of the relative binding affinity (RBA) to the human alpha and beta estrogen receptors (ERs) of various 7-hydroxycoumarins substituted at 4- and 3,4- positions is weak and lacks in selectivity for both ERalpha and ERbeta. The 4-(4-hydroxyphenyl)-7-hydroxycoumarin shows a weak RBA to ERbeta and 3,4-diphenyl-7-hydroxycoumarin presents a stronger RBA to ERalpha than ERbeta.  相似文献   

16.
Phytoestrogens exert pleiotropic effects on cellular signaling and show some beneficial effects on estrogen-dependent diseases. However, due to activation/inhibition of the estrogen receptors ERalpha or ERbeta, these compounds may induce or inhibit estrogen action and, therefore, have the potential to disrupt estrogen signaling. We performed a comprehensive analysis and potency comparison of phytoestrogens and their human metabolites for ER binding, induction/suppression of ERalpha and ERbeta transactivation, and coactivator recruitment in human cells. The soy-derived genistein, coumestrol, and equol displayed a preference for transactivation of ERbeta compared to ERalpha and were 10- to 100-fold less potent than diethylstilbestrol. In contrast, zearalenone was the most potent phytoestrogen tested and activated preferentially ERalpha. All other phytoestrogens tested, including resveratrol and human metabolites of daidzein and enterolactone, were weak ER agonists. Interestingly, the daidzein metabolites 3',4',7-isoflavone and 4',6,7-isoflavone were superagonists on ERalpha and ERbeta. All phytoestrogens tested showed reduced potencies to activate ERalpha and ERbeta compared to diethylstilbestrol on the estrogen-responsive C3 promoter compared to a consensus estrogen response element indicating a degree of promoter dependency. Zearalenone and resveratrol were antagonistic on both ERalpha and ERbeta at high doses. The phytoestrogens enhanced preferentially recruitment of GRIP1 to ERalpha similar to 17beta-estradiol. In contrast, for ERbeta no distinct preference for one coactivator (GRIP1 or SRC-1) was apparent and the overall coactivator association was less pronounced than for ERalpha. Due to their abundance and (anti)-estrogenic potencies, the soy-derived isoflavones, coumestrol, resveratrol, and zearalenone would appear to have the potential for effectively functioning as endocrine disruptors.  相似文献   

17.
18.
19.
BACKGROUND AND PURPOSE: Selective oestrogen receptor (ER) modulators (SERMs) are of great value in the treatment of breast cancer and osteoporosis. The aim of this study was to characterize pharmacologically a new class of SERMs synthesized based on the core structure of raloxifene. EXPERIMENTAL APPROACH: Competitive receptor binding and luciferase-based reporter methods were used to study the bioactivities of raloxifene analogues, followed by efficacy determination in breast cancer cell proliferation assay. ER antagonist effects were investigated in female rats by measuring uterine and mammary gland growth, using wet weight, BrdU incorporation and terminal end bud (TEB) as indicators. KEY RESULTS: Five analogues, belonging to two different structural series and display higher binding affinities for ERalpha than ERbeta were functionally evaluated. One such analogue, Y134, exhibited potent antagonist activity at ERs in CV-1 cells cotransfected with plasmids containing ERalpha or ERbeta and oestrogen-response element-driven luciferase. The estimated IC(50) value was 0.52 nM for ERalpha and 2.94 nM for ERbeta, comparable to that of raloxifene. Little cytotoxicity was observed at Y134 concentrations below 10 microM. Y134 suppressed oestrogen-stimulated proliferation of ER-positive human breast cancer MCF-7 and T47D cells. At an identical dose, administered to ovariectomized rats, Y134 was more effective than raloxifene at arresting oestrogen-induced outgrowth of TEB and mammary gland DNA synthesis, but their inhibitory effects on the uterus were comparable. CONCLUSIONS AND IMPLICATIONS: Y134 is a potent ER antagonist with better mammary gland selectivity than raloxifene and shows potential for development as a new SERM for therapeutic use.  相似文献   

20.
Estradiol (E(2)) may influence some of the sex differences in neuropsychiatric disorders that emerge post-puberty. Studies in our laboratory, and others, have shown that actions at the beta isoform of estrogen receptor (ER) are important for E(2)'s effects for anxiety and/or depressive behavior. Whether ERbeta in the hippocampus is a target for these effects was investigated in the present study. We hypothesized that if actions at ERbeta in the hippocampus are important for the anti-anxiety and anti-depressive effects, then administration of selective ER modulator (SERMs) with greater affinity for ERbeta than ERalpha to the hippocampus, but not a control region/missed sites (i.e. the ventral tegmental area), should decrease anxiety and depressive behavior, compared to vehicle and that ERalpha-specific SERMs should not have the same effect. To investigate this, ovariectomized (ovx) rats were surgically-implanted with guide cannulae aimed at the hippocampus (target site) or ventral tegmental area (control site). Rats were administered vehicle, or 17beta-E(2) (equal affinity for ERalpha and ERbeta), SERMs with greater affinity for ERalpha vs. ERbeta (17alpha-E(2) or propyl pyrazole triol), or SERMs with greater affinity for ERbeta vs. ERalpha (coumestrol or diarylpropionitrile) to these sites (2 microg/microl/side) before testing in anxiety (open field, elevated plus maze) or depression (forced swim) tasks. ERbeta-selective SERMs to the hippocampus, but not the ventral tegmental area, decreased anxiety and depressive behavior. Rats administered 17beta-E(2) or ERbeta SERMs entered more central squares in an open field, spent more time on the open arms of the plus maze, and spent less time immobile compared to rats administered vehicle. Administration of ERalpha-specific SERMs produced similar effects as vehicle administration. Thus, E(2)'s anti-anxiety and anti-depressive effects may involve ERbeta in the hippocampus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号