首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Goal of this study was to investigate the pro-apoptotic properties of RRR-gamma-tocopherol (gammaT) in human breast cancer cells. gammaT was shown to induce cancer cells but not normal cells to undergo apoptosis, sensitize cancer cells to Tumor necrosis factor-Related Apoptosis-Inducing Ligand (TRAIL)-induced apoptosis, and increase death receptor 5 (DR5) mRNA, protein and cell surface expression. Knockdown of DR5 attenuated gammaT-induced apoptosis. Investigations of post-receptor signaling showed: caspase-8, Bid and Bax activation, increases in mitochondria permeability, cytochrome c release and caspase-9 activation. Thus, gammaT is a potent pro-apoptotic agent for human breast cancer cells inducing apoptosis via activation of DR5-mediated apoptotic pathway.  相似文献   

4.
Park MH  Jo MR  Won D  Song HS  Han SB  Song MJ  Hong JT 《BMC cancer》2012,12(1):228
ABSTRACT: BACKGROUND: Many research suggested that the cancer cells avoid destruction by the immune system through down-regulation or mutation of death receptors. Therefore, it is very important that finding the agents that increases the death receptors of cancer cells. In this study, we demonstrated that the snake venom toxin from Vipera lebetina turanica induce the apoptosis of colon cancer cells through reactive oxygen species (ROS) and c-Jun N-terminal kinases (JNK) dependent death receptor (DR4 and DR5) expression. METHODS: We used cell viability assays, DAPI/TUNEL assays, as well as western blot for detection of apoptosis related proteins and DRs to demonstrate that snake venom toxin-induced apoptosis is DR4 and DR5 dependent. We carried out transient siRNA knockdowns of DR4 and DR5 in colon cancer cells. RESULTS: We showed that snake venom toxin inhibited growth of colon cancer cells through induction of apoptosis. We also showed that the expression of DR4 and DR5 was increased by treatment of snake venom toxin. Moreover, knockdown of DR4 or DR5 reversed the effect of snake venom toxin. Snake venom toxin also induced JNK phosphorylation and ROS generation, however, pretreatment of JNK inhibitor and ROS scavenger reversed the growth inhibitory effect of snake venom toxin, and reduced the snake venom toxin-induced upregulation of DR4 and DR5 expression. CONCLUSIONS: Our results indicated that snake venom toxin could inhibit human colon cancer cell growth, and these effects may be related to ROS and JNK mediated activation of death receptor (DR4 and DR5) signals.  相似文献   

5.
Thrombin induces apoptosis in human tumor cells   总被引:5,自引:0,他引:5  
Thrombin is a serine protease that is produced during the coagulation process and plays an essential role for hemostasis, thrombosis and wound healing. It is a potent activator of platelets, induces proliferation of a wide variety of normal and malignant human cells, and enhances their invasiveness and metastatic potential. We studied the effect of thrombin on the proliferation of a wide variety of human tumor cells and report here that, at low concentrations, thrombin induces proliferation of these cells. However, at higher concentrations, thrombin inhibited their proliferation. We show that this inhibition of cell proliferation was due to apoptosis of the tumor cells. The thrombin-mediated apoptosis was inhibited significantly by its specific inhibitor, hirudin. Furthermore, no consistent pattern of induction and/or modulation of p53, p21 and bcl-2 was observed in the thrombin-mediated apoptosis. To our knowledge, this is the first report to describe the pro-apoptotic effects of thrombin on human tumor cells and may have implications for chemotherapy in cancer patients and for the pathogenesis of AIDS as well.  相似文献   

6.
Quinazoline-based alpha1-adrenoceptor antagonists such as doxazosin and terazosin have been previously shown to induce apoptosis in prostate cancer cells via an alpha1-adrenoceptor-independent pathway, involving activation of transforming growth factor-beta1 (TGF-beta1) signaling. In this study, the molecular events initiating this apoptotic effect were further investigated in vitro using the human androgen-independent prostate cancer cells PC-3 and the human benign prostate epithelial cells BPH-1. Quantitative microarray assays were done in PC-3 and BPH-1 cells after treatment with doxazosin (25 micromol/L, 6 and 24 hours) to identify the early gene changes. Transient changes in the expression of several apoptosis regulators were identified, including up-regulation of Bax and Fas/CD95 and down-regulation of Bcl-xL and TRAMP/Apo3. Moreover, there were significant changes in the expression pattern of signaling components of the extracellular matrix such as integrins alpha2, alphaV, beta1, and beta8. Western blot analysis revealed activation of caspase-8 and caspase-3 within the first 6 to 12 hours of treatment with doxazosin in both PC-3 and BPH-1 cells. Doxazosin-induced apoptosis was blocked by specific caspase-8 inhibitors, supporting the functional involvement of caspase-8 in doxazosin-induced apoptosis. The effect of doxazosin on recruitment of Fas-associated death domain (FADD) and procaspase-8 to the Fas receptor was examined via analysis of death-inducing signaling complex formation. Doxazosin increased FADD recruitment and subsequent caspase-8 activation, implicating Fas-mediated apoptosis as the underlying mechanism of the effect of doxazosin in prostate cells. These results show that doxazosin exerts its apoptotic effects against benign and malignant prostate cells via a death receptor-mediated mechanism with a potential integrin contribution towards cell survival outcomes.  相似文献   

7.
Lipoxygenases induce malignant tumor progression and lipoxygenase inhibitors have been considered as promising anti-tumor agents. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is one of the most promising candidates for new cancer therapeutics. Combined treatment with nordihydroguaiaretic acid (NDGA), a lipoxygenase inhibitor, and TRAIL markedly induced apoptosis in Jurkat T-cell leukemia cells at suboptimal concentrations for each agent. The combined treatment efficiently activated caspase-3, -8 and -10, and Bid. The underling mechanism by which NDGA enhanced TRAIL-induced apoptosis was examined. NDGA did not change the expression levels of anti-apoptotic factors, Bcl-x(L), Bcl-2, cIAP-1, XIAP and survivin. The expression of death receptor-related genes was investigated and it was found that NDGA specifically up-regulated the expression of death receptor 5 (DR5) at mRNA and protein levels. Down-regulation of DR5 by small interfering RNA prevented the sensitizing effect of NDGA on TRAIL-induced apoptosis. Furthermore, NDGA sensitized prostate cancer and colorectal cancer cells to TRAIL-induced apoptosis. In contrast, NDGA neither enhanced TRAIL-induced apoptosis nor up-regulated DR5 expression in normal peripheral blood mononuclear cells. Another lipoxygenase inhibitor, AA861, also up-regulated DR5 and sensitized Jurkat and DU145 cells to TRAIL. These results indicate that lipoxygenase inhibitors augment the apoptotic efficiency of TRAIL through DR5 up-regulation in malignant tumor cells, and raise the possibility that the combination of lipoxygenase inhibitor and TRAIL is a promising strategy for malignant tumor treatment.  相似文献   

8.
BACKGROUND: The antitumor activity of CS-1008, a humanized agonistic anti-human death receptor (DR) 5 antibody, was investigated in preclinical models. Materials and methods: Cytotoxicity of CS-1008 was evaluated in a several human tumor cell lines as well as primary human hepatocytes in vitro. To evaluate antitumor efficacy, athymic nude mice were inoculated with human colorectal tumor COLO 205, pancreatic tumor MIA PaCa-2 or non-small-cell lung carcinoma NCI-H2122 and CS-1008 was i.v. administered. The combination effects of CS-1008 with gemcitabine or docetaxel (Taxotere) against MIA PaCa-2 or NCI-H2122 were evaluated in vivo, respectively. RESULTS: CS-1008 inhibited the growth of tumor cell lines with DR5 expression, including COLO 205, NCI-H2122, MIA PaCa-2 and renal cell adenocarcinoma ACHN in vitro with antibody cross-linkage. Using COLO 205, apoptosis induction was confirmed by annexin V staining. Weekly administration of CS-1008 resulted in the inhibition of COLO 205 tumor growth as well as MIA PaCa-2 in vivo. CS-1008 in combination with gemcitabine or docetaxel demonstrated enhanced antitumor activity against MIA PaCa-2 or NCI-H2122 cells, respectively. Unlike tumor necrosis factor-related apoptosis-inducing ligand, CS-1008 did not induce cell death in human primary hepatocytes. CONCLUSION: CS-1008 has a selective toxicity toward tumor cells expressing DR5 and the potential for antitumor efficacy in human malignancies.  相似文献   

9.
10.
Lu M  Xia L  Hua H  Jing Y 《Cancer research》2008,68(4):1180-1186
Acetyl-keto-beta-boswellic acid (AKBA), a triterpenoid isolated from Boswellia carterri Birdw and Boswellia serrata, has been found to inhibit tumor cell growth and to induce apoptosis. The apoptotic effects and the mechanisms of action of AKBA were studied in LNCaP and PC-3 human prostate cancer cells. AKBA induced apoptosis in both cell lines at concentrations above 10 microg/mL. AKBA-induced apoptosis was correlated with the activation of caspase-3 and caspase-8 as well as with poly(ADP)ribose polymerase (PARP) cleavage. The activation of caspase-8 was correlated with increased levels of death receptor (DR) 5 but not of Fas or DR4. AKBA-induced apoptosis, caspase-8 activation, and PARP cleavage were inhibited by knocking down DR5 using a small hairpin RNA. AKBA treatment increased the levels of CAAT/enhancer binding protein homologous protein (CHOP) and activated a DR5 promoter reporter but did not activate a DR5 promoter reporter with the mutant CHOP binding site. These results suggest that AKBA induces apoptosis in prostate cancer cells through a DR5-mediated pathway, which probably involves the induced expression of CHOP.  相似文献   

11.
Death receptor 5 (DR5) is a receptor for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). TRAIL is a promising candidate for cancer therapeutics due to its ability to induce apoptosis selectively in cancer cells. Here, we report that histone deacetylase inhibitors (HDACIs) such as trichostatin A (TSA), sodium butyrate, and suberoylanilide hydroxamic acid (SAHA) upregulated DR5 expression in various human malignant tumor cells. An RNase protection assay demonstrated that HDACIs induced DR5 mRNA markedly but not that of other death receptor family members in Jurkat cells. HDACIs increased DR5 mRNA and protein in a dose- and time-dependent manner. We also show TSA increased DR5 promoter activity using a luciferase promoter assay. Furthermore, we demonstrated that HDACIs strongly sensitized exogenous soluble recombinant human TRAIL-induced apoptosis synergistically in Jurkat and HL-60 cells that were tolerant to TRAIL alone. The combined use of HDACIs and TRAIL in suboptimal concentrations induced Bid cleavage and activation of caspase-8, -10, -3, and -9. Human recombinant DR5/Fc chimera protein, zVAD-fmk pancaspase inhibitor, and caspase-8 and -10 inhibitors efficiently reduced apoptosis induced by cotreatment with HDACIs and TRAIL. Furthermore, TSA did not significantly induce DR5 protein and HDACIs did not enhance TRAIL-induced apoptosis in normal human peripheral blood mononuclear cells. These results suggest that this combined treatment with HDACIs and TRAIL is a promising strategy for new cancer therapeutics.  相似文献   

12.
13.
Receptor EphA2 over-expression is associated with the aggressive nature of growth in malignant mesothelioma (MM) and silencing EphA2 with interference RNA suppressed MM proliferation. The mechanisms associated with targeting the EphA2 gene in MM were not clear. We sought to determine whether silencing EphA2 induces apoptosis in MM cells by either extrinsic or intrinsic pathways. The receptor EphA2 signaling pathway may provide attractive therapeutic strategy for MM. Apoptosis was determined by Cell Death ELISA in MM Cells transfected with siRNA-EphA2 and control siRNA. The gene expression profile of apoptosis pathways were analyzed by GEArray. Selected genes were further studied by quantitative PCR, Western analysis, and immunofluorescence. Caspases activities were measured by fluorescence spectrometer. Silencing EphA2 expression induced apoptosis in MMC. Apoptosis was characterized by FADD expression, activated caspase-8, caspase-3 and induction of Bax, Bak, and Bid as revealed by GEArray and protein fractionation assays. The expression of FADD, Bid, caspase-8, cytochrome-c and apaf-1 were significantly higher in the cytosolic fractions of EphA2-siRNA transfected cells. Furthermore, blocking the expression of caspase-8 by an inhibitor blunted FADD expression, indicating that caspase-8 is implicated in EphA2-siRNA induced apoptosis in MMC. Our data indicates that targeting the EphA2 gene by siRNA induced both extrinsic and intrinsic apoptotic pathways in MM Cells. Receptor EphA2 inhibition may be an effective approach for inhibiting MM growth and a promising direction for MM therapy.  相似文献   

14.
Kanzawa T  Zhang L  Xiao L  Germano IM  Kondo Y  Kondo S 《Oncogene》2005,24(6):980-991
Arsenic trioxide (As(2)O(3)) has shown considerable efficacy in treating hematological malignancies with induction of programmed cell death (PCD) type I, apoptosis. However, the mechanisms underlying the antitumor effect of As(2)O(3) on solid tumors are poorly defined. Previously, we reported that As(2)O(3) induced autophagic cell death (PCD type II) but not apoptosis in human malignant glioma cell lines. The purpose of this study was to elucidate the molecular pathway leading to autophagic cell death. In this study, we demonstrated that the cell death was accompanied by involvement of autophagy-specific marker, microtubule-associated protein light chain 3 (LC3), and damage of mitochondrial membrane integrity, but not by caspase activation. Analysis by cDNA microarray, RT-PCR, and Western blot showed that cell death members of Bcl-2 family, Bcl-2/adenovirus E1B 19-kDa-interacting protein 3 (BNIP3) and its homologue BNIP3-like (BNIP3L), were upregulated in As(2)O(3)-induced autophagic cell death. Exogenous expression of BNIP3, but not BNIP3L, induced autophagic cell death in malignant glioma cells without As(2)O(3) treatment. When upregulation of BNIP3 induced by As(2)O(3) was suppressed by a dominant-negative effect of the transmembrane-deleted BNIP3 (BNIP3 Delta TM), autophagic cell death was inhibited. In contrast, BNIP3 transfection augmented As(2)O(3)-induced autophagic cell death. These results suggest that BNIP3 plays a central role in As(2)O(3)-induced autophagic cell death in malignant glioma cells. This study adds a new concept to characterize the pathways by which As(2)O(3) acts to induce autophagic cell death in malignant glioma cells.  相似文献   

15.
It has been reported that cimetidine, a histamine type-2 receptor (H2R) antagonist, inhibits the growth of glandular tumors such as colorectal cancer. However, its effects against salivary gland tumors are still unknown. We demonstrated previously that human salivary gland tumor (HSG) cells spontaneously express the neural cell adhesion molecule (NCAM) and also that HSG cell proliferation could be controlled via a homophilic (NCAM-NCAM) binding mechanism and that NCAM may be associated with perineural invasion by malignant salivary gland tumors. In the present study, we investigated the effects of cimetidine via the expression of NCAM on tumor growth and perineural/neural invasion in salivary gland tumor cells. Expression of both NCAM mRNA and protein was found to decrease in a dose-dependent manner upon treatment with cimetidine for 24 h. The MTT assay and confocal laser microscopy clearly showed that HSG cells underwent apoptosis after treatment with cimetidine. Activation of caspases 3, 7, 8 and 9 was observed in HSG cells after cimetidine treatment, thus confirming that the apoptosis was induced by the activated caspases. Apaf-1 activity was also detected in HSG cells in a dose-dependent manner after treatment with cimetidine. We also found that the cimetidine-mediated down-regulation of NCAM expression in HSG cells did not occur via blocking of the histamine receptor, even though H2R expression was observed on HSG cells, as two other H2R antagonists, famotidine and ranitidine, did not show similar effects. We demonstrated for the first time that cimetidine can induce significant apoptosis of salivary gland tumor cells, which express NCAM, at least in part by down-regulation of NCAM expression on the cells. These findings suggest that the growth, development and perineural/neural invasion of salivary gland tumor cells can be blocked by cimetidine administration through down-regulation of NCAM expression, as well as induction of apoptosis.  相似文献   

16.
Diallyl disulfide induces apoptosis of human colon tumor cells   总被引:21,自引:4,他引:17  
The present studies compared the effects of various oil-solublecompounds containing allyl and disulfide groups on the proliferationof cultured human colon tumor cells (HCT-15). Diallyl disulfide(DADS) was more effective in inhibiting the growth of HCT-15cells than isomolar concentrations of S-allyl cysteine, dipropyldisulfide (DPDS), allyl chloride, allyl glycidyl ether and allylalcohol. These studies clearly demonstrate the importance ofboth the diallyl and the disulfide groups in DADS. Treatmentof HCT-15 cells with 100 µM DADS increased the intracellularcalcium levels by 40%,while DPDS caused only a 12% increasein intracellular calcium. Exposure to 100 µM DADS or more,but not DPDS, caused the cells to undergo apoptosis as determinedby morphological changes and DNA fragmentation. A positive correlation(r = 0.944) was found between DADS-induced DNA fragmentationand its ability to increase intracellular free calcium levels.The widespread effectiveness of DADS was evident by its abilityto inhibit the growth of human colon (HCT-15), skin (SKMEL-2)and lung (A549) tumor cell lines.  相似文献   

17.
凋亡素是一种来源于鸡贫血病毒的小分子蛋白,能够选择性地诱导肿瘤细胞和转化细胞的凋亡,而对正常细胞无作用.凋亡素的肿瘤细胞特异性与其在细胞中的核定位密切相关.它诱导的细胞凋亡既不依赖于p53,也不会被Bcl-2的过表达所抑制,但涉及Caspase-3的激活.因此,凋亡素可作为一种新型的肿瘤诊断工具和候选抗肿瘤治疗制剂.  相似文献   

18.
Chitosan induces apoptosis via caspase-3 activation in bladder tumor cells.   总被引:11,自引:0,他引:11  
Recently, because of its low toxicity and biological effects, chitosan has been widely used in the medical and pharmaceutical fields, e.g., for nasal or oral delivery of peptide or polar drug delivery. Here, we report a growth-inhibitory effect of chitosan on tumor cells. The growth inhibition was examined by WST-1 colorimetric assay and cell counting. We also observed DNA fragmentation, which is characteristic of apoptosis, and elevated caspase-3-like activity in chitosan-treated cancer cells. The findings suggest that chitosan may have potential value in cancer therapy.  相似文献   

19.
An agonistic antibody against TNF-related apoptosis-inducing ligand death receptor 5 (DR5) is a practicable candidate drug for antitumor therapy. In this study, a novel murine anti-human DR5 monoclonal antibody, mDRA-6(IgG1-κ), has been generated. This study aimed to explore the caspase-dependent and mitochondrial mechanisms of mDRA-6 in inducing apoptosis in human leukemia Jurkat cells. The apoptotic effects of mDRA-6 on Jurkat cells, which express DR5 on the cell surface, were detected by flow cytometry and western blot after exposure to different doses of mDRA-6 and at fixed doses of mDRA-6 at different times. It was demonstrated that mDRA-6 can induce Jurkat cell apoptosis via caspase- and mitochondrial-dependent pathways. These results indicate that the novel antibody mDRA-6 against DR5 has an antitumor function and may provide a new reagent for tumor therapy.  相似文献   

20.
Recent studies have identified molecular events characteristic of immunogenic cell death (ICD), including surface exposure of calreticulin (CRT), the heat shock proteins HSP70 and HSP90, the release of high‐mobility group box protein 1 (HMGB1) and the release of ATP from dying cells. We investigated the potential of high hydrostatic pressure (HHP) to induce ICD in human tumor cells. HHP induced the rapid expression of HSP70, HSP90 and CRT on the cell surface. HHP also induced the release of HMGB1 and ATP. The interaction of dendritic cells (DCs) with HHP‐treated tumor cells led to a more rapid rate of DC phagocytosis, upregulation of CD83, CD86 and HLA‐DR and the release of interleukin IL‐6, IL‐12p70 and TNF‐α. DCs pulsed with tumor cells killed by HHP induced high numbers of tumor‐specific T cells. DCs pulsed with HHP‐treated tumor cells also induced the lowest number of regulatory T cells. In addition, we found that the key features of the endoplasmic reticulum stress‐mediated apoptotic pathway, such as reactive oxygen species production, phosphorylation of the translation initiation factor eIF2α and activation of caspase‐8, were activated by HHP treatment. Therefore, HHP acts as a reliable and potent inducer of ICD in human tumor cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号