首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The fungus Amanita phalloides is known to contain two main groups of toxins: amanitins and phallotoxins. The amanitins group effectively blocks the RNA polymerase II enzyme found in eukaryotic cells. As alpha amanitin has a lethal effect on the majority of eukaryotic cells, it can be valuable as an antiparasitic or antifungal drug. It can be used externally against ectoparasites. It is critical that percutaneous applications of the alpha amanitin toxin are not harmful to the recipient. In this study, the absorption and the toxicity of percutaneous and intraperitoneal (ip) applications of 1?mg/kg alpha amanitin to mice were compared. Potential skin, liver and kidney toxicities were investigated through pathological examination. HPLC analysis was used to determine the amount of the toxin. No toxicity or toxin were found in the skin, liver, or kidneys of the mice in the control group. Interestingly, the percutaneous application group also showed no toxicity, and the toxin was not present in this group. After 24?h, Councilman-like bodies and pyknotic cells were observed in the mice in which alpha amanitin was applied intraperitoneally, demonstrating the presence of toxicity. Peak levels of alpha amanitin (µg/mL) in the liver, kidney, and blood in the ip application group were measured at 3.3 (6?h), 0.2 (6?h) and 1.2 (1?h), respectively. The results demonstrated that the toxin was not absorbed through the skin of the mice and that the percutaneous application of alpha amanitin did not have any toxic effects. Thus, alpha amanitin may be administered percutaneously for therapeutic purposes.  相似文献   

2.
The aim of this study was to investigate beneficial effects of erdosteine in the alpha amanitine-induced hepatotoxicity in mice. Three hours after giving alpha amanitin (0.5?mg/kg, i.p.) to the mice, they were administered silibinin (50?mg/kg/d, i.p.) or erdosteine (100?mg/kg/d, oral) therapies once a day for 3 d. A histopathological examination of their liver tissues was carried out 24?h after the last treatment; transaminase levels, blood urea nitrogen, urea, and creatinine were analyzed in serum. Erdosteine showed a beneficial effect by significantly improving the functional parameters particularly in alpha amanitin-induced hepatotoxicity and partially in renal toxicity. In the histopathological evaluation, the toxicity that was generated with alpha amanitin was significantly reduced by erdosteine, showing a possible hepatoprotective effect.  相似文献   

3.
We investigated the quantity and concentration of toxins in different parts and in different growth phases of Lepiota brunneoincarnata mushroom. The amatoxins and phallotoxin levels were measured using the reversed phase high-performance liquid chromatography (RP-HPLC) method. Alpha amanitin (2.38?±?0.70?mg/g) was followed by beta amanitin (1.97?±?0.52?mg/g) and gamma amanitin (0.04?±?0.01?mg/g) in trace amounts; it did not contain any phallotoxin. The cap part is richer in amatoxins than the stipe part. While medium mushrooms were quite rich in amatoxins, less levels of toxin were measured in fully developed mushrooms. The study showed in detail the toxin concentrations of L. brunneoincarnata with regard to different developmental stages and different segments.  相似文献   

4.
Amatoxins are the main poison of the green death cap (Amanita phalloides) and among the most dangerous natural toxins causing hepatic failure. A possible therapeutic approach is the inhibition of the transporting systems mediating the uptake of amatoxins into human hepatocytes, which, however, have yet to be identified. In the current study we tested whether members of the organic anion-transporting polypeptide (OATP) family, localized in the sinusoidal membranes of human hepatocytes, are involved in amatoxin uptake. For this, Madin Darby canine kidney strain II (MDCKII) cells stably expressing human OATP1B3, OATP2B1, or OATP1B1, were assayed for the uptake of 3H-labeled O-methyl-dehydroxymethyl-alpha-amanitin. Under our conditions, only OATP1B3 was able to transport amanitin with a K(m) value of 3.7 microM +/- 0.6 microM. Accordingly, toxin uptake was inhibited by OATP1B3 substrates and inhibitors (cyclosporin A, rifampicin, the quinoline derivatives MK571 ([(3-(3-(2-(7-chloro-2-quinolinyl)ethenyl)phenyl)((3-dimethylamino-3-oxopropyl)thio)methyl)thiopropanoic acid]) and montelukast, the cholecystokinin octapeptide (CCK-8), paclitaxel, and bromosulfophthalein), as well as by some antidotes used in the past for the treatment of human amatoxin poisoning (silibinin dihemisuccinate, penicillin G, prednisolone phosphate, and antamanide). These transport studies are in line with viability assays monitoring the toxic effect of amanitin on the transfected MDCKII cells. Further support for amatoxin transport was found in primary human hepatocytes, expressing OATP1B3, OATP2B1, and OATP1B1, where CCK-8, a substrate specific for OATP1B3, prevented the fragmentation of nucleoli, a lesion typical for amanitin action. In conclusion, we have identified OATP1B3 as the human hepatic uptake transporter for amatoxins; moreover, substrates and inhibitors of OATP1B3, among others rifampicin, may be useful for the treatment of human amatoxin poisoning.  相似文献   

5.
Role of human GABA(A) receptor beta3 subunit in insecticide toxicity   总被引:2,自引:0,他引:2  
The gamma-aminobutyric acid type A (GABA(A)) receptor is the target for the major insecticides alpha-endosulfan, lindane, and fipronil and for many analogs. Their action as chloride channel blockers is directly measured by binding studies with [(3)H]ethynylbicycloorthobenzoate ([(3)H]EBOB). This study tests the hypothesis that GABA(A) receptor subunit composition determines the sensitivity and selectivity of insecticide toxicity. Human receptor subtypes were expressed individually (alpha1, alpha6, beta1, beta3, and gamma2) and in combination in insect Sf9 cells. Binding parameters were similar for [(3)H]EBOB in the beta3 homooligomer, alpha1beta3gamma2 heterooligomer, and native brain membranes, but toxicological profiles were very different. Surprisingly, alpha-endosulfan, lindane, and fipronil were all remarkably potent on the recombinant beta3 homooligomeric receptor (IC50 values of 0.5-2.4 nM), whereas they were similar in potency on the alpha1beta3gamma2 subtype (IC50 values of 16-33 nM) and highly selective on the native receptor (IC50 values of 7.3, 306, and 2470 nM, respectively). The selectivity order for 29 insecticides and convulsants as IC50 ratios for native/beta3 or alpha1beta3gamma2/beta3 was as follows: fipronil > lindane > 19 other insecticides including alpha-endosulfan and picrotoxinin > 4 trioxabicyclooctanes and dithianes (almost nonselective) > tetramethylenedisulfotetramine, 4-chlorophenylsilatrane, or alpha-thujone. Specificity between mammals and insects at the target site (fipronil > lindane > alpha-endosulfan) paralleled that for toxicity. Potency at the native receptor is more predictive for inhibition of GABA-stimulated chloride uptake than that at the beta3 or alpha1beta3gamma2 receptors. Therefore, the beta3 subunit contains the insecticide target and other subunits differentially modulate the binding to confer compound-dependent specificity and selective toxicity.  相似文献   

6.
It is believed that Lepiota cristata is inedible and slightly poisonous, so it should always be avoided. This study analyzed the alpha, beta and gamma amanitin, phalloidin (PHN) and phallacidin (PCN) content of L. cristata collected from different regions of Turkey. Toxin levels have been assessed using a reversed-phase high-performance liquid chromatography (RP-HPLC) system with ultraviolet detectors. In this study, the L. cristata mushroom was not found to contain any amatoxins or phallotoxins. However, this finding does not mean that this mushroom is edible. New studies regarding the toxin content of L. cristata may be useful to understand the toxicity of this species.  相似文献   

7.
1. [35S]t-butylbicyclophosphorothionate (TBPS) is a high affinity ligand for the picrotoxin site of GABA(A) receptors. Here we examined TBPS binding to the cloned receptors made of alpha 1, alpha 3 or alpha 6 in combination with beta 2 or beta 2 and gamma 2 subunits, in the presence of GABA and several allosteric ligands (diazepam, methyl 6,7-dimethoxy-4-methyl-beta-carboline-3-carboxylate (DMCM), 3 alpha,21-dihydroxy-5 alpha-pregnan-20-one (5 alpha-THDOC), pentobarbitone and Zn). The cloned receptors were transiently expressed in SF-9 insect cells by infecting with recombinant baculoviruses. 2. In alpha beta subtypes, GABA at nanomolar concentrations enhanced TBPS binding but inhibited binding at micromolar concentrations. Half maximal GABA concentrations for enhancement or inhibition of TBPS binding were correlated with high and low affinity GABA binding sites, respectively, in individual subtypes. The maximal enhancement of binding also varied according to the alpha isoform (alpha 3 beta 2 >> alpha 1 beta 2). In alpha beta gamma subtypes, TBPS binding was unaffected by GABA at nanomolar concentrations, but was inhibited by GABA at micromolar concentrations. Addition of gamma 2 thus appeared to abolish conformational coupling between high affinity GABA sites and TBPS sites, and also altered low affinity GABA sites; in particular, the half maximal GABA concentration for inhibition of TBPS binding changed from > 100 (alpha 6 beta 2) to 1 microM (alpha 6 beta 2 gamma 2). 3. Allosteric ligands also altered TBPS binding to sensitive GABA(A) receptor subtypes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
6-Methylflavanone acted as a positive allosteric modulator of gamma-aminobutyric acid (GABA) responses at human recombinant alpha1beta2gamma2L, alpha2beta2gamma2L and alpha1beta2 GABA(A) receptors expressed in Xenopus laevis oocytes. It was essentially inactive at rho1 GABA(C) receptors. The EC50 values for 6-methylflavanone for the positive modulation of the EC(10-20) GABA responses were 22 microM, 10 microM and 6 microM and the maximum potentiations were 120%, 417% and 130% at alpha1beta2gamma2L, alpha2beta2gamma2L and alpha1beta2 GABA(A) receptors respectively. Thus 6-methylflavanone was much more efficacious as a positive modulator at alpha2beta2gamma2L than at alpha1beta2gamma2L and alpha1beta2 GABA(A) receptors. This may be significant since diazepam-induced anxiolysis is considered to be mediated via alpha2-containing GABA(A) receptors, while sedation is thought to be mediated via alpha1-containing GABA(A) receptors. We have previously reported that 6-methylflavone (1-100 microM) produced positive allosteric modulation at alpha1beta2gamma2L and alpha1beta2 GABA(A) receptors with no significant difference between the enhancement seen at either receptor subtype. In the present study, 6-methylflavone was tested at alpha2beta2gamma2L GABA(A) receptors and found to maximally potentiate the EC(10-20) GABA response by 183+/-39% which is similar to that previously observed for 6-methylflavone at alpha1beta2gamma2L GABA(A) receptors. Thus, 6-methylflavone did not show a preference for alpha2beta2gamma2L over alpha1beta2gamma2L GABA(A) receptors in terms of efficacy. Compared to 6-methylflavone, 6-methylflavanone is more efficacious as a positive allosteric modulator at alpha2beta2gamma2L GABA(A) receptors, and less efficacious at alpha1beta2gamma2L GABA(A) receptors. This may represent a relatively unique type of selectivity for positive modulators of GABA-A receptor subtypes based on efficacy as distinct from potency. As was previously shown for 6-methylflavone at alpha1beta2gamma2L GABA(A) receptors, the positive modulation of GABA responses at alpha1beta2gamma2L and alpha2beta2gamma2L GABA(A) receptors by 6-methylflavanone was insensitive to antagonism by flumazenil, indicating that this action is not mediated via "high-affinity" benzodiazepine sites.  相似文献   

9.
mRNA encoding the recently cloned gamma-aminobuytyric acid(A) receptor (GABAR) pi subunit is expressed in the hippocampus and in several non-neuronal tissues including the uterus and ovaries. Whereas native GABARs are pentamers composed primarily of alphabetagamma, alphabetadelta, or alphabetaepsilon subunits, it has not been demonstrated clearly that the pi subunit incorporates into functional GABARs to form alphabetapi receptors and, if so, with what properties. We provide electrophysiological evidence that the pi subunit can coassemble with either alpha5beta3 or alpha5beta3gamma3 subunits to produce recombinant GABARs with distinct pharmacological and biophysical properties. Compared with alpha5beta3 receptors, GABARs produced by coexpression of alpha5beta3pi subunits had a lower GABA EC(50) value, were enhanced to a lesser extent by loreclezole, had different IC(50) values for pregnenolone sulfate and lanthanum, and were insensitive to benzodiazepines. Incorporation of both pi and gamma3 subunits into an alpha5beta3gamma3pi isoform was suggested by reduced enhancement by diazepam and a high zinc IC(50) value. Current-voltage relations for the alpha5beta3pi subunit combination outwardly rectified more than currents from alpha5beta3gamma3 but less than alpha5beta3 combination GABARs. Single-channel alpha5beta3 GABAR currents had a main conductance state of 15.2 picoSeimens (pS). Coexpression of the pi subunit with alpha5beta3 subtypes increased the conductance level to 23.8 pS, similar to the conductance level of alpha5beta3gamma3 GABARs (26.9 pS). We conclude that the pi subunit coassembles with alpha, beta, and gamma subunits to form functional alphabetapi or alphabetagammapi GABARs and, thus, could have a significant impact on the function of native GABARs expressed in the brain or non-neuronal tissue.  相似文献   

10.
Although convulsions due to local anesthetic systemic toxicity are thought to be due to inhibition of GABA(A) receptor-linked currents in the central nervous system, the mechanism of action remains unclear. We therefore examined the effects of local anesthetics on gamma-aminobutyric acid (GABA)-induced currents using recombinant GABA(A) receptors with specific combinations of subunits. Murine GABA(A) receptors were expressed by injection of cRNAs encoding each subunit into Xenopus oocytes. The effects of local anesthetics (lidocaine, bupivacaine, procaine and tetracaine) on GABA-induced currents of receptors expressing different subunit combinations (alpha1beta2, alpha1beta2gamma2s, alpha4beta2gamma2s and beta2) were examined via the two electrode voltage clamp method. At alpha1beta2, alpha1beta2gamma2s and alpha4beta2gamma2s GABA(A) receptors, all local anesthetics inhibited GABA-induced currents in a dose-dependent manner. The presence of the gamma2s subunit resulted in a greater inhibition by all local anesthetics, but the presence of the alpha4 subunit resulted in less inhibition. At beta2 homomeric receptors, local anesthetics directly induced an outward current similar to that of picrotoxin. These data indicated that (1) the alpha and gamma subunits of GABA(A) receptors modulated the inhibitory effects of local anesthetics on GABA(A) function, and (2) local anesthetics can activate the beta2 subunit and may block the GABA(A) receptor channel pore.  相似文献   

11.
A series of thiazepines has been studied as new ligands for the benzodiazepine binding site of the GABAA receptor. Compounds with high affinity and weak selectivity regarding alpha beta3gamma2, alpha2beta3gamma2, alpha3beta3gamma2, and alpha5beta3gamma2 subtypes were found. The pharmacophore is discussed based on experimental and theoretical results. The thiazepine sulfur atom was found to be able to act as hydrogen bond acceptor.  相似文献   

12.
Tracazolate, a pyrazolopyridine, is an anxiolytic known to interact with gamma-aminobutyric acid (GABA)(A) receptors, adenosine receptors, and phosphodiesterases. Its anxiolytic effect is thought to be via its interaction with GABA(A) receptors. We now report the first detailed pharmacological study examining the effects of tracazolate on a range of recombinant GABA(A) receptors expressed in Xenopus laevis oocytes. Replacement of the gamma2s subunit within the alpha1beta3gamma2s receptor with the epsilon subunit caused a dramatic change in the functional response to tracazolate from potentiation to inhibition. The gamma2s subunit was not critical for potentiation because alpha1beta3 receptors were also potentiated by tracazolate. gamma2/epsilon chimeras revealed a critical N-terminal domain between amino acids 206 and 230 of gamma2, governing the nature of this response. Replacement of the beta3 subunit with the beta1 subunit within alpha1beta3gamma2s and alpha1beta3epsilon receptors also revealed selectivity of tracazolate for beta3-containing receptors, determined by asparagine at position 265 within transmembrane 2. Replacement of gamma2s with gamma1 or gamma3 revealed a profile intermediate to that of alpha1beta1epsilon and alpha1beta1gamma2s. alpha1beta1delta receptors were also potentiated by tracazolate; however, the maximum potentiation of the EC(20) was much greater than on alpha1beta1gamma2. Concentration-response curves to GABA in the presence of tracazolate for alpha1beta1epsilon and alpha1beta1gamma2s revealed a concentration-related decrease in maximum current amplitude, but a leftward shift in the EC(50) only on alpha1beta1gamma2. Like alpha1beta1gamma2s, GABA concentration-response curves on alpha1beta1delta receptors were shifted to the left with increased maximum responses. Tracazolate has a unique pharmacological profile on recombinant GABA(A) receptors: its potency (EC(50)) is influenced by the nature of the beta subunit; but more importantly, its intrinsic efficacy, potentiation, or inhibition is determined by the nature of the third subunit (gamma1-3, delta, or epsilon) within the receptor complex.  相似文献   

13.
B V Lipps 《Toxicon》2000,38(12):1845-1854
The venom of Australian taipan snake (Oxyuranus s. scutellatus) is extremely potent due to the presence of taipoxin. The intact complex molecule of taipoxin having molecular weight 45.6 kDa is composed of alpha, beta and gamma subunits. This report describes the high pressure liquid chromatography (HPLC) separation of alpha, beta (beta-1 and beta-2) and gamma subunits from taipan crude venom. The fractions containing the taipoxin subunits were further purified to obtain homogeneous proteins. The toxicity in mice showed the alpha subunit as most toxic, the gamma subunit as moderately toxic and the beta-1 and beta-2 subunits were nontoxic. The proteins beta-1 and beta-2 were found to be mitogenic having neurotrophic activity on PC12 cells in culture similar to nerve growth factor. Immunologically, alpha, beta-1, beta-2 and gamma subunits were found to be different, showing cross reactivity, and beta-1 and beta-2 were found to be identical for biological properties and molecular weight. Further characterization of unexpected mitogenic activity of beta subunits is underway.  相似文献   

14.
GABA(A) receptor function is modulated by various important drugs including neuroactive steroids that act on allosteric modulatory sites and can directly activate GABA(A) receptor channels at high concentrations. We used whole cell patch-clamp recordings and rapid applications of the neuroactive steroid alphaxalone to investigate repetitive steroid effects. Alphaxalone potentiation of submaximal GABA-evoked currents was enhanced significantly by repetitive coapplications at all investigated recombinant isoforms (alpha1beta3delta, alpha1beta3gamma2L, alpha6beta3delta, alpha6beta3gamma2L) and at GABA(A) receptors of differentiated human NT2 neurons. A similar increase of current amplitudes was induced by repetitive applications of a high steroid concentration without GABA. We refer to these reversible effects as auto-modulation because repeated interactions of steroids enhanced their own pharmacological impact at the receptor sites in a time and concentration dependent manner without affecting GABA controls. Pronounced auto-modulatory actions were also measured using the neurosteroid 5alpha-THDOC in contrast to indiplon, THIP, and pentobarbital indicating a steroid specificity. Protein kinase A inhibition significantly reduced alphaxalone auto-modulation at alpha1beta3gamma2L, alpha6beta3gamma2L, and alpha6beta3delta subtypes while it enhanced potentiation at alpha1beta3delta isoforms suggesting a crucial influence of receptor subunit composition and phosphorylation for steroid actions. Especially at extrasynaptic GABA(A) receptor sites containing the delta subunit steroid auto-modulation may have a critical role in enhancing potentiation of GABA-induced currents.  相似文献   

15.
Effects of volatile anesthetics and a volatile convulsant on human recombinant gamma-aminobutyric acid (GABA) type A receptor responses were studied using the whole cell configuration of the patch clamp technique. Sf9 cells were transfected with bacuroviruses carrying cDNAs of alpha1beta2, alpha1beta2gamma2s, alpha3beta2 and alpha3beta2gamma2s subunit combinations of the human GABA(A) receptor. Clinical concentrations of isoflurane (a volatile anesthetic) enhanced the GABA-induced current of the alpha1beta2gamma2s and alpha3beta2gamma2s GABA(A) subunit combinations. On the other hand, isoflurane suppressed the current of the alpha1beta2 and alpha3beta2 subunit combinations, indicating that the anesthetic effects depended upon the presence of gamma2s subunit. A high concentration (2 mM) of isoflurane generated a surge current following the washout of GABA and the anesthetic. Hexafluorodiethyl ether (a volatile convulsant) decreased the GABA-response of the both alpha3beta2gamma2s and alpha3beta2 constructs without generating a surge current. The results suggest that volatile agents affect the receptor-ionophore complex via direct interaction with proteins but not through a perturbation of the membrane lipid environment. A hypothetical sequential model for the anesthetic action is presented.  相似文献   

16.
gamma-Aminobutyric acid (GABA)-activated Cl- currents in neonatal rat cortical neurons and in cultured cells engineered for the expression of specific molecular forms of the GABAA receptor alpha, beta, and gamma subunits, were recorded with the patch-clamp technique in the whole-cell configuration. The effects of various allosteric modulators of GABAA receptors were determined. Diazepam and clonazepam showed greater efficacy as positive modulators of GABA-elicited currents in alpha 2 beta 1 gamma 2 or alpha 3 beta 1 gamma 2 receptors than in alpha 1 beta 1 gamma 2 or alpha 5 beta 1 gamma 2 receptors or in cortical neurons. Alpidem was more efficacious at alpha 1 beta 1 gamma 2 or alpha 2 beta 1 gamma 2 receptors than at alpha 1 beta 1 gamma 2 or alpha 5 beta 1 gamma 2 receptors or in cortical neurons. Conversely, zolpidem was equally efficacious for all these receptors except for alpha 5 beta 1 gamma 2. Both imidazopyridines (alpidem and zolpidem) were virtually ineffective at modulating the GABA response of alpha 5 beta 1 gamma 2 receptors and in almost all the receptors assembled from alpha 1, alpha 2, alpha 3 or alpha 5 subunits together with beta 1 and gamma 1 subunits. The beta-carboline derivatives methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM) and methyl-beta-carboline-3-carboxylate (beta-CCM) elicited a positive allosteric modulation of alpha 1 beta 1 gamma 1 or alpha 2 beta 1 gamma 1 receptors, whereas they acted as negative allosteric modulators at nearly all other receptors tested, as they do in cortical neurons. Although the positive allosteric modulation by beta-carbolines never exceeded a doubling of the GABA response, DMCM was more efficacious at alpha 1 beta 1 gamma 1 receptors and beta-CCM was more efficacious at alpha 2 beta 1 gamma 1 receptors. DMCM was inactive at alpha 3 beta 1 gamma 1 receptors, whereas beta-CCM was virtually inactive at alpha 5 beta 1 gamma 1 receptors. The benzodiazepine 4'-chlorodiazepam, which is a negative modulator resistent to flumazenil inhibition, acted at all the various GABAA receptors that contained a gamma subunit.  相似文献   

17.
Thiocolchicoside is a myorelaxant drug with anti-inflammatory and analgesic properties as well as pronounced convulsant activity. To characterize the mechanisms of action of this drug at the molecular level, we examined its effects on the function of various recombinant neurotransmitter receptors expressed in Xenopus oocytes. Electrophysiological recordings from recombinant human gamma-aminobutyric acid type A (GABA(A)) receptors consisting of alpha1beta1gamma2L, alpha1beta2gamma2L, or alpha2beta2gamma2L subunit combinations revealed that thiocolchicoside inhibited GABA-evoked Cl(-) currents with similar potencies (median inhibitory concentrations of 0.13 to 0.2 microM) and in a competitive manner. Consistent with previous observations, thiocolchicoside also inhibited the binding of GABA to rat cerebral cortical membranes. Thiocolchicoside inhibited the function of recombinant human strychnine-sensitive glycine receptors composed of the alpha1 subunit with a potency (median inhibitory concentration of 47 microM) lower than that apparent with recombinant GABA(A) receptors. It also inhibited the function of human nicotinic acetylcholine receptors composed of the alpha4 and beta2 subunits, but this effect was only partial and apparent at high concentrations. In contrast, thiocolchicoside had no effect on the function of 5-HT(3A) serotonin receptors. Our results thus provide molecular evidence that the epileptogenic activity of thiocolchicoside might be due to inhibition of the function of inhibitory receptors in the central nervous system, especially that of GABA(A) receptors.  相似文献   

18.
Rhodopsin kinase was purified from bovine retina rod outer segments as a 62-64-kDa protein that phosphorylated purified rhodopsin reconstituted into egg phosphatidylcholine/phosphatidylethanolamine liposomes. A competition binding assay in which transducin competes with rhodopsin kinase for binding sites on rhodopsin was used to assess the interaction of purified transducin subunits with rhodopsin. Preincubation of purified holotransducin with rhodopsin, in the absence of guanosine triphosphate, blocked the ability of the kinase to phosphorylate rhodopsin. Transducin-dependent inhibition of phosphorylation was relieved when guanosine 5'-(3-O-thio)triphosphate was present during the preincubation. Resolved alpha and beta gamma transducin subunits, in the absence of guanosine triphosphate, were each capable of specifically blocking phosphorylation of rhodopsin. A maximally effective concentration of T alpha or T beta gamma (1 microM) subunits inhibited phosphorylation of rhodopsin (0.23 microM) 45-65%. A similar concentration of reconstituted transductin (T alpha and T beta gamma) or native holotransducin (T alpha beta gamma) inhibited phosphorylation greater than 98%. The results indicate that rhodopsin must have a binding site for T beta gamma as well as a binding site for T alpha, and each subunit influences the recognition of bleached rhodopsin by rhodopsin kinase.  相似文献   

19.
In a recent study we have provided evidence that inhibition of native GABA(A) receptors by zinc depends primarily on the allosteric modulation of receptor gating. Both the kinetics and the sensitivity of the GABA(A) receptor to zinc depend on subunit composition, especially on the presence of the gamma(2) subunit. To analyze the mechanism of action of zinc its effects have been tested on recombinant alpha(1)beta(2)gamma(2) and alpha(1)beta(2) receptors expressed in HEK 293 cells. The currents produced by ultrafast application of GABA have been measured to assess the impact of zinc ions on GABA(A) receptor gating with resolution corresponding to the time scale of synaptic currents. While, as expected, zinc markedly reduced the peak amplitude of alpha(1)beta(2)-mediated currents, its effect on kinetics was significantly different from that observed for alpha(1)beta(2)gamma(2). In particular, unlike alpha(1)beta(2)gamma(2), zinc did not affect the onset of alpha(1)beta(2)-mediated responses. Moreover, zinc increased the extent of desensitisation of alpha(1)beta(2)gamma(2) receptors and reduced desensitisation of alpha(1)beta(2) ones. Quantitative analysis suggests that zinc exerts an allosteric modulation on both alpha(1)beta(2)gamma(2) and alpha(1)beta(2) receptors. Zinc effects on alpha(1)beta(2)gamma(2) were qualitatively similar to those reported for native receptors.  相似文献   

20.
GABAA receptors are modulated by a large variety of compounds. A common chemical characteristic of most of these modulators is that they contain a cyclic entity. Three linear molecules of a polyacetylene structure were isolated from the East African medicinal plant Cussonia zimmermannii Harms and shown to allosterically stimulate GABAA receptors. Stimulation was not abolished by the absence of the gamma2 subunit, the benzodiazepine antagonist Ro15-1788 (8-fluoro-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a][1,4]benzodiazepine-3-carboxylic acid ethyl ester), or the point mutation beta2N265S that abolishes effects by loreclezole. At a concentration of 30 microM, the substances by themselves elicited only tiny currents. Maximal stimulation at alpha1beta2gamma2 amounted to 110 to 450% for the three substances, and half-maximal stimulation was observed at concentrations of 1 to 2 muM. Stimulation was subunit composition-dependent and was for the substance MS-1, alpha1beta2gamma2 approximately alpha1beta2 approximately alpha3beta2gamma2 > alpha2beta2gamma2 > alpha5beta2gamma2 approximately alpha1beta3gamma2 approximately alpha6beta2gamma2 > alpha1beta1gamma2, for MS-2 alpha1beta2gamma2 approximately alpha3beta2gamma2 approximately alpha1beta2 > alpha2beta2gamma2 approximately alpha6beta2gamma2 approximately alpha5beta2gamma2 > alpha1beta1gamma2, and for MS-4, alpha1beta2gamma2 approximately alpha1beta2 approximately alpha5beta2gamma2 approximately alpha3beta2gamma2 approximately alpha2beta2gamma2 > alpha6beta2gamma2 > alpha1beta1gamma2. Maximal stimulation by MS-1 was 450% at alpha1beta2gamma2, 80% at alpha1beta1gamma2, and 150% at alpha1beta3gamma2. MS-1 was thus specific for receptors containing the beta2 subunit. The reversal potential was unaffected by 10 microM MS-1, whereas apparent picrotoxin affinity for current inhibition was increased approximately 3-fold. In summary, these positive allosteric modulators of GABAA receptors of plant origin have a novel unusual chemical structure and act at a site independent of that of benzodiazepines and loreclezole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号