首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to develop and characterize a novel dithranol-containing phospholipid microemulsion systems for enhanced skin permeation and retention. Based on the solubility of dithranol, the selected oils were isopropyl myristate (IPM) and tocopherol acetate (TA), and the surfactants were Tween 80 (T80) and Tween 20 (T20). The ratios of cosurfactants comprising of phospholipids and ethanol (1?:?10) and surfactant to co-surfactant (1?:?1 and 2.75?:?1) were fixed for the phase diagram construction. Selected microemulsions were evaluated for globule size, zeta potential, viscosity, refractive index, per cent transmittance, stability (freeze thaw and centrifugation), ex vivo skin permeation and retention. The microemulsion systems composed of IPM and T80 with mean particle diameter of 72.8?nm showed maximum skin permeation (82.23%), skin permeation flux (0.281?mg/cm2/h) along with skin retention (8.31%) vis-à-vis systems containing TA and T20. The results suggest that the developed novel lecithinized microemulsion systems have a promising potential for the improved topical delivery of dithranol.  相似文献   

2.
Abstract

Context: Sesamol, a potential antioxidant with marked anticancer potential suffers from issues of extensive tissue distribution and local gastric irritation on oral administration. Objective: To develop multiunit gastro-retentive floating beads (S-FBs) for localised and prolonged release of sesamol to treat gastric cancers. Materials and methods: S-FBs prepared using calcium carbonate, sodium alginate and hydroxypropylmethyl cellulose (HPMC) in different proportions, were characterised and evaluated in vivo in N-methyl-N-nitro-N-nitroguanidine-induced gastric cancer in rats. Single oral dose plasma pharmacokinetic study was also performed for free sesamol and S-FBs. Results and discussion: Restraining sesamol in floating beads, significantly lowered the release (diffusion controlled) rate, increased t50% (31 times) and reduced its in vivo clearance (>1.5 times). Preclinical evaluation showed S-FBs (10?mg/kg) to be significantly better than free sesamol and better/equivalent to methotrexate (2?mg/kg). Conclusion: Most of the natural phytochemical or antioxidants show pretreatment effectiveness. We, however, developed and established S-FBs for sustained curative effect.  相似文献   

3.
《Drug delivery》2013,20(1):44-54
Abstract

Enhancing the deposition and permeation of 5-fluorouracil across human epidermis assisted by appropriately charged and well-defined peptide dendrimers was investigated. Peptide dendrimers with arginine as the terminal amino acid and having a range of terminal positive charges (4+, 8+ and 16+) were synthesized by solid phase peptide synthesis. Various parameters including effect of peptide dendrimers on the solubility and partition coefficient of 5-FU, degradation of drug in skin as well as deposition and permeation of 5-FU in/through skin were studied. All the tested dendrimers increased the aqueous solubility and partition coefficient of 5-FU with each also significantly (p?<?0.05) enhancing the deposition and permeation of 5-FU in/across human epidermis in a concentration-dependent manner. Of the three peptide dendrimers examined, R8 dendrimer (bearing 8+ charge derived from four terminal arginines and MW of ≈1000?Da) showed greatest values for flux, Q48 (cumulative amount of drug permeated at the end of 48?h) and amount of drug retained in human skin. Furthermore, this study also scrutinized and reports on the likely mechanisms by which peptide dendrimers act as transdermal permeation enhancers.  相似文献   

4.
Context: Solid lipid nanoparticles (SLN) are drug carriers possessing numerous features useful for topical application. A copious scientific literature outlined their ability as potential delivery systems for lipophilic drugs, while the entrapment of a hydrophilic drug inside the hydrophobic matrix of SLN is often difficult to obtain.

Objective: To develop SLN intended for loading caffeine (SLN-CAF) and to evaluate the permeation profile of this substance through the skin once released from the lipid nanocarriers. Caffeine is an interesting compound showing anticancer and protective effects upon topical administration, although its penetration through the skin is compromised by its hydrophilicity.

Materials and methods: SLN-CAF were formulated by using a modification of the quasi-emulsion solvent diffusion technique (QESD) and characterized by PCS and DSC analyses. In vitro percutaneous absorption studies were effected using excised human skin membranes (i.e. Stratum Corneum Epidermis or SCE).

Results: SLN-CAF were in a nanometric range (182.6?±?8.4?nm) and showed an interesting payload value (75%?±?1.1). DSC studies suggest the presence of a well-defined system and the successful drug incorporation. Furthermore, SLN-CAF generated a significantly faster permeation than a control formulation over 24?h of monitoring.

Discussion and conclusions: SLN-CAF were characterized by valid dimensions and a good encapsulation efficiency, although the active to incorporate showed a hydrophilic character. This result confirms the suitability of the formulation strategy employed in the present work. Furthermore, the in vitro evidence outline the key role of lipid nanoparticles in enhancing caffeine permeation through the skin.  相似文献   

5.
Dermal delivery of fluconazole (FLZ) is still a major limitation due to problems relating to control drug release and achieving therapeutic efficacy. Recently, solid lipid nanoparticles (SLNs) were explored for their potential of topical delivery, possible skin compartments targeting and controlled release in the skin strata. The retention and accumulation of drug in skin is affected by composition of SLNs. Hence, the aim of this study was to develop FLZ nanoparticles consisted of various lipid cores in order to optimize the drug retention in skin. SLNs were prepared by solvent diffusion method and characterized for various in vitro and in vivo parameters. The results indicate that the SLNs composed of compritol 888 ATO (CA) have highest drug encapsulation efficiency (75.7?±?4.94%) with lower particle size (178.9?±?3.8?nm). The in vitro release and skin permeation data suggest that drug release followed sustained fashion over 24?h. The antifungal activity shows that SLNs made up of CA lipid could noticeably improve the dermal localization. In conclusion, CA lipid based SLNs are represents a promising carrier means for the topical treatment of skin fungal infection as an alternative to the systemic delivery of FLZ.  相似文献   

6.
Purpose. To synthesize and evaluate various novel aminoacyloxyalkyl esters of naproxen (3a-i) and naproxenoxyalkyl diesters of glutamic and aspartic acids (3j-m) as potential dermal prodrugs of naproxen. Methods. The prodrugs 3a-m were synthesized, and their aqueous solubilities, lipophilicities and hydrolysis rates were determined in a buffered solution and in human serum. The permeation of selected prodrugs across excised postmortem human skin was studied in vitro. Results. The aminoacyloxyalkyl prodrugs showed higher aqueous solubilities and similar lipid solubilities, in terms of octanol-buffer partition coefficients (log Papp) at pH 5.0, when compared with naproxen. At pH 7.4 the prodrugs were significantly more lipophilic than naproxen. Prodrugs3a-i showed moderate chemical stability in aqueous solutions at pH 5.0 and were rapidly converted to naproxen in human serum (t1/2 = 4–19 min). The selected aminoacyloxyalkyl prodrugs possessed a higher flux across the skin than naproxen, with a maximum enhancement of 3-fold compared to naproxen. Prodrugs 3j-mshowed poor aqueous solubility and permeation across the skin. Conclusions. Combinations of adequate aqueous solubility and lipophilicity of naproxen aminoacyloxyalkyl prodrugs having fast rates of enzymatic hydrolysis resulted in improved dermal delivery of naproxen.  相似文献   

7.
The effect of ultrasound and chemical penetration enhancers on transcutaneous flux of penbutolol sulfate across split-thickness porcine skin was investigated. Penbutolol sulfate is a potent, noncardioselective beta-blocker, which is used for the management of hypertension. The drug is one of the most lipid soluble of the β-adrenoceptor antagonists used clinically. It has an n-octanol/pH 7.4 buffer partition coefficient of 179 compared to a value of 22 for propranolol. The amount of penbutolol sulfate transported across the skin is low. In this project, we studied the effect of sonophoresis and chemical penetration enhancers on transdermal delivery of penbutolol sulfate. Low-frequency sonophoresis at a frequency of 20?kHz increased transcutaneous flux of penbutolol sulfate by 3.5-fold (27.37?±?μg?cm?2?h?1) compared to passive delivery (7.82?±?1.72?μg?cm?2?h?1). We also investigated the effect of 50% ethanol, 1% limonene and 2% isopropyl myristate (IPM) on transcutaneous permeation of penbutolol sulfate. IPM, ethanol and limonene at the concentration of 1%, 50% and 2%, respectively, increased the steady-state flux values of penbutolol sulfate 2.2- (17.07?±?3.24?μg?cm?2?h?1), 2.6?- (19.40?±?6.40?μg?cm?2?h?1) and 3.4-times (26.38?±?5.01?μg?cm?2?h?1) compared to passive delivery (7.76?±?2.9?μg?cm?2?h?1). The results demonstrate that although there were slight increases in flux values, ultrasound, ethanol, limonene and IPM did not significantly enhance the transdermal delivery of penbutolol sulfate. Future studies will examine ways of optimizing sonophoretic and chemical enhancer parameters to achieve flux enhancement.  相似文献   

8.
The present work attempts to develop and statistically optimize transfersomes containing EGCG and hyaluronic acid to synergize the UV radiation-protective ability of both compounds, along with imparting antioxidant and anti-aging effects. Transfersomes were prepared by thin film hydration technique, using soy phosphatidylcholine and sodium cholate, combined with high-pressure homogenization. They were characterized with respect to size, polydispersity index, zeta potential, morphology, entrapment efficiency, Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD), in vitro antioxidant activity and ex vivo skin permeation studies. Cell viability, lipid peroxidation, intracellular ROS levels and expression of MMPs (2 and 9) were determined in human keratinocyte cell lines (HaCaT). The composition of the transfersomes was statistically optimized by Design of Experiments using Box–Behnken design with four factors at three levels. The optimized transfersome formulation showed vesicle size, polydispersity index and zeta potential of 101.2?±?6.0?nm, 0.245?±?0.069 and ?44.8?±?5.24?mV, respectively. FTIR and DSC showed no interaction between EGCG and the selected excipients. XRD results revealed no form conversion of EGCG in its transfersomal form. The optimized transfersomes were found to increase the cell viability and reduce the lipid peroxidation, intracellular ROS and expression of MMPs in HaCaT cells. The optimized transfersomal formulation of EGCG and HA exhibited considerably higher skin permeation and deposition of EGCG than that observed with plain EGCG. The results underline the potential application of the developed transfersomes in sunscreen cream/lotions for improvement of UV radiation-protection along with deriving antioxidant and anti-aging effects.  相似文献   

9.
Purpose. In the present study we examined the relationship between solvent uptake into a model membrane (silicone) with the physical properties of the solvents (e.g., solubility parameter, melting point, molecular weight) and its potential predictability. We then assessed the subsequent topical penetration and retention kinetics of hydrocortisone from various solvents to define whether modifications to either solute diffusivity or partitioning were dominant in increasing permeability through solvent-modified membranes. Methods. Membrane sorption of solvents was determined from weight differences following immersion in individual solvents, corrected for differences in density. Permeability and retention kinetics of 3H-hydrocortisone, applied as saturated solutions in the various solvents, were determined over 48 h in horizontal Franz-type glass diffusion cells. Results. Solvent sorption into the membrane could be related to differences in solubility parameters, MW and hydrogen bonding (r2=0.76). The actual and predicted volume of solvent sorbed into the membrane was also found to be linearly related to Log hydrocortisone flux, with changes in both diffusivity and partitioning of hydrocortisone observed for the different solvent vehicles. Conclusions. A simple structure-based predictive model can be applied to the sorption of solvents into silicone membranes. Changes in solute diffusivity and partitioning appeared to contribute to the increased hydrocortisone flux observed with the various solvent vehicles. The application of this predictive model to the more complex skin membrane remains to be determined.  相似文献   

10.
In this study, the potential of lecithin/chitosan nanoparticles (NPs) as colloidal nanosystem for transdermal melatonin delivery was investigated. Mean diameter and zeta-potential of NPs differing in lecithin type (Lipoid S45 and S100) and chitosan content ranged between 113.7 and 331.5?nm and 4.6 and 31.2?mV, respectively. Melatonin loadings were up to 7.2%. The potential of lecithin/chitosan NPs to enhance transdermal melatonin delivery was investigated by determining the drug flux across dermatomed porcine skin and its skin deposition. Lecithin/chitosan NPs provided 1.3–2.3-fold higher flux compared to melatonin solution. The highest flux, 9.0?±?0.21?µg/cm2/h, was observed for S45 lecithin/chitosan NPs with lecithin/chitosan weight ratio of 20:1. NP possible cytotoxicity in vitro was evaluated using human skin keratinocytes and fibroblasts. It was demonstrated that lecithin/chitosan NPs can be applied to skin cells at concentrations up to 200?µg/mL without inducing plasma membrane damage or cell viability decrease.  相似文献   

11.
Diflunisal (DIF) is non-steroidal anti-inflammatory drug used in the treatment of rheumatoid arthritis, osteoarthritis. The current engrossment was aimed at formulation and assessment of DIF-loaded solid lipid nanoparticles (SLNs) for topical/dermal application. SLNs formulated by hot homogenisation method based on microemulsification technique were spherical with a mean size of 124.0?±?2.07?nm; PDI 0.294?±?0.15. The cumulative amount permeated/area was 109.99?±?0.008?μg/cm2, along with permeation flux (6.30?±?0.09?μg/cm2/h) and skin retention (11.74?±?0.155?μg/cm2) across mice skin. The SLNs of DIF showed significant decrease in fluid volume, granuloma tissue weight, leukocyte count/mm3 after application of SLN formulation in mice air pouch model. Similarly, in mice ear oedema and rat paw oedema model, there was 2.30 and 1.29 time increase in percentage inhibition of oedema after SLN formulation application, respectively, as compared with conventional cream. Hence, the SLNs of DIF may prove to be a potential nanocarrier to effectively treat the local inflammatory conditions associated with arthritis.  相似文献   

12.
Purpose. 1. The assessment of the role of hair follicles and sweat glands in skin resistance and percutaneous iontophoretic flux of 9-desglycinamide, 8-arginine vasopressin (DGAVP) by comparing two skin species: human stratum corneum which contained hair follicles, sweat and sebaceous glands, and shed snake skin which lacked all appendages. 2. The effect of l-dodecylazacycloheptan-2-one (dodecyl-Azone, a lipid perturbing agent) on the iontophoretic DGAVP flux. Methods. Iontophoresis in vitro was performed in a transport cell (0.79 cm2 area available for percutaneous transport) by 8-hours application of a pulsed constant current of 100 Hz, 50% duty cycle and 0.26 mA.cm–2 current density delivered by a pair of Ag/AgCl electrodes, of which the anode was facing the anatomical surface of the skin samples. Results. The initial resistances of human stratum corneum and shed snake skin samples were of the same order of magnitude (20–24 k.cm2) and both skin species showed a comparable resistance-decrease profile during 8-hours iontophoresis, indicating that the resistances were mainly determined by the stratum corneum and not greatly influenced by the appendageal structures. The initial resistances of the skin samples pretreated with dodecyl-azone were less than 50% of the values of untreated samples. Because dodecyl-azone is known to perturb the ordering of the intercellular lipids, the effect of azone on the resistance confirms that the resistance mainly resides within the intercellular lipids of the stratum corneum. No correlation was found between the iontophoretic DGAVP-flux and the conductance of human skin. For shed snake skin, however, a good correlation was found, indicating that the iontophoretic permeability of human skin in vitro for a peptide such as DGAVP is, unlike shed snake skin, not related to its overall permeability to ions. While the initial resistances of both human and snake skin were in the same order of magnitude and showed the same declining profile during iontophoresis, the steady state iontophoretic DGAVP flux across human stratum corneum was approximately 140 times larger than through shed snake skin. These findings suggest that small ions follow pathways common to both skin types, presumably the intercellular route, while the peptide on the other hand is transported differently: across snake skin presumably along intercellular pathways only, but across human stratum corneum along additional pathways (most likely of appendageal origin) as well. This interpretation is supported by the observations made of the effects of dodecyl-azone on DGAVP-iontophoresis. Pretreatment with dodecyl-azone did not significantly change steady state fluxes and lag times of DGAVP-iontophoresis across human stratum corneum, but resulted in a significant 3-fold lag time decrease and a 3-fold flux increase of DGAVP-iontophoresis across snake skin. Conclusions. The results of these in vitro studies emphasize the importance of the appendageal pathway for iontophoretic peptide transport across human stratum corneum.  相似文献   

13.
Sesamol is a phenolic component of sesame seed oil, which has been established as an antioxidant and also possesses potential for hepatoprotection. However, its protective role in carbon tetrachloride (CCl4) induced sub‐chronic hepatotoxicity has not been studied. Limited oral bioavailability (BA) and rapid elimination (as conjugates) in rats is reported for sesamol. Considering its significant antioxidant potential and compromised BA, we packaged sesamol into solid lipid nanoparticles (S‐SLNs) to enhance its hepatoprotective bioactivity. S‐SLNs prepared by microemulsification method were nearly spherical in shape with an average particle size of 120.30 nm and their oral administration at 8 mg/kg body weight (BW) showed significantly (p < 0.001) better hepatoprotection than free sesamol (FS) and a well established hepatoprotective antioxidant silymarin [SILY (25 mg/kg BW); p < 0.05) in CCl4 induced sub‐chronic liver injury in rats. Evaluations were done in terms of histological changes in the liver tissue, liver injury markers (serum alanine aminotransferase, serum aspartate aminotransferase, and serum lactate dehydrogenase); oxidative stress markers (lipid peroxidation, superoxide dismutase, and reduced glutathione) and proinflammatory response marker (tumor necrosis factor‐alpha). © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 520–532, 2016.  相似文献   

14.
Abstract

Cetirizine is indicated for the treatment of allergic conditions such as insect bites and stings, atopic and contact dermatitis, eczema, urticaria. This investigation deals with development of a novel ethosome-based topical formulation of cetirizine dihydrochloride for effective delivery. The optimised formulation consisting of drug, phospholipon 90 G? and ethanol was characterised for drug content, entrapment efficiency, pH, vesicular size, spreadability and rheological behaviour. The ex vivo permeation studies through mice skin showed highest permeation flux (16.300?±?0.300?µg/h/cm2) and skin retention (20.686?±?0.517?µg/cm2) for cetirizine-loaded ethosomal vesicles as compared to conventional formulations. The in vivo pharmacodynamic evaluation of optimised formulation was assessed against oxazolone-induced atopic dermatitis (AD) in mice. The parameters evaluated were reduction in scratching score, erythema score, skin hyperplasia and dermal eosinophil count. Our results suggest that ethosomes are effective carriers for dermal delivery of antihistaminic drug, cetirizine, for the treatment of AD.  相似文献   

15.
Introduction: Reactive oxygen species (ROS) participate in cellular apoptosis and are involved in pathophysiological etiology of degenerative diseases. However, recent studies suggest that ROS at low levels may play a pivotal role as second messengers and activate normal cellular processes. Intracellular ROS increase the proliferation, migration, and regenerative potential of adipose-derived stem cells (ASCs). In contrast, manipulations that diminish intracellular ROS levels interfere with normal ASC function. ROS generation therefore acts like a double-edged sword.

Areas covered: This review discusses the following research questions: i) Do ROS stimulate or suppress ASCs? ii) How are ROS generated from ASCs? iii) Which function(s) is/are regulated by intracellular ROS generation? In addition, the antioxidant/antiapoptotic effect of ASCs is briefly introduced.

Expert opinion: Whether ROS is harmful or beneficial is primarily a question of dosage. Low or moderate ROS generation increases the proliferation, migration and regenerative potential of ASCs. Therefore, it is beneficial to expose ASCs to moderate oxidative stress during manipulation. The addition of a ROS donor in culture can reduce the cost for the expansion of ASCs and a ROS preconditioning can enhance the regenerative potential of ASCs.  相似文献   

16.
To investigate the utilities of a shed snake skin as a model membrane for preclinical studies of transdermal drug delivery, the flux of indomethacin was determined under various conditions by using a diffusion cell. The flux of fatty alcohols was determined and compared with that in human skin reported in references. The esterase activity of shed snake skin was also determined. It was found that the flux of indomethacin decreased with an increase of pH and the amount of ethanol in a vehicle. The flux of indomethacin increased by the addition of Azone, N-methyl?2?pyrroridone and N,N-dimethyl-m-toluamide in the cream. The flux of fatty alcohols in shed snake skin was greater than that reported in human skin, and shed snake skin had similar esterase activity to human skin.  相似文献   

17.
Oxymatrine (OMT), a water-soluble drug, has a very low oral bioavailability because of its low membrane permeability and its biotransformation in the gastrointestinal tract. Formulated as an oxymatrine-phospholipid complex (OMT-PLC) can improve the lipid solubility and effectiveness of OMT. The purpose of this study was to explore the utility of the combination of a microemulsion and an OMT-PLC as a topical delivery vehicle for enhancing the absorption and efficacy of OMT. The solubility of OMT-PLC was determined and phase diagrams of microemulsions were constructed. Various microemulsion formulations were developed and characterized by their physicochemical properties, and their in vitro and in vivo permeability through skin. An optimal microemulsion (ME4), which presented as spherical droplets and consisted of 10.0% OMT-PLC, 8.0% isopropyl myristate, 30.0% Cremophor RH40/polyethylene glycol 400 (1:1) and 52.0% water, was selected. It possessed an average droplet size of 32.4 nm, a low viscosity of 113.7 mPa · s, and a high cloud point of 88°C. Compared to the control solution, ME4 provided better skin permeability in vitro and a higher retention ratio of OMT in skin in vivo. Moreover, ME4 significantly enhanced the antiproliferative activity of OMT on scar fibroblasts. These results indicate that the combination of a microemulsion and a phospholipid complex represents an effective vehicle for topical delivery of OMT.  相似文献   

18.
Purpose In photodynamic therapy (PDT), topically applied aminolevulinic acid (5-ALA) is converted to protoporphyrin IX (PpIX), which upon light excitation induces tumor destruction. To optimize 5-ALA-PDT via improving the highly hydrophilic 5-ALA limited penetration into the skin, we propose the use of the known skin penetration enhancer, oleic acid (OA). Methods In vitro skin penetration and retention of 5-ALA (1% w/w) were measured in the presence or absence of OA (2.5, 5.0, and 10.0% w/w) in propylene glycol (PG) using porcine ear skin as the membrane. In vivo accumulation of PpIX, 4 h after application, was determined fluorometrically in healthy mice skin by chemical extracton of skin samples. In vivo PpIX fluorescence kinetics was also investigated by noninvasive techniques using an optical fiber probe, for 30 min up to 24 h after topical application of 1.0% 5-ALA + 10.0% OA in PG on hairless mice skins. Results The flux and in vitro retention of 5-ALA in viable epidermis increased in the presence of 10.0% (w/w) OA. The amounts of PpIX, evaluated both by chemical tissue extractions and in vivo measurements by an optical fiber probe, increased after applying 5-ALA formulations containing 5.0 or 10.0% OA. Moreover, in vivo kinetic studies showed an increase in skin PpIX accumulation when formulations containing 10% OA were used; PpIX accumulation was also maintained longer compared to controls. Conclusions Both in vitro and in vivo results show the OA potential as an optimizer of 5-ALA skin delivery.  相似文献   

19.
The effect of the stereochemistry of organic nitrates on rat skin permeability was investigated. Skin permeabilities significantly differed between dinitrates and mononitrates, and also among their diastereomers. The maximum flux and permeability coefficient of dinitrate diastereomers from water were dependent on the solubility in octanol and the octanol/water partition coefficient, respectively. On the other hand, the key parameters determining the maximum flux and permeability coefficient of mononitrate isomers were the aqueous solubility and diffusivity. These results suggest that dinitrate diastereomers permeate across skin via the lipid domain of the stratum corneum according to a partitioning mechanism, and that skin permeation of mononitrate isomers occurs via an aqueous domain by a porous mechanism. Factors raising stereoselectivity in skin permeation of organic nitrates were closely related with stereostructure, especially the functional groups at the exo position, of diastereomers. The interaction between the functional groups and surrounding molecules thus causes the differences in physicochemical properties and skin permeability of stereoisomers.  相似文献   

20.
The objective of the study was to develop, optimize and evaluate a nanoemulsion (NE) of Amphotericin B (AmB) using excipients with inherent antifungal activities (Candida albicans and Aspergillus niger) for topical delivery. AmB-loaded NE was prepared using Capmul PG8 (CPG8), labrasol and polyethylene glycol-400 by spontaneous titration method and evaluated for mean particle size, polydispersity index, zeta potential and zone of inhibition (ZOI). NE6 composed of CPG8 (15%w/w), Smix (24%w/w) and water (61%w/w) was finally selected as optimized NE. AmB-NE6 was studied for improved in vitro release, ex vivo skin permeation and deposition using the Franz diffusion cell across the rat skin followed with drug penetration using confocal laser scanning microscopy (CLSM) as compared to drug solution (DS) and commercial Fungisome®. The results of in vitro studies exhibited the maximum ZOI value of NE6 as 19.1?±?1.4 and 22.8?±?2.0?mm against A. niger and C. albicans, respectively, along with desired globular size (49.5?±?1.5?nm), zeta potential (?24.59?mV) and spherical morphology. AmB-NE6 revealed slow and sustained release of AmB as compared to DS in buffer solution (pH 7.4). Furthermore, AmB-NE6 elicited the highest flux rate (22.88?±?1.7?μg/cm2/h) as compared to DS (2.7?±?0.02?μg/cm2/h) and Fungisome® (11.5?±?1.0?μg/cm2/h). Moreover, the enhancement ratio and drug deposition were found to be highest in AmB-NE6 than DS across the stratum corneum barrier. Finally, CLSM results corroborated enhanced penetration of the AmB-NE6 across the skin as compared to Fungisome® and DS suggesting an efficient, stable and sustained topical delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号