首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tuberculosis (TB) remains to be an enormous global health problem. The inconsistent protection efficacy of Bacille Calmette-Guérin (BCG) calls for new vaccines for TB. One choice to improve the efficacy of BCG vaccine is recombinant BCG (rBCG). Experimental evidences have revealed that Ag85B, ESAT-6 and Rv3620c are important immunodominant antigens of Mycobacterium tuberculosis. In this study, we have constructed a novel rBCG expressing fusion protein Ag85B-ESAT6-Rv3620c and evaluated the immunogenicity of this rBCG in C57BL/6 mice. Results show that there is a strong TB-specific CD4+ and CD8+ T lymphocytes proliferation in mice immunized with this rBCG vaccine. A single dose immunization of rBCG could induce a significantly strong Th1 immune response characterized by an increasing ratio of antigen-specific IgG2b/IgG1 as well as a high expression level of Th1 cytokines such as IFN-γ, TNF-α and IL-2. This conclusion was confirmed by a decreased secretion of Th2 cytokine IL-10. Moreover, this rBCG induced a strong humoral response in mice with an increasing antigen-specific IgG titer. Therefore, we concluded that this rBCG could significantly increase both Th1 type cellular immune response and antigen-specific humoral response compared with BCG. The above observations demonstrated that rBCG::Ag85B-ESAT6-Rv3620c is a potential candidate vaccine against M. tuberculosis for further study.  相似文献   

2.
Mycobacterium bovis bacillus Calmette‐Guérin (BCG) immunization provides protection against tuberculosis (TB) in infants, but the antituberculosis protective immunity wanes gradually after initial immunization and lasts less than 15 years. Therefore, more efficacious vaccines are urgently needed. In this study, we constructed a new tuberculosis vaccine of recombinant BCG strain (rBCG‐IA), which could express IL‐12p70 of human cytokine and Ag85A of M. tuberculosis fusion protein, and investigated its immunogenicity in BALB/c mice by measuring antibody titres, proliferation rate of splenocytes, ratios of CD4+ T and CD8+ T cells stimulated by specific antigens and levels of IFN‐γ production in antigen‐stimulated splenocyte cultures. Meanwhile, we evaluated its protective efficacy against M. tuberculosis H37Rv infection through detecting lung histopathology, organ bacterial loads and lung acid‐fast stain. Immunogenicity experiments illustrated that from 2nd to 8th week after immunization, the rBCG‐IA vaccine was able to induce the highest level of antibody titres, proliferation rate of splenocytes and IFN‐γ production among groups and gained improved ratio of CD4+ T and CD8+ T cells from 6th to 8th week after vaccination. And from 2nd to 8th week after M. tuberculosis H37Rv infection, the score of pathology and bacterial loads in the rBCG‐IA group were obviously lower than that in rBCG‐I group, rBCG‐A group or control group (PBST group), but similar to that in BCG group. This study suggested that rBCG‐IA was able to elicit stronger humoral and cellular immune responses, but could only confer similar protective efficacy compared with its parental BCG vaccine.  相似文献   

3.
Antigen 85B (Ag85B) is an important immunodominant antigen of Mycobacterium tuberculosis, and is a very promising vaccine candidate molecule. Rv3425 is a member of the subgroup 3 of the PPE family, which does not exist in all BCG strains. In this study we constructed a new rBCG which included this united gene (Ag85B-Rv3425). The level of antigen-stimulated T cells expressing IFN-γ was significantly higher in the C57BL/6 mice vaccinated with rBCG::Ag85B-Rv3425 than with BCG. In addition, the sera from mice immunized with rBCG::Ag85B-Rv3425 revealed an increase in the specific immunoglobulin G titers than that from mice immunized with BCG. Antigen specific IgG subclass analysis showed that rBCG::Ag85B-Rv3425 tended to facilitate IgG2a production, suggesting enhancement of predominant Th1 response which in turn may facilitate increased production of protective IFN-γ. These results suggested that this rBCG::Ag85B-Rv3425 could be a strong vaccine candidate for further study. Jiu ling Wang and Ya qing Qie are contributed equally to this study.  相似文献   

4.
Despite efforts to develop effective treatments and vaccines, Mycobacterium tuberculosis (Mtb), particularly pulmonary Mtb, continues to provide major health challenges worldwide. To improve immunization against the persistent health challenge of Mtb infection, we have studied the CD8+ T cell response to Bacillus Calmette‐Guérin (BCG) and recombinant BCG (rBCG) in mice. Here, we generated CD8+ T cells with an rBCG‐based vaccine encoding the Ag85B protein of M. kansasii, termed rBCG‐Mkan85B, followed by boosting with plasmid DNA expressing the Ag85B gene (DNA‐Mkan85B). We identified two MHC‐I (H2‐Kd)‐restricted epitopes that induce cross‐reactive responses to Mtb and other related mycobacteria in both BALB/c (H2d) and CB6F1 (H2b/d) mice. The H2‐Kd‐restricted peptide epitopes elicited polyfunctional CD8+ T cell responses that were also highly cross‐reactive with those of other proteins of the Ag85 complex. Tetramer staining indicated that the two H2‐Kd‐restricted epitopes elicit distinct CD8+ T cell populations, a result explained by the X‐ray structure of the two peptide/H2‐Kd complexes. These results suggest that rBCG‐Mkan85B vector‐based immunization and DNA‐Mkan85B boost may enhance CD8+ T cell response to Mtb, and might help to overcome the limited effectiveness of the current BCG in eliciting tuberculosis immunity.  相似文献   

5.
Although bacillus Calmette–Guérin (BCG) is an established vaccine with excellent efficacy against disseminated Mycobacterium tuberculosis infection in young children, efficacy in adults suffering from respiratory tuberculosis (TB) is suboptimal. Prime‐boost viral vectored vaccines have been shown to induce effective immune responses and lentivectors (LV) have been shown to improve mucosal immunity in the lung. A mucosal boost to induce local immunogenicity is also referred to as a ‘pull’ in a prime and pull approach, which has been found to be a promising vaccine strategy. The majority of infants worldwide receive BCG immunization through current vaccine protocols. We therefore aimed to investigate the role of a boost (or pull) immunization with an LV vaccine expressing the promising TB antigen (Ag85A). We immunized BALB/c mice subcutaneously with BCG or an LV vaccine expressing a nuclear factor‐κB activator vFLIP together with Ag85A (LV vF/85A), then boosted with intranasal LV vF/85A. Prime and pull immunization with LV85A induced significantly enhanced CD8+ and CD4+ T‐cell responses in the lung, but did not protect against intranasal BCG challenge. In contrast, little T‐cell response in the lung was seen when the prime vaccine was BCG, and intranasal vF/85A provided no additional protection against mucosal BCG infection. Our study demonstrates that not all LV prime and pull approaches may be successful against TB in man and careful antigen and immune activator selection is therefore required.  相似文献   

6.
Mucosal boosting of BCG‐immunised individuals with a subunit tuberculosis (TB) vaccine would be highly desirable, considering that the lungs are the principal port of entry for Mycobacterium tuberculosis (MTB) and the site of the primary infection and reactivation. However, the main roadblock for subunit TB vaccine development is the lack of suitable adjuvants that could induce robust local and systemic immune responses. Here, we describe a novel vaccine delivery system that was designed to mimic, in part, the MTB pathogen itself. The surface of yellow carnauba wax nanoparticles was coated with the highly immunogenic Ag85B Ag of MTB and they were directed to the alveolar epithelial surfaces by the incorporation of the heparin‐binding hemagglutinin adhesion (HBHA) protein. Our results showed that the i.n. immunisation of BCG‐primed BALB/c mice with nanoparticles adsorbed with Ag85B‐HBHA (Nano‐AH vaccine) induced robust humoral and cellular immune responses and IFN‐γ production, and multifunctional CD4+ T cells expressing IFN‐γ, IL‐2 and TNF‐α. Mice challenged with H37Rv MTB had a significantly reduced bacterial load in their lungs when compared with controls immunised with BCG alone. We therefore conclude that this immunisation approach is an effective means of boosting the BCG‐induced anti‐TB immunity.  相似文献   

7.
To prevent the global spread of tuberculosis (TB), more effective vaccines and vaccination strategies are urgently needed. As a result of the success of bacillus Calmette–Guérin (BCG) in protecting children against miliary and meningeal TB, the majority of individuals will have been vaccinated with BCG; hence, boosting BCG‐primed immunity will probably be a key component of future vaccine strategies. In this study, we compared the ability of DNA‐, protein‐ and lentiviral vector‐based vaccines that express the antigens Ag85B and Rv3425 to boost the effects of BCG in the context of immunity and protection against Mycobacterium tuberculosis in C57BL/6 mice. Our results demonstrated that prime–boost BCG vaccination with a lentiviral vector expressing the antigens Ag85B and Rv3425 significantly enhanced immune responses, including T helper type 1 and CD8+ cytotoxic T lymphocyte responses, compared with DNA‐ and protein‐based vaccines. However, lentivirus‐vectored and DNA‐based vaccines greatly improved the protective efficacy of BCG against M. tuberculosis, as indicated by a lack of weight loss and significantly reduced bacterial loads and histological damage in the lung. Our study suggests that the use of lentiviral or DNA vaccines containing the antigens Ag85B and Rv3425 to boost BCG is a good choice for the rational design of an efficient vaccination strategy against TB.  相似文献   

8.
The commonly used Bacillus Calmette‐Guérin (BCG) vaccine only induces moderate T cell responses and is less effective in protecting against pulmonary tuberculosis (TB) in adults and ageing populations. Thus, developing new TB vaccine candidates is an important strategy against the spread of Mycobacterium tuberculosis. Here, we demonstrated that immunization with heat‐shock protein gp96 as an adjuvant led to a significantly increased CD4+ and CD8+ T cell response to a BCG vaccine. Secretion of the Th1‐type cytokines was increased by splenocytes from gp96‐immunized mice. In addition, adding gp96 as an adjuvant effectively improved the protection against intravenous challenge with Mycobacterium bovis BCG in mice. Our study reveals the novel property of gp96 in boosting the vaccine‐specific T cell response and its potential use as an adjuvant for BCG vaccines against mycobacterial infection.  相似文献   

9.
The chimeric protein that relies on the T-cell epitopes of antigen 85B (Ag85B) and the 6-kDa early secreted antigen target (ESAT-6) has been demonstrated to augment the Th1 immune response. In this study, we developed a recombinant Mycobacterium bovis BCG (rBCG) strain that secretes the chimeric protein of Ag85B and ESAT-6 (rBCG-AN-E-AC). Immunization with this rBCG strain induced stronger antigen-specific gamma interferon (IFN-γ) activities, as determined by an enzyme-linked immunospot assay, and higher levels of antigen-specific CD4+ and CD8+ T-cell responses than those in the control groups immunized with either rBCG expressing the Ag85B-ESAT-6 fusion protein (rBCG-A-E) or BCG. Likewise, rBCG-AN-E-AC significantly increased the level of production of the major Th1 cytokines IFN-γ and tumor necrosis factor alpha in splenocyte cultures to levels comparable to those elicited by control BCG. Moreover, the antigen-specific immunoglobulin 2c (IgG2c)/IgG1 ratio for mice immunized with rBCG-AN-E-AC was also much higher than the ratios for the other immunized groups. Together, these results indicate that this rBCG-AN-E-AC strain enhances the Th1 cell-mediated response and may serve as a potential vaccine against M. tuberculosis.Mycobacterium bovis bacillus Calmette Guérin (BCG) is the only vaccine against tuberculosis (TB) currently available and exhibits various levels of efficacy for the prevention of pulmonary TB (range, 0 to 80%) in different trials (9). BCG has a protective effect in children, particularly against tuberculous meningitis; however, it does not satisfactorily prevent the development of pulmonary TB in adults and fails to protect individuals against reinfection (1). Given the rate of mortality from TB worldwide, with more 8 million new cases and 2 million deaths occurring annually (2), newer strategies need to be implemented to improve BCG or vaccines more effective than BCG urgently need to be developed.One approach that might be used to increase the efficacy of BCG could be to construct a recombinant BCG (rBCG) which either overexpresses immunogenic antigens or modulates the ensuing immune response (8). rBCG vaccines are attractive because of the widespread experience with their use, the known immunogenicity associated with protection against the worst forms of the disease in children, and the safety profiles of standard BCG strains (13). Two rBCG vaccines have been entered into clinical trials. This includes rBCG30, which expresses the antigen 85B (Ag85B) protein, and ΔureC hly-positive rBCG, which expresses listeriolysin and which is urease deficient (12, 15). It is hoped that these vaccines will provide a strong and perhaps longer-lasting immune response than that achieved with the conventional BCG vaccine.The most effective defined-antigen TB vaccines will likely require the induction of both cell-mediated and humoral immune responses. Ag85B and the 6-kDa early secreted antigen target (ESAT-6) have been identified as two of the most promising vaccine candidates which are strongly recognized by T lymphocytes (3, 19). In a previous study, we relied on the T-cell epitopes of Ag85B and ESAT-6 to design a chimeric protein by inserting ESAT-6 into Ag85B from amino acids 167 to 182 and demonstrated that this recombination of Ag85B and ESAT-6 could improve the immunogenicity and enhance the T-helper type 1 (Th1) cell-mediated immune response (27). This finding prompted us to explore further the efficacy of rBCG overexpressing this chimeric protein. In this study, we constructed rBCG expressing chimeric protein Ag85BN-ESAT-6-Ag85BC (rBCG-AN-E-AC) and further compared the immune response to that protein with that to rBCG expressing the Ag85B-ESAT-6 fusion protein (rBCG-A-E) and BCG.  相似文献   

10.
Approximately 2 billion people are infected with Mycobacterium tuberculosis, the etiological agent of tuberculosis (TB), and an estimated 1.5 million individuals die annually from TB. Presently, Mycobacterium bovis BCG remains the only licensed TB vaccine; however, previous studies suggest its protective efficacy wanes over time and fails in preventing pulmonary TB. Therefore, a safe and effective vaccine is urgently required to replace BCG or boost BCG immunizations. Our previous studies revealed that mycobacterial proteins are released via exosomes from macrophages infected with M. tuberculosis or pulsed with M. tuberculosis culture filtrate proteins (CFP). In the present study, exosomes purified from macrophages treated with M. tuberculosis CFP were found to induce antigen‐specific IFN‐γ and IL‐2‐expressing CD4+ and CD8+ T cells. In exosome‐vaccinated mice, there was a similar TH1 immune response but a more limited TH2 response compared to BCG‐vaccinated mice. Using a low‐dose M. tuberculosis mouse aerosol infection model, exosomes from CFP‐treated macrophages were found to both prime a protective immune response as well as boost prior BCG immunization. The protection was equal to or superior to BCG. In conclusion, our findings suggest that exosomes might serve as a novel cell‐free vaccine against an M. tuberculosis infection.  相似文献   

11.
In the present study, we evaluated the effectiveness of a levamisole-based adjuvant (ADL) to enhance the ability of the Ag85B-ESAT6 fusion protein to boost immune responses after primary vaccination with recombinant bacillus Calmette-Guerin (rBCG) in Balb/c mice. The results were compared with that of the control adjuvant formulation of dimethyl dioctadecylammonium bromide (DDA) and monophosphoryl lipid A (MPL), which has previously been shown to induce T-helper type 1 (Th1)-biased responses. Enzyme-linked immunospot (ELISPOT) assay with Ag85B and ESAT6 derived peptides corresponding to CD4+ and CD8+ T cell restricted epitopes and cell surface immunostaining indicated that Ag85B-ESAT6/ADL predominantly triggered activation of CD4+ T cells. Functional CD8+ T cells with interferon (IFN)-γ production or cytotoxicity were undetectable all vaccinated mice. The ADL adjuvant modified T-helper (Th) subtypes by up-regulating multiple signature cytokines. Furthermore, profiles of the immunoglobulin G (IgG) subtypes indicated ADL enhanced the secretion of Th1-associated IgG2a antibodies and decreased the yield of Th2-associated IgG1 subtype. These observations suggest that the ADL adjuvant formulated with a protein booster may induce Th1-biased cellular and humoral immune responses to primary vaccination with a live attenuated bacterial TB vaccine.  相似文献   

12.
In the present study, we evaluated the effectiveness of a levamisole-based adjuvant (ADL) to enhance the ability of the Ag85B-ESAT6 fusion protein to boost immune responses after primary vaccination with recombinant bacillus Calmette-Guerin (rBCG) in Balb/c mice. The results were compared with that of the control adjuvant formulation of dimethyl dioctadecylammonium bromide (DDA) and monophosphoryl lipid A (MPL), which has previously been shown to induce T-helper type 1 (Th1)-biased responses. Enzyme-linked immunospot (ELISPOT) assay with Ag85B and ESAT6 derived peptides corresponding to CD4+ and CD8+ T cell restricted epitopes and cell surface immunostaining indicated that Ag85B-ESAT6/ADL predominantly triggered activation of CD4+ T cells. Functional CD8+ T cells with interferon (IFN)-γ production or cytotoxicity were undetectable all vaccinated mice. The ADL adjuvant modified T-helper (Th) subtypes by up-regulating multiple signature cytokines. Furthermore, profiles of the immunoglobulin G (IgG) subtypes indicated ADL enhanced the secretion of Th1-associated IgG2a antibodies and decreased the yield of Th2-associated IgG1 subtype. These observations suggest that the ADL adjuvant formulated with a protein booster may induce Th1-biased cellular and humoral immune responses to primary vaccination with a live attenuated bacterial TB vaccine.  相似文献   

13.
Recombinant Mycobacterium bovis bacille Calmette–Guèrin (rBCG) expressing three T cell epitopes of Mycobacterium tuberculosis (MTB) Ag85B antigen (P1, P2, P3) fused to the Mtb8.4 protein (rBCG018) or a combination of these antigens fused to B cell epitopes from ESAT-6, CFP-10 and MTP40 proteins (rBCG032) were used to immunize Balb/c mice. Total IgG responses were determined against Mtb8.4 antigen and ESAT-6 and CFP-10 B cell epitopes after immunization with rBCG032. Mice immunized with rBCG032 showed a significant increase in IgG1 and IgG2a antibodies against ESAT-6 and MTP40 (P1) B cell epitopes and IgG3 against both P1 and P2 B cell epitopes of MPT40. Splenocytes from mice immunized with rBCG018 proliferated against Ag85B P2 and P3 T cell epitopes and Mtb8.4 protein whereas those from mice-immunized with rBCG032 responded against all Ag85B epitopes and the ESAT-6 B cell epitope. CD4+ and CD8+ lymphocytes from mice immunized with rBCG018 produced primarily Th1 type cytokines in response to the T cell epitopes. Similar pattern of recognition against the T cell epitopes were obtained with rBCG032 with the additional recognition of ESAT-6, CFP-10 and one of the MTP40 B cell epitopes with the same pattern of cytokines. This study demonstrates that rBCG constructs expressing either T or T and B cell epitopes of MTB induced appropriate immunogenicity against MTB.  相似文献   

14.
Tuberculosis (TB) caused by Mycobacterium tuberculosis continues to be one of the major public health problems in the world. The eventual control of this disease will require the development of a safe and effective vaccine. Bacille Calmette-Guerin (BCG), the only vaccine against TB, is not perfect for its limited ability to protect against the adult form of TB. Some improvements of TB vaccines relied to strengthening the immunogenicity and/or persistence of genetically modified recombinant BCG (rBCG) strain. Antigen 85B (Ag85B) and Mtb8.4 are importantly immunodominant antigens of M. tuberculosis , and both are very promising vaccine candidate molecules. MPT64190–198, is presented to CD8+ T cells during mycobacterial infections. In this study, we combined these above genes into one recombinant gene of ag85B–mpt64 190–198 –mtb8.4 . Then we constructed the new rBCG containing this united gene. This rBCG can induce an increased Th1-type immune response in mice, characterized by an elevated level of interferon-γ in antigen-stimulated splenocyte culture and a strong IgG2a antibody response. Also, it can elicit longer immune responses than BCG. The results show that this rBCG is a promising candidate for further study.  相似文献   

15.
《Molecular immunology》2015,67(2):346-356
One-third of the world's population is infected with Mycobacterium tuberculosis (MTB). The protective efficacy of bacille Calmette Guérin (BCG) vaccine against tuberculosis (TB) in adults is highly controversial even though the BCG vaccine has been available for more than 90 years. Because BCG is effective against infantile tuberculosis meningitis and miliary tuberculosis in young children and provides cost-effective prevention from tuberculosis for developing countries, it would be desirable to modify the existing BCG vaccine to provide more comprehensive protection. In our study, we constructed a novel recombinant BCG strain expressing pro-apoptotic BAX (rBCG::BAX) and demonstrated that it significantly induced the apoptosis of macrophages infected with rBCG::BAX both in vitro and in vivo. In addition, it significantly enhanced Ag85B-specific IFN-γ enzyme-linked immunospot responses, IFN-γ secretion, IL-2 secretion and the ratio of Ag85B-specific IgG2b/IgG1, and it significantly decreased Ag85B-specific IL-4. Furthermore, it presumably facilitated antigen presentation by inducing a significant up-regulation in the expression of MHC-II and B7.1 (CD80) co-stimulatory molecules on macrophages. In conclusion, these results suggest that the rBCG::BAX strain elicited predominantly a Th1 protective immune responses and might be a potential tuberculosis vaccine candidate for further study.  相似文献   

16.
Developing a new generation of vaccines is important for preventing tuberculosis (TB). DNA vaccine is one promising candidate. In this study we evaluated the immunogenicity and protective efficacy of the DNA vaccine encoding the fusion protein of Mycobacterium tuberculosis heat shock protein 65 (Hsp65) with human interleukin‐2 (hIL‐2) in BALB/c mice. We showed that the DNA vaccine pcDNA‐Hsp65‐hIL‐2 could induce high levels of antigen‐specific antibody, IFN‐γ, CD4+ and CD8+ T cell production. When the immunized mice were infected with M. tuberculosis H37Rv, the organ bacterial loads in the DNA immunized group were significantly reduced compared to those of the saline control group, but the ability to reduce bacteria was not better than for BCG. The histopathology in lungs of the DNA vaccine immunized mice was similar to that of BCG immunized mice, which was obviously ameliorated compared to that of the saline control group. Overall, the DNA vaccine could afford protection against M. tuberculosis infection, though the protection efficacy was not as great as that of conventional BCG.  相似文献   

17.
An efficacious tuberculosis (TB) vaccine will probably need to induce both CD4 and CD8 T‐cell responses specific to a protective Mycobacterium tuberculosis antigen(s). To achieve this broad cellular immune response we tested a heterologous DNA/protein combination vaccine strategy. We used a purified recombinant protein preparation of a unique M. tuberculosis antigen (rMT1721) found in the urine of TB patients, an optimized plasmid DNA expressing this protein (DNA‐MT1721), and a Toll‐like receptor 4 agonist adjuvant. We found that priming mice with DNA‐MT1721 and subsequently boosting with rMT1721 elicited high titres of specific IgG1 and IgG2a antibodies as well as high magnitude and polyfunctional CD4+ T‐cell responses. However, no detectable CD8+ T‐cell response was observed using this regimen of immunization. In contrast, both CD4+ and CD8+ T‐cell responses were detected after a prime/boost vaccination regimen using rMT1721 as the priming antigen and DNA‐MT1721 as the boosting immunogen. These findings support the exploration of heterologous DNA/protein immunization strategies in vaccine development against TB and possibly other infectious diseases.  相似文献   

18.
Responsible for 9 million new cases of active disease and nearly 2 million deaths each year, tuberculosis (TB) remains a global health threat of overwhelming dimensions. Mycobacterium bovis BCG, the only licensed vaccine available, fails to confer lifelong protection and to prevent reactivation of latent infection. Although 15 new vaccine candidates are now in clinical trials, an effective vaccine against TB remains elusive, and new strategies for vaccination are vital. BCG vaccination fails to induce immunity against Mycobacterium tuberculosis latency antigens. Synthetic long peptides (SLPs) combined with adjuvants have been studied mostly for therapeutic cancer vaccines, yet not for TB, and proved to induce efficient antitumor immunity. This study investigated an SLP derived from Rv1733c, a major M. tuberculosis latency antigen which is highly expressed by “dormant” M. tuberculosis and well recognized by T cells from latently M. tuberculosis-infected individuals. In order to assess its in vivo immunogenicity and protective capacity, Rv1733c SLP in CpG was administered to HLA-DR3 transgenic mice. Immunization with Rv1733c SLP elicited gamma interferon-positive/tumor necrosis factor-positive (IFN-γ+/TNF+) and IFN-γ+ CD4+ T cells and Rv1733c-specific antibodies and led to a significant reduction in the bacterial load in the lungs of M. tuberculosis-challenged mice. This was observed both in a pre- and in a post-M. tuberculosis challenge setting. Moreover, Rv1733c SLP immunization significantly boosted the protective efficacy of BCG, demonstrating the potential of M. tuberculosis latency antigens to improve BCG efficacy. These data suggest a promising role for M. tuberculosis latency antigen Rv1733c-derived SLPs as a novel TB vaccine approach, both in a prophylactic and in a postinfection setting.  相似文献   

19.
Dhar N  Rao V  Tyagi AK 《Immunology letters》2003,88(3):175-184
In spite of rapid developments in the study of mycobacteria during the last two decades, tuberculosis (TB) has maintained its status as the leading killer among all infectious diseases. Extensive evidence exists to support a central role for a T-helper type 1 (Th1) immune response for protection against TB in mice and humans. Bacille Calmette-Guerin (BCG), the only vaccine against TB, although not perfect in its ability to protect against the adult form of TB, is a strong inducer of Th1 responses and is being increasingly used as a delivery vehicle for the presentation of foreign antigens to the immune system. It has been proposed that expression of immunodominant antigens or cytokine genes in BCG can enhance the ability of BCG to induce a Th1 immune response. Since dose of the antigen is considered as one of the parameters that influence the Th cell responses, the level of expression of the candidate antigen should influence the final Th response against the recombinant BCG (rBCG). In the present study, the effect of over-expression of a candidate antigen Antigen 85B (Ag 85B) in a rBCG system, on the Th-priming ability of BCG has been investigated in the murine model. BALB/c mice were immunized with three different rBCG constructs expressing Ag 85B to various levels. Induction of Th1/Th2 responses was analyzed by measuring levels of interferon-gamma (Th1) and interleukin-10 (Th2) in antigen-stimulated splenocyte cultures and by quantifying the antigen-specific IgG2a (Th1) and IgG1 (Th2) antibody responses. By varying the level of expression of Ag 85B, specific immune responses against Ag 85B were observed to range from mixed Th1/Th2 to Th1. However, the BCG-specific immune responses in case of all rBCG-immunized animals remained predominantly Th1.  相似文献   

20.
Modified vaccinia Ankara‐expressing Ag85A (MVA85A) is a new tuberculosis (TB) vaccine aimed at enhancing immunity induced by BCG. We investigated the safety and immunogenicity of MVA85A in healthy adolescents and children from a TB endemic region, who received BCG at birth. Twelve adolescents and 24 children were vaccinated and followed up for 12 or 6 months, respectively. Adverse events were documented and vaccine‐induced immune responses assessed by IFN‐γ ELISpot and intracellular cytokine staining. The vaccine was well tolerated and there were no vaccine‐related serious adverse events. MVA85A induced potent and durable T‐cell responses. Multiple CD4+ T‐cell subsets, based on expression of IFN‐γ, TNF‐α, IL‐2, IL‐17 and GM‐CSF, were induced. Polyfunctional CD4+ T cells co‐expressing IFN‐γ, TNF‐α and IL‐2 dominated the response in both age groups. A novel CD4+ cell subset co‐expressing these three Th1 cytokines and IL‐17 was induced in adolescents, while a novel CD4+ T‐cell subset co‐expressing Th1 cytokines and GM‐CSF was induced in children. Ag‐specific CD8+ T cells were not detected. We conclude that in adolescents and children MVA85A safely induces the type of immunity thought to be important in protection against TB. This includes induction of novel Th1‐cell populations that have not been previously described in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号