首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的建立了分散液相微萃取与高效液相色谱联用技术测定大鼠血浆中对香豆酸浓度。方法微萃取条件为:20μL 1-己基-3-甲基咪唑六氟磷酸盐离子液体(1-hextyl-3-methylimidazoliumhexafluorophosphate,[C6MIM][PF6])作萃取剂,80μL乙腈作分散剂,0.5 mol.L-1硫酸作酸化剂,萃取时间为1 min。结果在优化的萃取条件下,血浆中对香豆酸质量浓度在0.012~2.400 mg.L-1内,线性关系良好(相关系数r=0.997 5),日内和日间精密度(RSD%)<9%(n=6),相对回收率为96.7%~101.6%,提取回收率为59.0%~70.4%。结论该方法适于血浆中对香豆酸浓度的测定。  相似文献   

2.
An analytical method based on dispersive liquid?Cliquid microextraction (DLLME) followed by liquid chromatography (LC)?Cfluorescence detection was developed to determine endocrine disruptors in environmental water samples. Four endocrine disrupting chemicals (EDCs) including bisphenol A, 4-tert-octylphenol, 4-octylphenol, and 4-nonylphenol were extracted and pre-concentrated by DLLME. Total analysis including extraction and LC analysis was achieved within 15?min. Extraction parameters such as types of extraction and dispersive solvents, volumes of extraction and dispersive solvents, extraction time, and NaCl concentration were optimized. Calibration curves for all EDCs were linear over a wide range with correlation coefficient (r 2)????0.9989. Intra- and inter-day precisions as relative standard deviations were less than 5.4 and 13.3%, respectively. Limit of detection ranged between 0.2 and 1.0???g/L and limit of quantification ranged between 0.6 and 3.2???g/L. The proposed method was applied to analysis of the EDCs in various samples including tap water and commercial bottled water and no EDCs were found in the tested samples.  相似文献   

3.
建立基于离子液体的分散液液微萃取-HPLC法测定藿香正气口服液中厚朴酚与和厚朴酚含量的方法。厚朴酚与和厚朴酚分别在0.4~8μg.mL-1、0.3~6μg.mL-1的范围内,线性关系良好(r>0.9998)。本方法简便、灵敏,适用于中药制剂中厚朴酚与和厚朴酚含量测定。  相似文献   

4.
Immunosuppressive drugs have commonly been used to prevent transplant rejection, and recently, also in pharmacotherapy of patients with coronary stents. Due to low level of those drugs in biological fluids and their significant distribution into erythrocytes, sample preparation steps are critical for the determination and monitoring of these drugs in complex biomatrices, especially in whole blood. In this study, two modern and environmentally friendly microextraction strategies—namely, solid-phase microextraction (SPME) and dispersive liquid-liquid microextraction (DLLME)—are optimized and compared with respect to their extraction efficiencies for four immunosuppressants (tacrolimus, TAC; novolimus, NOV; everolimus, EVE; sirolimus, SIR) in serum and whole blood samples. Analyte separation was carried out using a Kinetex® C18 column (50 × 2.1 mm, 1.7 μm) thermostated at 55 °C, and analyses were performed in positive ion mode with a total analysis time of 6.5 min. The results revealed that, while the optimized SPME and DLLME protocols showed similar efficiency for the extraction of TAC, SIR, and EVE from biofluids, the DLLME protocol exhibited significantly better performance for the extraction of the novel immunosuppressive drug, NOV. Therefore, DLLME using ethanol (dispersive solvent) and chloroform (extraction solvent) in a ratio of 800/200 (v/v) was selected for further studies. The final optimized DLLME-LC-MS/MS conditions enabled a limit of quantitation of 1 ng/mL for TAC, 2.5 ng/mL for SIR and EVE, and 25 ng/mL for NOV. The results presented herein demonstrate that the proposed method can be successfully applied for the analysis of selected immunosuppressants in real samples during pharmacokinetic studies and therapeutic monitoring.  相似文献   

5.
目的综述分散液相微萃取(dispersive liquid-liquid microextraction,DLLME)的研究进展及其在药物分析中的应用。方法查阅国内外文献,并进行分析和总结。结果 DLLME是一种新型样品前处理方法,具有操作简单、快速、有机溶剂消耗量少、富集倍数高等优点,受到研究者的重视。该技术发展迅速、应用广泛。结论 DLLME在药物快速分析中的应用前景广阔。  相似文献   

6.

Background

Tramadol is an opioid, synthetic analog of codeine and has been used for the treatment of acute or chronic pain may be abused. In this work, a developed Dispersive liquid liquid microextraction (DLLME) as binary solvents-based dispersive liquid-liquid microextraction (BS-DLLME) combined with high performance liquid chromatography (HPLC) with fluorescence detection (FD) was employed for determination of tramadol in the urine samples. This procedure involves the use of an appropriate mixture of binary extraction solvents (70 μL CHCl3 and 30 μL ethyl acetate) and disperser solvent (600 μL acetone) for the formation of cloudy solution in 5 ml urine sample comprising tramadol and NaCl (7.5%, w/v). After centrifuging, the small droplets of extraction solvents were precipitated. In the final step, the HPLC with fluorescence detection was used for determination of tramadol in the precipitated phase.

Results

Various factors on the efficiency of the proposed procedure were investigated and optimized. The detection limit (S/N = 3) and quantification limit (S/N = 10) were found 0.2 and 0.9 μg/L, respectively. The relative standard deviations (RSD) for the extraction of 30 μg L of tramadol was found 4.1% (n = 6). The relative recoveries of tramadol from urine samples at spiking levels of 10, 30 and 60 μg/L were in the range of 95.6 – 99.6%.

Conclusions

Compared with other methods, this method provides good figures of merit such as good repeatability, high extraction efficiency, short analysis time, simple procedure and can be used as microextraction technique for routine analysis in clinical laboratories.  相似文献   

7.
Since December 2019, global batch recalls of metformin pharmaceutical products have highlighted an urgent need to control N-nitrosodimethylamine (NDMA) contamination to demonstrate patient safety and maintain supply of this essential medicine. Due to their formulation, the metformin extended-release products present difficult analytical challenges for conventional sample preparation procedures, such as artefactual (in-situ) NDMA formation, gelling, and precipitation. To overcome these challenges, a new version of dispersive liquid-liquid microextraction (DLLME) termed dispersant-first DLLME (DF-DLLME) was developed and optimized for the analysis of NDMA in metformin extended-release products using a detailed Design of Experiments (DoE) to optimize sample preparation. Gas chromatography-high resolution accurate mass-mass spectrometry (GC-HRAM-MS) combined with automated DF-DLLME were successfully applied to monitor the NDMA levels of two different metformin extended-release AstraZeneca products to ultra-trace levels (parts per billion). The additional benefits associated with DF-DLLME, which include automation, time/costs saving, and greener sample preparation, make this novel technique easier to transfer from a development to Quality Control (QC) environment. In addition, this also offers an attractive candidate for the wider platform analysis of N-nitrosamines in pharmaceutical drug products.  相似文献   

8.
Gulf War personnel were given pyridostigmine bromide (PB) as a prophylactic treatment against organophosphate nerve agent exposure, and were exposed to the insecticide permethrin and the insect repellent N,N-diethyl-m-toluamide (DEET). The purpose of this study was to assess the effects of PB to modulate release of inflammatory biomarkers after topical chemical exposure to chemical mixtures containing permethrin and DEET applied in ethanol or water vehicles. Treatments were topically applied to isolated perfused porcine skin flaps (IPPSFs). Concentrations of interleukin-8 (IL-8), tumor necrosis factor-alpha (TNF-alpha) and prostaglandin E(2) (PGE(2)) were assayed in perfusate to probe for potential inflammatory effects after complex mixture application. IPPSFs (n=4/treatment) were topically dosed with mixtures of permethrin, DEET, and permethrin/DEET, in ethanol. Each treatment was repeated with perfusate spiked with 50 ng/ml of PB. Perfusate was also spiked with 30 ng/ml diisopropylfluorophosphate to simulate low level organophosphate nerve agent exposure. Timed IPPSF venous effluent samples (0.5,1,2,4, and 8 h) were assayed by ELISA for IL-8 and TNF-alpha and by EIA for PGE(2). Overall, PB infusion caused a decrease or IL-8 and PGE(2) release. Effects on TNF-alpha were vehicle dependent. To probe the potential mechanism of this PB effect, human epidermal keratinocyte HEK cell cultures were exposed to permethrin DEET permethrin/DEET, with and without PB in DMSO. IL-8 was assayed at 1, 2, 4, 8, 12 and 24 h. PB suppressed IL-8 in permethrin and ethanol treatment from 4 to 24 h confirming the IPPSF results. In conclusion, these studies suggest that systemic exposure to PB suppressed IL-8 release at multiple time points in two skin model systems. This interaction merits further study.  相似文献   

9.
Levels of the biomarker of DNA oxidative damage 8-hydroxy-2'-deoxyguanosine (8-OHdG) in rat urine following dermal exposure to DEET (N,N-diethyl-m-toluamide) and permethrin, alone and in combination have been determined. A group of five rats for each time point were treated with a single dermal dose of 400 mg/kg of DEET, 1.3 mg/kg of permethrin or their combination. Urine samples were collected 2,4,8,16,24,48, and 72 h following application. Control urine samples of rats treated with ethanol were also collected at the same time intervals. Solid phase extraction coupled with high performance liquid chromatography (HPLC) with UV detection at 254 nm was used for determination of 2'-deoxyguanosine, and (8-OHdG). The limits of detection (LOD) were 0.5 ng of both 2'-deoxyguanosine and 8-OHdG. Their average percentage recoveries from urine samples were between 70-85%. A single dermal dose of DEET or in combination with permethrin significantly induced levels of (8-OHdG) that are excreted in the urine over the time course of the study compared to control urine samples. Permethrin did not cause significant increase in the amount of 8-OHdG in the urine. Levels of 8-OHdG in urine excreted at 24 h were 1009+/-342, 1701+/-321, 1140+/-316, and 1897+/-231 ng following treatment with ethanol, DEET, permethrin, and DEET+permethrin, respectively. The results indicate that dermal administration of DEET could generate free radical species hence cause DNA oxidative damage in rats.  相似文献   

10.
Military personnel deployed in the Persian Gulf War (PGW) were exposed to a combination of chemicals, including pyridostigmine bromide (PB), DEET, and permethrin. We investigated the dose-response effects of these chemicals, alone or in combination, on the sensorimotor performance and cholinergic system of male Sprague-Dawley rats. Animals were treated with a daily dermal dose of DEET and/or permethrin for 60 days and/or PB (gavage) during the last 15 days. Neurobehavioral performance was assessed on day 60 following the beginning of the treatment with DEET and permethrin. The rats were sacrificed 24 h after the last treatment for biochemical evaluations. PB alone, or in combination with DEET, or DEET and permethrin resulted in deficits in beam-walk score and longer beam-walk times compared to controls. PB alone, or in combination with DEET, permethrin, or DEET and permethrin caused impairment in incline plane performance and forepaw grip strength. PB alone at all doses slightly inhibited plasma butyrylcholinesterase activity, whereas combination of PB with DEET or permethrin increased its activity. Brainstem acetylcholinesterase (AChE) activity significantly increased following treatment with combinations of either DEET or permethrin at all doses, whereas the cerebellum showed a significant increase in AChE activity following treatment with a combination of PB/DEET/permethrin. Co-exposure to PB, DEET, and permethrin resulted in significant inhibition in AChE in midbrain. PB alone or in combination with DEET and permethrin at all doses increased ligand binding for m2 muscarinic acetylcholine receptor in the cortex. In addition, PB and DEET together or a combination of PB, DEET, and permethrin significantly increased ligand binding for nicotinic acetylcholine receptor. These results suggest that exposure to various doses of PB, alone and in combination with DEET and permethrin, leads to sensorimotor deficits and differential alterations of the cholinergic system in the CNS.  相似文献   

11.
A rapid and highly sensitive gas chromatography-mass spectrometry (GC-MS) method for simultaneous determination of N,N-diethyl-m-toluamide (DEET) and permethrin with (2)H(10)-phenanthrene (98 atom %) as an internal standard and a separate external standard high-performance liquid chromatography (HPLC) method for pyridostigmine bromide (PB) determination in human plasma were developed and validated. The GC-MS method for DEET and permethrin quantification utilizes a one-step extraction with tert-butylmethylether. The HPLC method for PB quantification involves a solid-phase extraction and UV detection. The range of the analytical method for DEET and permethrin was 1 ng/mL to 100 ng/mL and for PB was 5 ng/mL to 100 ng/mL. Recovery from plasma proved to be more than 80%. The intraday precision ranged from 1.3% to 8% for DEET, from 2.1% to 11.4% for permethrin, and from 3.0% to 4.8% for PB. The interday precision was 3% for DEET, ranged from 5% to 9% for permethrin, and from 5% to 9% for PB. The accuracy for the limit of quantification was 92% +/- 8% relative standard deviation (RSD) for DEET, 112% +/- 11% RSD for permethrin, and 109% +/- 5% RSD for PB. All 3 compounds were stable in human plasma at -80 degrees C for at least 12 months and after 2 freeze-thaw cycles with RSD values ranging from 7.1% (DEET, 80 ng/mL) to 8.1% (DEET, 8 ng/mL), from 2.3% (permethrin, 80 ng/mL) to 11.6 % (permethrin, 8 ng/mL), and from 0.2% (PB, 80 ng/mL) to 3.6% (PB, 8 ng/mL). Both methods were successfully applied to pharmacokinetic/ pharmacodynamic studies of combined exposure of DEET (skin application), permethrin (treated uniforms), and PB (30 mg orally three times/day for four doses) in healthy volunteers (n = 81).  相似文献   

12.
A simple, rapid and efficient extraction procedure, partitioned dispersive liquid-liquid microextraction, has been developed in combination with near-infrared spectroscopy for the extraction and discrimination of dimethoate from aqueous samples. For this technique, the appropriate mixture of extraction solvent (CCl(4)) and disperser solvent (THF) was utilized. Partial least squares discriminant analysis was applied to build the model with several pre-process methods over the wavenumber regions between 7100 cm(-1) to 7300 cm(-1). The best model gave satisfactory classification accuracy, 98.6% for calibration set (n=74) and 97.6% for prediction set (n=42), using preprocessing of standard normal variate followed by Savitzky-Golay first derivative. The method was successfully applied to bottled water, tap water, lake water and farm water samples. The results demonstrated the possibility of near-infrared spectroscopy after partitioned dispersive liquid-liquid microextraction for the identification of water contaminated by dimethoate.  相似文献   

13.
1. The in vitro human plasma activity and liver microsomal metabolism of pyridostigmine bromide (PB), a prophylactic treatment against organophosphate nerve agent attack, N,N-diethyl-m-toluamide (DEET), an insect repellent, and permethrin, a pyrethroid insecticide, either alone or in combination were investigated. 2. The three chemicals disappeared from plasma in the following order: permethrin > PB > DEET. The combined incubation of DEET with either permethrin or PB had no effect on permethrin or PB. Binary incubation with permethrin decreased the metabolism of PB and its disappearance from plasma and binary incubation with PB decreased the metabolism of permethrin and its clearance from plasma. Incubation with PB and/or permethrin shortened the DEET terminal half-life in plasma. These agents behaved similarly when studied in liver microsomal assays. The combined incubation of DEET with PB or permethrin (alone or in combination) diminished DEET metabolism in microsomal systems. 3. The present study evidences that PB and permethrin are metabolized by both human plasma and liver microsomal enzymes and that DEET is mainly metabolized by liver oxidase enzymes. Combined exposure to test chemicals increases their neurotoxicity by impeding the body's ability to eliminate them because of the competition for detoxifying enzymes.  相似文献   

14.
气相色谱法测定阿克他利中的有机溶剂残留量   总被引:1,自引:0,他引:1  
兰静 《天津药学》2011,23(2):16-18
目的:建立毛细管气相色谱法测定阿克他利中的有机溶剂残留量。方法:采用HP-FFAP毛细管气相色谱柱,FID检测器,以正丙醇为内标进行测定。结果:乙醇、醋酸、DMF的线性范围分别为50~800μg/ml(r=0.999 9)、50~800μg/ml(r=0.999 7)和8.8~140.8μg/ml(r=0.999 9);乙醇、醋酸、DMF的平均回收率分别为100.7%、100.2%和99.7%;RSD分别为0.87%、1.32%和1.47%(n=9)。结论:该方法简单、灵敏、准确、重现性好,适用于阿克他利中的有机溶剂残留量的测定。  相似文献   

15.
Since their return from Persian Gulf War (PGW), many veterans have complained of symptoms including muscle and joint pain, ataxia, chronic fatigue, headache, and difficulty with concentration. The causes of the symptoms remain unknown. Because these veterans were exposed to a combination of chemicals including pyridostigmine bromide (PB), DEET, and permethrin, we investigated the effects of these agents, alone and in combination, on the sensorimotor behavior and central cholinergic system of rats. Male Sprague-Dawley rats (200-250 gm) were treated with DEET (40 mg/kg, dermal) or permethrin (0.13 mg/kg, dermal), alone and in combination with PB (1.3 mg/kg, oral, last 15 days only), for 45 days. Sensorimotor ability was assessed by a battery of behavioral tests that included beam-walk score, beam-walk time, incline plane performance, and forepaw grip on days 30 and 45 following the treatment. On day 45 the animals were sacrificed, and plasma and CNS cholinesterase, and brain choline acetyl transferase, muscarinic and nicotinic acetylcholine receptors were evaluated. Animals treated with PB, alone or in combination with DEET and permethrin, showed a significant deficit in beam-walk score as well as beam-walk time as compared with controls. Treatment with either DEET or permethrin, alone or in combination with each other, did not have a significant effect on beam-walk score. All chemicals, alone or in combination, resulted in a significant impairment in incline plane testing on days 30 and 45 following treatment. Treatment with PB, DEET, or permethrin alone did not have any inhibitory effect on plasma or brain cholinesterase activities, except that PB alone caused moderate inhibition in midbrain acetylcholinesterase (AChE) activity. Treatment with permethrin alone caused significant increase in cortical and cerebellar AChE activity. A combination of DEET and permethrin or PB and DEET led to significant decrease in AChE activity in brainstem and midbrain and brainstem, respectively. A significant decrease in brainstem AChE activity was observed following combined exposure to PB and permethrin. Coexposure with PB, DEET, and permethrin resulted in significant inhibition in AChE in brainstem and midbrain. No effect was observed on choline acetyl transferase activity in brainstem or cortex, except combined exposure to PB, DEET, and permethrin caused a slight but significant increase in cortical choline acetyltransferase activity. Treatment with PB, DEET, and permethrin alone caused a significant increase in ligand binding for m2 muscarinic acetylcholine receptor (mAChR) in the cortex. Coexposure to PB, DEET, and permethrin did not have any effect over that of PB-induced increase in ligand binding. There was no significant change in ligand binding for nicotinic acetylcholine receptor (nAChR) associated with treatment with the chemical alone; a combination of PB and DEET or coexposure with PB, DEET, and permethrin caused a significant increase in nAChR ligand binding in the cortex. Thus, these results suggest that exposure to physiologically relevant doses of PB, DEET, and permethrin, alone or in combination, leads to neurobehavioral deficits and region-specific alterations in AChE and acetylcholine receptors.  相似文献   

16.
The use of dispersive liquid–liquid microextraction (DLLME) is proposed for the preconcentration of thirteen lipophilic marine toxins in seawater samples. For this purpose, 0.5 mL of methanol and 440 µL of chloroform were injected into 12 mL of sample. The enriched organic phase, once evaporated and reconstituted in methanol, was analyzed by reversed-phase liquid chromatography with triple-quadrupole tandem mass spectrometry. A central composite design multivariate method was used to optimize the interrelated parameters affecting DLLME efficiency. The absence of any matrix effect in the samples allowed them to be quantified against aqueous standards. The optimized procedure was validated by recovery studies, which provided values in the 82–123% range. The detection limits varied between 0.2 and 5.7 ng L−1, depending on the analyte, and the intraday precision values were in the 0.1–7.5% range in terms of relative standard deviation. Ten water samples taken from different points of the Mar Menor lagoon were analyzed and were found to be free of the studied toxins.  相似文献   

17.
In this study, we determined levels of 3-nitrotyrosine in rat urine following administration of a single oral dose of 13 mg/kg pyridostigmine bromide (PB) (3-dimethylaminocarbonyloxy-N-methylpyridinum bromide), a single dermal dose of 400 mg/kg N,N-diethyl-m-toluamide (DEET) and a single dermal dose of 1.3 mg/kg permethrin, alone and in combination. Urine samples were collected from five treated and five control rats at 4, 8, 16, 24, 48, and 72 h following dosing. Solid-phase extraction coupled with high-performance liquid chromatography with ultraviolet detection at 274 nm was used for the determination of tyrosine and 3-nitrotyrosine. A single oral dose of PB and a single dermal dose of DEET or their combination significantly (P<0.05) increased levels of 3-nitrotyrosine starting 24 h after dosing compared with control urine samples. The maximum increase of 3-nitroytyrosine was detected 48 h after combined administration of PB and DEET. The ratio of 3-nitrotyrosine to tyrosine in urine excreted 48 h after dosing was 0.19+/-0.04, 0.20+/-0.05, 0.28+/-0.03, 0.32+/-0.04, 0.19+/-0.05, 0.42+/-0.04, 0.27+/-0.03, 0.36+/-0.04, and 0.48+/-0.04 following administration of water, ethanol, PB, DEET, permethrin, PB+DEET, PB+permethrin, DEET+permethrin, and PB+DEET+permethrin, respectively. The results indicate that an oral dose of PB and a dermal administration of DEET, alone and in combination, could generate free radical species, and thus increase levels of 3-nitrotyrosine in rat urine. Induction of 3-nitrotyrosine, a marker of oxidative stress, following exposure to these compounds could be significant in understanding the proposed enhanced toxicity following combined exposure to these compounds.  相似文献   

18.
Malathion (O,O-dimethyl-S-[1,2-carbethoxyethyl]phosphorodithionate), DEET (N,N-diethyl-m-toluamide), and permethrin [(+/-)-cis/trans-3-(2,2-dichloroethenyl)-2,2-dimethylcyclopropane carboxylic acid (3-phenoxyphenyl) methyl ester] are commonly used pesticides. To determine the effects of the dermal application of these chemicals, alone or in combination, the sensorimotor behavior, central cholinergic system, and histopathological alterations were studied in adult male Sprague-Dawley rats following a daily dermal dose of 44.4 mg/kg malathion, 40 mg/kg DEET, and 0.13 mg/kg permethrin, alone and in combination for 30 d. Neurobehavioral evaluations of sensorimotor functions included beam-walking score, beam walk time, inclined plane, and grip response assessments. Twenty-four hours after the last treatment with each chemical alone or in combination all behavioral measures were impaired. The combination of DEET and permethrin, malathion and permethrin, or the three chemicals together resulted in greater impairments in inclined performance than permethrin alone. Only animals treated with a combination of DEET and malathion or with DEET and permethrin exhibited significant increases in plasma butyrlcholinesterase (BChE) activity. Treatment with DEET or permethrin alone, malathion and permethrin, or DEET and permethrin produced significant increases in cortical acetylcholinesterase (AChE) activity. Combinations of malathion and permethrin or of DEET and permethrin produced significant decreases in midbrain AChE activity. Animals treated with DEET alone exhibited a significant increase in cortical m2 muscarinic ACh receptor binding. Quantification of neuron density in the dentate gyrus, CA1 and CA3 subfields of the hippocampus, midbrain, brainstem, and cerebellum revealed significant reductions in the density of surviving neurons with various treatments. These results suggest that exposure to real-life doses of malathion, DEET, and permethrin, alone or in combination, produce no overt signs of neurotoxicity but induce significant neurobehavioral deficits and neuronal degeneration in brain.  相似文献   

19.
1.?The in vitro human plasma activity and liver microsomal metabolism of pyridostigmine bromide (PB), a prophylactic treatment against organophosphate nerve agent attack, N,N-diethyl-m-toluamide (DEET), an insect repellent, and permethrin, a pyrethroid insecticide, either alone or in combination were investigated.

2.?The three chemicals disappeared from plasma in the following order: permethrin > PB > DEET. The combined incubation of DEET with either permethrin or PB had no effect on permethrin or PB. Binary incubation with permethrin decreased the metabolism of PB and its disappearance from plasma and binary incubation with PB decreased the metabolism of permethrin and its clearance from plasma. Incubation with PB and/or permethrin shortened the DEET terminal half-life in plasma. These agents behaved similarly when studied in liver microsomal assays. The combined incubation of DEET with PB or permethrin (alone or in combination) diminished DEET metabolism in microsomal systems.

3.?The present study evidences that PB and permethrin are metabolized by both human plasma and liver microsomal enzymes and that DEET is mainly metabolized by liver oxidase enzymes. Combined exposure to test chemicals increases their neurotoxicity by impeding the body's ability to eliminate them because of the competition for detoxifying enzymes.  相似文献   

20.
In this study we examined the interaction of the anti-nerve agent drug pyridostigmine bromide (PB, 3,3-dimethylaminocarbonyloxy- N-methylpyridiniyum bromide), the insect repellent DEET ( N, N-diethyl- m-toluamide), and the insecticide permethrin [3-(2,2-dichloroethyl)-2,2-dimethylcyclopropanecarboxylic acid (3-phenoxyphenyl)methyl ester] in binding to human serum albumin (HSA). Concentrations between 500 ng/ml and 10 microg/ml PB, DEET and permethrin, alone or in combination, were incubated with HSA at 37 degrees C for 60 min. Concentrations of PB, DEET and permethrin were determined using high performance liquid chromatography (HPLC). The results showed that 81.2+/-4.2%, and 84.6+/-2.5% of the initial concentration of PB was bound to HSA when incubated alone or in combination with DEET or permethrin, respectively. DEET and permethrin did not significantly interact with HSA after 1 h of incubation. Incubation of combinations of two or three compounds did not significantly alter the binding pattern of any of the compounds with HSA. These results showed that PB is highly bound to albumin protein, while the competition between PB, DEET and permethrin on binding sites of HSA as a possible site of interaction following combined administration in vivo is not likely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号