首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Background: Clonidine decreases the vasoconstriction and shivering thresholds. It thus seems likely that the alpha2 agonist dexmedetomidine will also impair control of body temperature. Accordingly, the authors evaluated the dose-dependent effects of dexmedetomidine on the sweating, vasoconstriction, and shivering thresholds. They also measured the effects of dexmedetomidine on heart rate, blood pressures, and plasma catecholamine concentrations.

Methods: Nine male volunteers participated in this randomized, double-blind, cross-over protocol. The study drug was administered by computer-controlled infusion, targeting plasma dexmedetomidine concentrations of 0.0, 0.3, and 0.6 ng/ml. Each day, skin and core temperatures were increased to provoke sweating and then subsequently reduced to elicit vasoconstriction and shivering. Core-temperature thresholds were computed using established linear cutaneous contributions to control of sweating, vasoconstriction, and shivering. The dose-dependent effects of dexmedetomidine on thermoregulatory response thresholds were then determined using linear regression. Heart rate, arterial blood pressures, and plasma catecholamine concentrations were determined at baseline and at each threshold.

Results: Neither dexmedetomidine concentration increased the sweating threshold from control values. In contrast, dexmedetomidine administration reduced the vasoconstriction threshold by 1.61 +/- 0.80 [degree sign] Celsius [center dot] ng sup -1 [center dot] ml (mean +/- SD) and the shivering threshold by 2.40 +/- 0.90 [degree sign] Celsius [center dot] ng sup -1 [center dot] ml. Hemodynamic responses and catecholamine concentrations were reduced from baseline values, but they did not differ at the two tested dexmedetomidine doses.  相似文献   


3.
Background: Desflurane decreases the vasoconstriction and shivering thresholds disproportionately at high anesthetic concentrations. This result contrasts with the authors' previous report that isoflurane decreases the vasoconstriction threshold linearly. It is surprising that the basic shape of the concentration-response curve should differ with these two otherwise similar anesthetics. Therefore, the hypothesis that isoflurane produces a nonlinear reduction in the vasoconstriction threshold was tested. Because the effect of isoflurane on shivering remains unknown, the extent to which isoflurane reduces the shivering threshold also was determined.

Methods: Eight men volunteered to be studied on four randomly ordered days: (1) a target end-tidal isoflurane concentration of 0.55%, (2) a target concentration of 0.7%, (3) control (no anesthesia) and a target end-tidal concentration of 0.85%, and (4) a target end-tidal concentration of 1.0%. Volunteers were surface-cooled until peripheral vasoconstriction and shivering were observed. We arithmetically compensated for changes in skin temperature using the established linear cutaneous contributions to control for each response. From the calculated thresholds (core temperatures triggering responses at a designated skin temperature of 34 degrees C), the concentration-response relation was determined.

Results: Isoflurane administration produced a dose-dependent reduction in the vasoconstriction and shivering thresholds, decreasing each [nearly equal] 4.6 degrees C at an end-tidal concentration of 1%. Residual analysis indicated that the vasoconstriction and shivering thresholds were decreased in a nonlinear fashion during isoflurane administration. The vasoconstriction-to-shivering range was 1.5+/- 0.8 degree C without isoflurane, and did not change significantly during isoflurane administration.  相似文献   


4.
Background: Meperidine (pethidine) reportedly treats postoperative shivering better than equianalgesic doses of other [micro sign]-receptor agonists. The authors' first goal was to develop a method to accurately determine postoperative shivering threshold, and then to determine the extent to which meperidine and sufentanil inhibit postoperative shivering.

Methods: A computer-controlled infusion was started before operation in 30 patients, with target plasma concentrations of 0.15, 0.30, or 0.60 [micro sign]g/ml meperidine or 0.1, 0.15, or 0.2 ng/ml sufentanil targeted; patients were randomly assigned to each drug and concentration. The infusion was continued throughout surgery and recovery. Anesthesia was maintained with nitrous oxide and isoflurane. Core temperatures were [almost equal to] 34 [degree sign]C by the end of surgery. The compensated core temperature at which visible shivering and a 20% decrease in steady-state oxygen consumption was recorded identified the shivering threshold. A blood sample for opioid concentration was obtained from each patient at this time. The ability of each opioid to reduce the shivering threshold was evaluated using linear regression.

Results: End-tidal isoflurane concentrations were <0.2% in each group at the time of extubation, and shivering occurred [almost equal to] 1 h later. Meperidine linearly decreased the shivering threshold: threshold ([degree sign]C) = -2.8 [middle dot] [meperidine ([micro sign]g/ml)] + 36.2; r2 = 0.64, P = 0.0005. Sufentanil also linearly decreased the shivering threshold: threshold ([degree sign]C) = -7.8 [middle dot] [sufentanil (ng/ml)] + 36.9; r (2) = 0.46, P = 0.02.  相似文献   


5.
6.
Background: Skin temperature is best kept constant when determining response thresholds because both skin and core temperatures contribute to thermoregulatory control. In practice, however, it is difficult to evaluate both warm and cold thresholds while maintaining constant cutaneous temperature. A recent study shows that vasoconstriction and shivering thresholds are a linear function of skin and core temperatures, with skin contributing 20 plus/minus 6% and 19 plus/minus 8%, respectively. (Skin temperature has long been known to contribute [nearly equal] 10% to the control of sweating.) Using these relations, we were able to experimentally manipulate both skin and core temperatures, subsequently compensate for the changes in skin temperature, and finally report the results in terms of calculated core- temperature thresholds at a single designated skin temperature.

Methods: Five volunteers were each studied on 4 days: (1) control; (2) a target blood propofol concentration of 2 micro gram/ml; (3) a target concentration of 4 micro gram/ml; and (4) a target concentration of 8 micro gram/ml. On each day, we increased skin and core temperatures sufficiently to provoke sweating. Skin and core temperatures were subsequently reduced to elicit peripheral vasoconstriction and shivering. We mathematically compensated for changes in skin temperature by using the established linear cutaneous contributions to the control of sweating (10%) and to vasoconstriction and shivering (20%). From these calculated core-temperature thresholds (at a designated skin temperature of 35.7 degrees Celsius), the propofol concentration- response curves for the sweating, vasoconstriction, and shivering thresholds were analyzed using linear regression. We validated this new method by comparing the concentration-dependent effects of propofol with those obtained previously with an established model.

Results: The concentration-response slopes for sweating and vasoconstriction were virtually identical to those reported previously. Propofol significantly decreased the core temperature triggering vasoconstriction (slope = 0.6 plus/minus 0.1 degree Celsius *symbol* micro gram sup -1 *symbol* ml sup -1; r2 = 0.98 plus/minus 0.02) and shivering (slope = 0.7 plus/minus 0.1 degree Celsius *symbol* micro gram sup -1 *symbol* ml sup -1; r2 = 0.95 plus/minus 0.05). In contrast, increasing the blood propofol concentration increased the sweating threshold only slightly (slope = 0.1 plus/minus 0.1 degree Celsius *symbol* micro gram sup -1 *symbol* ml sup -1; r2 = 0.46 plus/minus 0.39).  相似文献   


7.
Background: Postanesthetic shivering develops in as many as one half of patients recovering from isoflurane anesthesia. Cholinergic stimulation of the hypothalamic-pituitary-adrenal axis and adrenal medulla by physostigmine enhances secretion of arginine vasopressin, epinephrine, and norepinephrine. Because the hypothalamus is the dominant thermoregulatory controller in mammals, and these neurotransmitters may be involved in body temperature control, physostigmine administration may influence the incidence of shivering. Accordingly, the authors tested the hypothesis that physostigmine administration inhibits postanesthetic shivering. Its efficacy was compared with that of saline (negative control) and meperidine and clonidine (positive controls).

Methods: Sixty patients having surgery of the ear or nose were tested. General anesthesia was induced with 2 mg/kg propofol, 0.1 mg/kg vecuronium, and 1.5 micro gram/kg fentanyl and maintained with isoflurane (1.5 +/- 0.4%) in 70% nitrous oxide. At the end of surgery, the patients were randomly assigned to receive an intravenous bolus of 0.04 mg/kg physostigmine, isotonic saline, 0.5 mg/kg meperidine, or 1.5 micro gram/kg clonidine. Heart rate, mean arterial blood pressure, oxygen saturation, visual analog pain score, temperature, and postanesthetic shivering were measured during recovery.

Results: Postanesthetic shivering occurred in 6 of 15 (40%) patients given saline. In contrast, postanesthetic shivering was significantly reduced in physostigmine-treated patients (1 of 15, or 7%) and was absent in patients given clonidine or meperidine.  相似文献   


8.
Background: Thermoregulatory shivering can be characterized by its threshold (triggering core temperature), gain (incremental intensity increase with further core temperature deviation), and maximum intensity. Meperidine (a combined micro- and kappa-agonist) treats shivering better than equianalgesic doses of pure micro-opioid agonists. Meperidine's special antishivering action is mediated, at least in part, by a disproportionate decrease in the shivering threshold. That is, meperidine decreases the shivering threshold twice as much as the vasoconstriction threshold, whereas alfentanil (a pure micro-agonist) decreases the vasoconstriction and shivering thresholds comparably. However, reductions in the gain or maximum shivering intensity might also contribute to the clinical efficacy of meperidine. Accordingly, we tested the hypothesis that meperidine reduces the gain and maximum intensity of shivering much more than alfentanil does.

Methods: Ten volunteers were each studied on three separate days: (1) control (no drug); (2) a target total plasma meperidine concentration of 1.2 micro gram/ml; and (3) a target plasma alfentanil concentration of 0.2 micro gram/ml. Skin temperatures were maintained near 31 [degree sign] Celsius, and core temperatures were decreased by central-venous infusion of cold lactated Ringer's solution until maximum shivering intensity was observed. Shivering was evaluated using oxygen consumption and electromyography. A sustained increase in oxygen consumption identified the shivering threshold. The gain of shivering was calculated as the slope of the oxygen consumption versus core temperature regression, and as the slope of electromyographic intensity versus core temperature regression.

Results: Meperidine and alfentanil administration significantly decreased the shivering thresholds. However, neither meperidine nor alfentanil reduced the gain of shivering, as determined by either oxygen consumption or electromyography. Opioid administration also failed to significantly decrease the maximum intensity of shivering.  相似文献   


9.
Reduction in the Shivering Threshold Is Proportional to Spinal Block Height   总被引:4,自引:0,他引:4  
Background: Hypothermia is nearly as common, and may be as severe, during spinal and epidural anesthesia as during general anesthesia. The authors have proposed that thermoregulatory failure results when regional anesthesia increases apparent leg skin temperature to a level far exceeding actual leg skin temperature. Extensive dermatomal blocks will alter thermal input to the hypothalamus from a greater skin-surface area more than less extensive ones and thus might be expected to impair central thermoregulatory control more. Accordingly, they tested the hypothesis that reduction in the shivering threshold is directly related to the number of dermatomes blocked during spinal anesthesia.

Methods: Eleven men, aged 62+/-6 yr (mean+/-SD), undergoing urologic surgery were studied. Ice-cold lactated Ringer's solution was administered intravenously before spinal blockade, and the shivering threshold (triggering core temperature) was established. Spinal anesthesia then was induced using a randomly assigned dose of 0.5% bupivacaine (2-4 ml). Again, sufficient cold lactated Ringer's solution was given to induce shivering. Tympanic membrane, ambient and skin temperatures were measured, and extent of block was defined by loss of temperature discrimination. Presence of shivering was evaluated by a blinded observer. Mean upper-body skin and ambient temperatures, cooling rates and intravenous fluid volumes at the two thresholds were compared using paired, two-tailed t tests (P < 0.05). Linear regression defined the relationship between reduction in shivering threshold and the number of dermatomes blocked.

Results: There were no significant differences between mean upper-body skin and ambient temperatures, cooling rates or intravenous fluid volumes at the control and spinal shivering thresholds. Spinal anesthesia reduced the shivering threshold in direct relation to the number of dermatomes blocked: Delta threshold = 0.74 - 0.06 (dermatomes blocked); r2 = 0.58, P < 0.006.  相似文献   


10.
Background: The contribution of mean skin temperature to the thresholds for sweating and active precapillary vasodilation has been evaluated in numerous human studies. In contrast, the contribution of skin temperature to the control of cold responses such as arteriovenous shunt vasoconstriction and shivering is less well established. Accordingly, the authors tested the hypothesis that mean skin and core temperatures are linearly related at the vasoconstriction and shivering thresholds in men. Because the relation between skin and core temperatures might vary by gender, the cutaneous contribution to thermoregulatory control also was determined in women.

Methods: In the first portion of the study, six men participated on 5 randomly ordered days, during which mean skin temperatures were maintained near 31, 34, 35, 36, and 37 degrees Celsius. Core hypothermia was induced by central venous infusion of cold lactated Ringer's solution sufficient to induce peripheral vasoconstriction and shivering. The core-temperature thresholds were then plotted against skin temperature and a linear regression fit to the values. The relative skin and core contributions to the control of each response were calculated from the slopes of the regression equations. In the second portion of the study, six women participated on three randomly ordered days, during which mean skin temperatures were maintained near 31, 35, and 37 degrees Celsius. At each designated skin temperature, core hypothermia sufficient to induce peripheral vasoconstriction and/or shivering was again induced by central venous infusion of cold lactated Ringer's solution. The cutaneous contributions to control of each response were then calculated from the skin- and core-temperature pairs at the vasoconstriction and shivering thresholds.

Results: There was a linear relation between mean skin and core temperatures at the response thresholds in the men: r = 0.90 plus/minus 0.06 for vasoconstriction and r = 0.94 plus/minus 0.07 for shivering. Skin temperature contributed 20 plus/minus 6% to vasoconstriction and 19 plus/minus 8% to shivering. Skin temperature in the women contributed to 18 plus/minus 4% to vasoconstriction and 18 plus/minus 7% to shivering, values not differing significantly from those in men. There was no apparent correlation between the cutaneous contributions to vasoconstriction and shivering in individual volunteers.  相似文献   


11.
12.
Background: Thermoregulatory control is based on both skin and core temperatures. Skin temperature contributes [approximate] 20% to control of vasoconstriction and shivering in unanesthetized humans. However, this value has been used to arithmetically compensate for the cutaneous contribution to thermoregulatory control during anesthesia-although there was little basis for assuming that the relation was unchanged by anesthesia. It even remains unknown whether the relation between skin and core temperatures remains linear during anesthesia. We therefore tested the hypothesis that mean skin temperature contributes [approximate] 20% to control of vasoconstriction and shivering, and that the contribution is linear during general anesthesia.

Methods: Eight healthy male volunteers each participated on 3 separate days. On each day, they were anesthetized with 0.6 minimum alveolar concentrations of isoflurane. They then were assigned in random order to a mean skin temperature of 29, 31.5, or 34 [degree sign]C. Their cores were subsequently cooled by central-venous administration of fluid at [almost equal to] 3 [degree sign]C until vasoconstriction and shivering were detected. The relation between skin and core temperatures at the threshold for each response in each volunteer was determined by linear regression. The proportionality constant was then determined from the slope of this regression. These values were compared with those reported previously in similar but unanesthetized subjects.

Results: There was a linear relation between mean skin and core temperatures at the vasoconstriction and shivering thresholds in each volunteer: r2 = 0.98 +/- 0.02 for vasoconstriction, and 0.96 +/- 0.04 for shivering. The cutaneous contribution to thermoregulatory control, however, differed among the volunteers and was not necessarily the same for vasoconstriction and shivering in individual subjects. Overall, skin temperature contributed 21 +/- 8% to vasoconstriction, and 18 +/- 10% to shivering. These values did not differ significantly from those identified previously in unanesthetized volunteers: 20 +/- 6% and 19 +/- 8%, respectively.  相似文献   


13.
14.
Background: The analgesic nefopam does not compromise ventilation, is minimally sedating, and is effective as a treatment for postoperative shivering. The authors evaluated the effects of nefopam on the major thermoregulatory responses in humans: sweating, vasoconstriction, and shivering.

Methods: Nine volunteers were studied on three randomly assigned days: (1) control (saline), (2) nefopam at a target plasma concentration of 35 ng/ml (low dose), and (3) nefopam at a target concentration of 70 ng/ml (high dose, approximately 20 mg total). Each day, skin and core temperatures were increased to provoke sweating and then reduced to elicit peripheral vasoconstriction and shivering. The authors determined the thresholds (triggering core temperature at a designated skin temperature of 34[degrees]C) by mathematically compensating for changes in skin temperature using the established linear cutaneous contributions to control of each response.

Results: Nefopam did not significantly modify the slopes for sweating (0.0 +/- 4.9[degrees]C [middle dot] [mu]g-1 [middle dot] ml; r2 = 0.73 +/- 0.32) or vasoconstriction (-3.6 +/- 5.0[degrees]C [middle dot] [mu]g-1 [middle dot] ml; r2 = -0.47 +/- 0.41). In contrast, nefopam significantly reduced the slope of shivering (-16.8 +/- 9.3[degrees]C [middle dot] [mu]g-1 [middle dot] ml; r2 = 0.92 +/- 0.06). Therefore, high-dose nefopam reduced the shivering threshold by 0.9 +/- 0.4[degrees]C (P < 0.001) without any discernible effect on the sweating or vasoconstriction thresholds.  相似文献   


15.
Background: The authors tested the hypothesis that intravenous fructose ameliorates intraoperative hypothermia both by increasing metabolic rate and the vasoconstriction threshold (triggering core temperature).

Methods: Forty patients scheduled to undergo open abdominal surgery were divided into two equal groups and randomly assigned to intravenous fructose infusion (0.5 g [middle dot] kg-1 [middle dot] h-1 for 4 h, starting 3 h before induction of anesthesia and continuing for 4 h) or an equal volume of saline. Each treatment group was subdivided: Esophageal core temperature, thermoregulatory vasoconstriction, and plasma concentrations were determined in half, and oxygen consumption was determined in the remainder. Patients were monitored for 3 h after induction of anesthesia.

Results: Patient characteristics, anesthetic management, and circulatory data were similar in the four groups. Mean final core temperature (3 h after induction of anesthesia) was 35.7[degrees] +/- 0.4[degrees]C (mean +/- SD) in the fructose group and 35.1[degrees] +/- 0.4[degrees]C in the saline group (P = 0.001). The vasoconstriction threshold was greater in the fructose group (36.2[degrees] +/- 0.3[degrees]C) than in the saline group (35.6[degrees] +/- 0.3[degrees]C; P < 0.001). Oxygen consumption immediately before anesthesia induction in the fructose group (214 +/- 18 ml/min) was significantly greater than in the saline group (181 +/- 8 ml/min; P < 0.001). Oxygen consumption was 4.0 l greater in the fructose patients during 3 h of anesthesia; the predicted difference in mean body temperature based only on the difference in metabolic rates was thus only 0.4[degrees]C. Epinephrine, norepinephrine, and angiotensin II concentrations and plasma renin activity were similar in each treatment group.  相似文献   


16.
Background: Recent evidence indicates that volatile anesthetics exert protective effects during myocardial ischemia and reperfusion. The authors tested the hypothesis that sevoflurane decreases myocardial infarct size by activating adenosine triphosphate-sensitive potassium (KATP) channels and reduces the time threshold of ischemic preconditioning necessary to protect against infarction.

Methods: Barbiturate-anesthetized dogs (n = 75) were instrumented for measurement of aortic and left ventricular pressures and maximum rate of increase of left ventricular pressure and were subjected to a 60-min left anterior descending (LAD) coronary artery occlusion followed by 3-h reperfusion. In four separate groups, dogs received vehicle or the KATP channel antagonist glyburide (0.1 mg/kg intravenously), and 1 minimum alveolar concentration sevoflurane (administered until immediately before coronary artery occlusion) in the presence or absence of glyburide. In three additional experimental groups, sevoflurane was discontinued 30 min (memory) before the 60-min LAD occlusion or a 2-min LAD occlusion as an ischemic preconditioning stimulus was used with or without subsequent sevoflurane (with memory) pretreatment. Regional myocardial perfusion and infarct size were measured with radioactive microspheres and triphenyltetrazolium staining, respectively.

Results: Vehicle (23 +/- 1% of the area at risk; mean +/- SEM) and glyburide (23 +/- 2%) alone produced equivalent effects on myocardial infarct size. Sevoflurane significantly (P < 0.05) decreased infarct size (13 +/- 2%). This beneficial effect was abolished by glyburide (21 +/- 3%). Neither the 2-min LAD occlusion nor sevoflurane followed by 30 min of memory were protective alone, but together, sevoflurane enhanced the effects of the brief ischemic stimulus and profoundly reduced infarct size (9 +/- 2%).  相似文献   


17.
The anesthetic effect of 2 ml of 5% lidocaine in 7.5% glucose (LG) or 5% meperidine in water were evaluated and compared in 40 ASA class 1 or 2 patients. Patients were randomly assigned to one of the two groups (20 patients in each) according to the anesthetic agent, which was injected into the lumbar subarachnoid space in the sitting position. The patients remained sitting for 5 min before being placed in the supine position. Times of onset of sensory and complete motor blockade were significantly more rapid with LG. The extent of maximum cephalad spread of analgesia and the time to maximum height of analgesia in the two groups were not different. Duration of analgesia at the T-7 (48.96 +/- 6.64 min with LG, 44.74 +/- 6.14 min with meperidine; means +/- SEM) and L-1 (94.37 +/- 7.42 min with LG, 76.19 +/- 5.64 min with meperidine) dermatomes was not different in the two groups but was statistically longer at the T-10 dermatome with LG (66.83 +/- 6.72 min) than with meperidine (46.66 +/- 6.26 min). The duration of complete motor blockade was also significantly longer with LG (66.44 +/- 7.05 min) than with meperidine (42.67 +/- 4.47 min). Complications in both groups included decrease in blood pressure and nausea and vomiting intraoperatively, and urinary retention, nausea and vomiting, and mild headache postoperatively. Complications that occurred only in the meperidine group were intraoperative drowsiness, respiratory depression, bronchospasm, and itching. The frequency of complications was greater wit meperidine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
BACKGROUND: In addition to local anesthetics, meperidine has been successfully used for local anesthesia. When applied intrathecally, the dorsal horn neurons of the superficial laminae are exposed to high concentrations of meperidine. These cells represent an important point for the transmission of pain information. This study investigated the blocking effects of meperidine on different ionic currents of spinal dorsal horn neurons and, in particular, its impact on the generation of action potentials. METHODS: Using a combination of the patch clamp technique and the entire soma isolation method, the action of meperidine on voltage-gated Na+ and K+ currents in spinal dorsal horn neurons of rats was described. Current clamp recordings from intact neurons showed the functional relevance of the ion current blockade for the generation of action potentials. RESULTS: Externally applied meperidine reversibly blocked voltage-gated Na+ currents with a half-maximum inhibiting concentration (IC50) of 112 microM. During repetitive stimulation, a slight phasic block occurred. In addition, A-type K+ currents and delayed-rectifier K+ currents were affected in a dose-dependent manner, with IC50 values of 102 and 52 microM, respectively. In the current clamp mode, single action potentials were suppressed by meperidine. The firing frequency was lowered to 54% at concentrations (100 microM) insufficient for the suppression of a single action potential. CONCLUSIONS: Meperidine inhibits the complex mechanism of generating action potentials in spinal dorsal horn neurons by the blockade of voltage-gated Na+ and K+ channels. This can contribute to the local anesthetic effect of meperidine during spinal anesthesia.  相似文献   

19.
Background: In addition to local anesthetics, meperidine has been successfully used for local anesthesia. When applied intrathecally, the dorsal horn neurons of the superficial laminae are exposed to high concentrations of meperidine. These cells represent an important point for the transmission of pain information. This study investigated the blocking effects of meperidine on different ionic currents of spinal dorsal horn neurons and, in particular, its impact on the generation of action potentials.

Methods: Using a combination of the patch clamp technique and the entire soma isolation method, the action of meperidine on voltage-gated Na+ and K+ currents in spinal dorsal horn neurons of rats was described. Current clamp recordings from intact neurons showed the functional relevance of the ion current blockade for the generation of action potentials.

Results: Externally applied meperidine reversibly blocked voltage-gated Na+ currents with a half-maximum inhibiting concentration (IC50) of 112 [mu]m. During repetitive stimulation, a slight phasic block occurred. In addition, A-type K+ currents and delayed-rectifier K+ currents were affected in a dose-dependent manner, with IC50 values of 102 and 52 [mu]m, respectively. In the current clamp mode, single action potentials were suppressed by meperidine. The firing frequency was lowered to 54% at concentrations (100 [mu]m) insufficient for the suppression of a single action potential.  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号