首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
gamma-Aminobutyric acid, is an amino acid transmitter, which mediates rapid inhibition in the central nervous system. gamma-Aminobutyric acid (A) receptor is a ligand-gated chloride ion channel playing an important part in polarizing the cell membrane and reducing neuronal excitability in the neuron. In this study, we demonstrated the effects of gamma-aminobutyric acid (A) receptor agonists on the cutaneous barrier repair process after the barrier disruption of hairless mice. Topical application of gamma-aminobutyric acid and gamma-aminobutyric acid (A) receptor-specific agonists, musimol and isoguvacine, after barrier disruption accelerated the barrier recovery. The gamma-aminobutyric acid (B)-specific agonist, baclofen, did not affect the barrier recovery rate. The effect of gamma-aminobutyric acid on the barrier recovery was blocked by the gamma-aminobutyric acid (A)-receptor antagonist, bicuculline methobromide, but gamma-aminobutyric acid (B) receptor antagonist, saclofen, did not affect the effect of gamma-aminobutyric acid. Topical application of gamma-aminobutyric acid also prevented epidermal hyperplasia, which was induced by the barrier insults under low environmental humidity and bicuculline methobromide blocked the effect of gamma-aminobutyric acid on the epidermal hyperplasia. Immunoreactivity against gamma-aminobutyric acid (A) polyclonal antibody was observed in hairless mouse epidermis. The fluorescent probe of gamma-aminobutyric acid (A) receptor, TXR-musimol showed the localization of gamma-aminobutyric acid (A) receptor in the epidermis of the hairless mice. Elevation of intracellular chloride ion was induced by gamma-aminobutyric acid in cultured human keratinocytes and it was blocked by bicuculline methobromide. These results suggest that the gamma-aminobutyric acid (A)-like receptor is associated with skin barrier homeostasis and regulation of the receptor clinically effective for barrier dysfunctional or epidermal hyperproliferative diseases.  相似文献   

2.
3.
The effect of nitric oxide (NO) on skin barrier recovery rate was evaluated in hairless mouse. Topical application of an NO synthase (NOS) inhibitor and a neuronal nitric oxide synthase (nNOS) inhibitor accelerated the barrier recovery after tape stripping, whereas application of an inducible NOS (iNOS) inhibitor had no effect. After tape stripping, the barrier recovery in nNOS-/- mice was significantly faster than in wild type. Topical application of the NO donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) delayed the barrier recovery in hairless mice. Immediately after barrier disruption on skin organ culture, NO release from the skin was significantly increased. The increase was blocked by nNOS inhibitor, but not by iNOS inhibitor. Topical application of the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) accelerated the barrier recovery, whereas SIN-1 chloride, a guanylyl cyclase activator, delayed the barrier recovery. In cultured human keratinocytes, SNAP increased the intracellular calcium concentration. The increase was blocked by ODQ, but not by the calcium channel-blocker nifedipine. In calcium-free medium, SNAP increased the intracellular calcium concentration. Topical application of both nNOS inhibitor and ODQ also reduced the epidermal hyperplasia induced by barrier disruption under low environmental humidity. These results suggest that NO plays an important signaling role in cutaneous barrier homeostasis and in epidermal hyperplasia induced by barrier disruption.  相似文献   

4.
Effects of topical application of adrenergic receptor agonists and antagonists on epidermal barrier repair rate after barrier disruption were studied. Agonists and antagonists of beta1-adrenergic receptor did not affect the barrier repair rate. On the other hand, beta2-adrenergic receptor agonists, procaterol and alprenol, delayed barrier recovery and the beta2 receptor antagonist, ICI-118551, blocked the delay. Moreover, topical application of ICI-118551 or beta1,2 receptor antagonist, clenbuterol alone accelerated barrier recovery. Antagonists of alpha1 and alpha2 receptors did not affect barrier recovery. The delay of barrier repair induced by prodaterol hydrochloride was blocked by a voltage-gated calcium channel blocker, verapamil or nifedipine. In cultured human keratinocytes, procaterol increased the intracellular calcium concentration and the increase was blocked by ICI-118551 and also by verapamil or nifedipine. Topical application of ICI-118551 partially blocked the epidermal hyperplasia induced by acetone treatment under low environmental humidity. These results suggest that the beta2-adrenergic receptor is specifically associated with skin barrier homeostasis.  相似文献   

5.
Keratinocytes have histamine H1 and H2 receptors, but their functions are poorly understood. To clarify the role of histamine receptors in the epidermis, we examined the effects of histamine receptor antagonists and agonists applied epicutaneously on the recovery of skin barrier function disrupted by tape stripping in hairless mice. Histamine H2 receptor antagonists famotidine and cimetidine accelerated the recovery of skin barrier function, but histamine and histamine H2 receptor agonist dimaprit delayed the barrier repair. Application of compound 48/80, a histamine releaser, also delayed the recovery. Imidazole, an analog of histamine, had no effect. The histamine H1 receptor antagonists diphenhydramine and tripelennamine accelerated the recovery. Histamine H3 receptor agonist Nalpha-methylhistamine and antagonist thioperamide had no effect. In addition, topical application of famotidine or diphenhydramine prevented epidermal hyperplasia in mice with skin barrier disrupted by acetone treatment in a dry environment (humidity < 10%) for 4 d. In conclusion, both the histamine H1 and H2 receptors in the epidermis are involved in skin barrier function and the cutaneous condition of epidermal hyperplasia.  相似文献   

6.
Background  Unsaturated fatty acids from sebum affect calcium dynamics in epidermal keratinocytes, disrupt the barrier function and induce abnormal keratinization. However, the mechanisms of these effects have not been clarified.
Objectives  To investigate the function of unsaturated fatty acids in epidermis.
Methods  Antagonists of calcium channel receptors were applied to mouse skin together with oleic acid. Measurements were made of transepidermal water loss (TEWL), and hyperproliferation was assessed. The effects of the antagonists on calcium influx into cultured normal human keratinocytes and on cytokine production were also evaluated.
Results  N -methyl- d -aspartate (NMDA) receptor antagonists such as MK801 and D-AP5 specifically inhibited the increase in TEWL caused by oleic acid, and suppressed keratinocyte hyperproliferation. These compounds also inhibited the increase in the intracellular concentration of calcium ions induced by oleic acid. MK801 suppressed the production of interleukin-1α by keratinocytes induced by oleic acid.
Conclusions  Unsaturated fatty acids such as oleic acid might function via NMDA receptors.  相似文献   

7.
Two families of G protein-coupled receptors of the neurotransmitter dopamine, i.e., dopamine 1-like family (D1-like receptor) and dopamine 2-like family (D2-like receptor), show dopaminergic activity in nerve cells. The D2-like receptor family, composed of D2, D3, and D4 receptors, downregulates the intracellular cAMP signaling pathway, and dopamine receptor agonists reduce the cAMP level in neurons. We previously demonstrated that the cAMP level in epidermal keratinocytes is related to epidermal barrier homeostasis. Since keratinocytes are known to carry various neurotransmitter receptors, we hypothesized that D2-like receptors on keratinocytes might be related to skin barrier homeostasis. In this study, we examined the effect of topical application of receptor agonists and antagonists on skin barrier recovery after barrier disruption. Application of D2-like receptor agonists accelerated barrier recovery, whereas D2-like receptor antagonists delayed it. D2-like receptor agonists also reduced the epidermal hyperplasia induced by barrier disruption under low environmental humidity. Immunohistochemical study and RT-PCR analysis revealed the expression of the D2 receptor in the basal epidermis and the D4 receptor in the uppermost layer of the epidermis. These results suggest that dopaminergic receptors are involved in epidermal barrier homeostasis.  相似文献   

8.
Background Retinoids have been used for the treatment of skin disorders such as acne, psoriasis, and photoaging. However, despite their beneficial effects, topical retinoids often cause severe local irritation called retinoid dermatitis. We previously developed a novel vitamin A derivative, retinyl retinoate, which induces less irritation and affords excellent tolerance. In this study, we examined whether co‐treatment with topical peroxisome proliferator‐activated receptor‐α (PPARα) agonists (e.g. WY14643) reduce retinoid dermatitis in hairless mouse skin. Methods The effect of concomitant treatment with a PPARα agonist on retinoid dermatitis in hairless mouse epidermis was evaluated by measuring transepidermal water loss, epidermal histology, and cytokine expression. Results Retinyl retinoate induced less severe retinoid dermatitis than retinoic acid. Topical application of a PPARα agonist improved the stratum corneum structure and function, reduced mRNA expression of interleukin (IL)‐1α, tumor necrosis factor‐α and IL‐8, and inhibited ear edema induced by retinoic acid or retinyl retinoate. Conclusions Our results indicate that PPARα agonists can potentially be used to improve retinoid dermatitis. We suggest that co‐treatment with retinyl retinoate and a PPARα agonist may reduce or prevent detrimental alterations in retinoid‐treated skin.  相似文献   

9.
Liver X receptor-alpha and -beta are members of the nuclear hormone receptor superfamily that heterodimerize with retinoid X receptor and are activated by oxysterols. In recent studies we found that treatment of cultured human keratinocytes with oxysterolstimulated differentiation, as demonstrated by increased expression of involucrin and transglutaminase, and inhibited proliferation. The aims of this study were to determine: (i) whether oxysterols applied topically to the skin of mice induce differentiation in normal epidermis; (ii) whether this effect is mediated via liver X receptor-alpha and/or liver X receptor-beta; and (iii) whether oxysterols normalize epidermal morphology in an animal model of epidermal hyperplasia. Topical treatment of normal hairless mice with 22(R)-hydroxycholesterol or 24(S),25-epoxycholesterol resulted in a decrease in epidermal thickness and a decrease in keratinocyte proliferation assayed by proliferating cell nuclear antigen staining. Moreover, oxysterol treatment increased the levels of involucrin, loricrin, and profilaggrin protein and mRNA in the epidermis, indicating that oxysterols stimulate epidermal differentiation. Additionally, topical oxysterol pretreatment improved permeability barrier homeostasis. Whereas liver X receptor-alpha-/- mice revealed no alterations in epidermal differentiation, the epidermis was thinner in liver X receptor-beta-/- mice than in wild-type mice, with a reduced number of proliferating cell nuclear antigen positive cells and a modest reduction in the expression of differentiation markers. Topical oxysterol treatment induced differentiation in liver X receptor-alpha-/- mice whereas in liver X receptor-beta-/- mice there was no increase in the expression of differentiation markers. Whereas both liver X receptor-alpha and liver X receptor-beta are expressed in cultured human keratinocytes and in fetal rat skin, only liver X receptor-beta was observed on northern blotting in adult mouse epidermis. Finally, treatment of hyperproliferative epidermis with oxysterols restored epidermal homeostasis. These studies demonstrate that epidermal differentiation is regulated by liver X receptor-beta and that oxysterols, acting via liver X receptor-beta, can induce differentiation and inhibit proliferation in vivo. The ability of oxysterols to reverse epidermal hyperplasia suggests that these agents could be beneficial for the treatment of skin disorders associated with hyperproliferation and/or altered differentiation.  相似文献   

10.
Ionotropic glutamate receptors (ligand-gated, ion-channel proteins) of the N -methyl- d -aspartate (NMDA) receptor type could enable a transmembranous calcium influx from the extracellular space. Though ionotropic glutamate receptors are predominantly neuronal receptors, they are also expressed in non-neuronal tissues like keratinocytes. Therefore, investigations were performed to study the function of NMDA receptors in HaCaT cells. The intracellular calcium concentration of HaCaT cells was studied under the influence of the selective receptor agonist NMDA and the selective NMDA antagonist MK-801. The proliferation of HaCaT cells was investigated using the crystal-violet method. Furthermore, the expression of Cytokeratin 10 and Filaggrin was examined in HaCaT cells after blocking NMDA receptors with MK-801. Using NMDA, there was a significant increase in the number of HaCaT cells showing elevated intracellular calcium concentration, at a dose between 25 µ m and 1 m m (up to 84.6% of cells). The NMDA-associated calcium influx could be significantly suppressed by prior application of MK-801. There was no influence of NMDA on the proliferation of HaCaT cells. There was also no cytotoxic effect of NMDA (up to 1 m m ). The expression of Cytokeratin 10 and Filaggrin could be suppressed by blocking NMDA receptors with MK-801. The investigations show that glutamate receptors of the NMDA-type play a role in the differentiation of HaCaT cells by regulating their intracellular calcium concentration.  相似文献   

11.
Abstract Disruption of the cutaneous permeability barrier induces metabolic responses in the epidermis which result in barrier recovery. Barrier disruption by either solvent treatment or tape stripping results in the loss of the epidermal calcium gradient. Previous studies in acetone treated hairless mice have shown that maintaining this calcium gradient inhibits barrier repair, suggesting that alterations in the epidermal calcium concentration may be an important signal for barrier homeostasis. In the present study, we show that in hairless mice disruption of the barrier by treatment with the detergent. SDS, also results in the loss of the calcium gradient, as demonstrated both semi-quantitatively with ultrastructural cytochemical localization and quantitatively using proton induced X-ray emission (PIXE). Additionally, immersion in calcium containing solutions delays barrier repair after either detergent (SDS treatment) or mechanical (tape stripping) disruption of the barrier, as reported previously for acetone treated skin. These results indicate that barrier disruption, regardless of the insult, induces changes in the epidermal calcium gradient which may play an important role in signaling the metabolic changes required for barrier homeostasis.  相似文献   

12.
Recent studies demonstrated that skin surface electric conditions affect epidermal permeability barrier homeostasis. These results suggest the existence of voltage sensor on the keratinocytes of the epidermis. On the contrary, specific blockers of the voltage-gated calcium channel (VGCC) also affect epidermal barrier homeostasis, but the existence and function of the channel has not been determined. We demonstrated here immunohistochemically the expression of the main subunit of the L-type VGCC, alpha1C, which alone has a calcium channel function, in mouse and human epidermis. Immunostaining, RT-PCR, and Western blotting were carried out to detect the channel protein. Messenger RNA of alpha1C was also detected in mouse epidermis and human keratinocyte culture by RT-PCR. We also evaluated the function of the channel in the cultured human keratinocytes. Previously, we demonstrated that influx of calcium ion into epidermal keratinocytes delayed the barrier recovery after barrier disruption and topical application of calcium channel blocker accelerated the barrier recovery. In this study, topical application of nifedipine and R-(+)-BAY K8644 after tape stripping of hairless mice accelerated the barrier repair rate while application of S-(-)-BAY K8644 delayed the barrier recovery. These results suggest that the VGCC exists on epidermal keratinocytes and plays an important role in skin barrier homeostasis.  相似文献   

13.
Recent studies have linked epidermal cholesterol synthesis with maintenance of the permeability barrier. To assess directly the importance of cholesterol synthesis, we applied lovastatin, a potent inhibitor of cholesterol synthesis, to hairless mouse skin. Transepidermal water loss (TEWL) began to increase after four to six daily applications. Co-application of cholesterol blocked the expected increase in TEWL, demonstrating the importance of cholesterol for development of the lesion. The histology of lovastatin-treated skin revealed epidermal hyperplasia, accompanied by accelerated DNA synthesis. Whereas cholesterol synthesis initially was reduced in lovastatin-treated epidermis, with further treatment cholesterol synthesis normalized, while fatty acid synthesis accelerated greatly. Although the total free sterol content of lovastatin-treated epidermis remained normal, the fatty acid content increased coincident with barrier disruption. Finally, morphologic abnormalities of both lamellar body structure and their deposited, intercellular contents occurred coincident with the emerging biochemical abnormalities. Thus, the abnormal barrier function in this model can be ascribed to an initial inhibition of epidermal sterol synthesis followed by an alteration in cholesterol and fatty acid synthesis, leading to an imbalance in stratum corneum lipid composition and abnormal membrane bilayer structure.  相似文献   

14.
Abnormal follicular keratinization is involved in comedogenesis in acne vulgaris. We recently demonstrated that calcium influx into epidermal keratinocytes is associated with impaired skin barrier function and epidermal proliferation. Based on these results, we hypothesized that sebum components affect calcium dynamics in the keratinocyte and consequently induce abnormal keratinization. To test this idea, we first observed the effects of topical application of sebum components, triglycerides (triolein), saturated fatty acids (palmitic acid and stearic acid), and unsaturated fatty acids (oleic acid and palmitoleic acid) on hairless mouse skin. Neither triglyceride nor saturated fatty acids affected the skin surface morphology or epidermal proliferation. On the other hand, application of unsaturated fatty acids, oleic acid, and palmitoleic acid induced scaly skin, abnormal keratinization, and epidermal hyperplasia. Application of triglycerides and saturated fatty acids on cultured human keratinocytes did not affect the intracellular calcium concentration ([Ca(2+)](i)), whereas unsaturated fatty acids increased the [Ca(2+)](i) of the keratinocytes. Moreover, application of oleic acid on hairless mouse skin induced an abnormal calcium distribution in the epidermis. These results suggest that unsaturated fatty acids in sebum alter the calcium dynamics in epidermal keratinocytes and induce abnormal follicular keratinization.  相似文献   

15.
Please cite this paper as: Topical application of TRPM8 agonists accelerates skin permeability barrier recovery and reduces epidermal proliferation induced by barrier insult: role of cold‐sensitive TRP receptors in epidermal permeability barrier homoeostasis. Experimental Dermatology 2010; 19 : 791–795. Abstract: TRPA1 and TRPM8 receptors are activated at low temperature (A1: below 17°C and M8: below 22°C). Recently, we observed that low temperature (below 22°C) induced elevation of intracellular calcium in keratinocytes. Moreover, we demonstrated that topical application of TRPA1 agonists accelerated the recovery of epidermal permeability barrier function after disruption. In this study, we examined the effect of topical application of TRPM8 modulators on epidermal permeability barrier homoeostasis. Immunohistochemical study and RT‐PCR confirmed the expression of TRPM8 or TRPM8‐like protein in epidermal keratinocytes. Topical application of TRPM8 agonists, menthol and WS 12 accelerated barrier recovery after tape stripping. The effect of WS12 was blocked by a non‐selective TRP antagonist, Ruthenium Red, and a TRPM8‐specific antagonist, BTCT. Topical application of WS12 also reduced epidermal proliferation associated with barrier disruption under low humidity, and this effect was blocked by BTCT. Our results indicate that TRPM8 or a closely related protein in epidermal keratinocytes plays a role in epidermal permeability barrier homoeostasis and epidermal proliferation after barrier insult.  相似文献   

16.
We investigated the effects of the retinoids, all-trans retinoic acid (t-RA), 13-cis retinoic acid, etretinate, and arotinoid ethyl ester, on 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced DNA synthesis, and epidermal hyperplasia in hairless mouse skin. Topical application of these retinoids produced dose-dependent inhibition of the TPA-induced epidermal DNA synthesis as measured by [3H]thymidine incorporation at 15 h after TPA application. However, this inhibition was only transient and did not affect the corresponding increase in epidermal cell layers measured at 40 or 70 h after TPA application. Fluocinonide also inhibited the epidermal DNA synthesis and failed to block TPA-induced epidermal hyperplasia. However, fluocinonide did effectively suppress the inflammation caused by TPA. In this paper we have shown that the suppression of TPA-stimulated DNA synthesis is a general property of topically applied retinoids. The biologic significance of a temporary suppression of TPA-stimulated epidermal DNA synthesis by the retinoids and fluocinonide is not understood at this time.  相似文献   

17.
Essential fatty acid deficiency (EFAD) results in epidermal hyperproliferation with acanthosis and hyperkeratosis. The EFAD hairless mouse has been used to study the percutaneous absorption of a 0.1% solution of 4-(14)C-hydrocortisone. In vitro absorption was increased significantly through EFAD compared with normal hairless mouse skin. This is further evidence for a defective skin barrier function in epidermal hyperproliferation.  相似文献   

18.
We recently showed that topically applied PPARalpha activators promote epidermal differentiation in intact adult mouse skin. In this study we determined the effect of clofibrate and Wy-14,643, activators of PPARalpha, on hyperproliferative epidermis in hairless mice, induced either by repeated barrier abrogation (subacute model) or by essential fatty acid deficiency (chronic model). The hyperproliferative epidermis was characterized by an increased number of proliferating cells expressing proliferating cell nuclear antigen. Topical treatment with PPARalpha activators resulted in a substantial decrease in epidermal hyperplasia in both the subacute and chronic models of hyperproliferation. Following topical treatment, proliferating cell nuclear antigen-expressing cells were restricted to the basal layer, similar to normal epidermis. In hyperproliferative epidermis there was decreased expression of involucrin, profilaggrin-filaggrin, and loricrin as assayed by in situ hybridization and immunohistochemistry. Following topical treatment with PPAR activators staining for these mRNAs and proteins increased towards normal levels. Finally, topically applied clofibrate also increased apoptosis. This study demonstrates that topical PPAR activators have profound effects on epidermal gene expression in hyperproliferative skin disorders. Treatment with PPARalpha activators normalizes cell proliferation and promotes epidermal differentiation, correcting the cutaneous pathology. This study identifies PPARalpha activators as potential skin therapeutic agents.  相似文献   

19.
20.
目的 探讨谷氨酸信号通路在黑素转运中的作用。 方法 原代培养并纯化黑素细胞及角质形成细胞,免疫荧光显微镜观察离子型谷氨酸受体N-甲基-D-天冬氨酸受体1(NMDAR1)和N-甲基-D-天冬氨酸受体2A(NMDAR2A)在黑素细胞内的分布,共聚焦显微镜观察100 μmol/L NMDAR激动剂NMDA和100 μmol/L拮抗剂地卓西平马来酸盐(dizocilpine maleate,MK801)作用5 min和1 h后黑素细胞内钙离子浓度的变化以及100 μmol/L MK801对黑素细胞内微管蛋白的影响。结果 100 μmol/L NMDA可使黑素细胞内瞬时钙离子浓度升高,但100 μmol/L MK801可使其降低;MK801先作用于黑素细胞5 min或1 h阻断NMDA受体后,NMDA均不能再次诱导瞬时钙离子浓度升高。共聚焦显微镜观察发现MK801作用24 h后,胞内微管蛋白重新分布聚集于核周。扫描电镜观察发现100 μmol/L MK801作用于黑素细胞-角质形成细胞共培养体系48 h后,黑素细胞和角质形成细胞之间以及两种细胞表面的丝状伪足数量明显减少。共培养体系下,100 μmol/L MK801作用后,角质形成细胞中的黑素含量明显降低,即从黑素细胞向角质形成细胞转移的黑素数量明显减少。 结论 谷氨酸信号通路对黑素细胞胞内钙离子浓度、微管蛋白分布、黑素细胞伪足形成以及黑素细胞及角质形成细胞间的黑素转运具有一定调节作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号