首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nine-month-old female rats were double-labeled with bone markers and subjected to right hindlimb immobilization or served as control for 0, 2, 10, 18, or 26 weeks. The right limb was immobilized against the abdomen, thus unloading it, while the left limb was overloaded during ambulation. Single photon absorptiometry and cancellous bone histomorphometry were performed on dissected intact femur and 20-microns-thick undecalcified specimens of the proximal tibial metaphysis. In the unloaded limb, immobilization-induced muscle and cancellous bone loss occurred rapidly before 10 weeks and stabilized at 50% less bone mass after 18 weeks. Unloading caused a negative bone balance from a combination of elevated bone resorption and depressed bone formation. At 2, 10, and 18 weeks of immobilization, the ratios of bone resorption to bone formation surfaces were 1.6, 1.5, and 1.3, respectively; at 26 weeks, the ratio was 1. The bone loss was accompanied by poorer trabecular architecture (trabecular number decreased and trabecular separation increased), reaching the maximum at 18 weeks and stabilizing thereafter. These observations are in general agreement with Frost's postulate for mechanical effects on lamellar bone remodeling, and the findings on disuse osteoporosis in man. Therefore, the one-legged immobilization model can be useful in studies of the mechanisms of structural adaptation to mechanical usage.  相似文献   

2.
Nine-month-old female rats were subjected to right hindlimb immobilization or served as controls for 0, 2, 10, 18, and 26 weeks. They were double-labeled with bone markers prior to sacrifice. Experimental unloading was produced by immobilizing the right limb against the abdomen with an elastic bandage. Single-photon absorptiometry was performed on the intact femurs; static and dynamic histomorphometry were performed on 20-micron thick toluidine blue-stained, undecalcified cross sections of the tibial shafts. Changes in the continuously immobilized tibiae were compared to those in both tibiae of age-matched controls. Unloading shut off nearly all periosteal bone formation and accelerates bone marrow expansion over that which occurs in age-related controls. The effect of unloading appeared to be mediated by recruiting fewer osteoblasts which showed inhibited activity. Furthermore, unloading increased endocortical percentage eroded surface. These histological changes lowered cortical bone mass by inhibiting diaphyseal cross sectional expansion and enlarging the bone marrow cavity. The results support Frost's suggestion that decrease mechanical usage depresses bone modeling-dependent bone gain by decreasing activation of modeling in the formation mode. It also stimulates bone remodeling-dependent bone loss by increasing activation of remodeling in the resorption mode.  相似文献   

3.
The aim of this study is to determine the effects of growth hormone (GH), exercise (EX), GH+EX and food restriction on cancellous bone in middle-aged female rats. Female F344 rats aged 13 months were divided into (1) age-matched controls; (2) GH treated (2.5 mg/kg. 5 day/week); (3) EX (voluntary wheel running); (4) GH+EX; and (5) food restricted (FR) (fed 60% of the ad libitum food intake). The animals were treated for 18 weeks, at the end of which they were sacrificed. Cancellous bone and cortical bone in the fourth lumbar vertebra, proximal tibial metaphysis (PTM), distal femoral metaphysis (DFM) and femoral neck (NF) were analyzed using peripheral quantitative computerized tomography (pQCT) densitometry. Growth hormone increased cancellous bone area, cancellous bone mineral content, cortical bone area and cortical bone mineral content in the vertebra, PTM, DFM and NF. The tibial muscle wet weight was increased significantly after GH treatment. Exercise increased the cancellous bone area in the vertebra, PTM and DFM. Cortical bone area and cortical bone mineral content increased after EX in the vertebra, PTM, DFM and NF. No significant change was seen in the tibial muscle wet weight after EX. Growth hormone+EX increased cancellous bone area in the vertebra PTM and DFM but had no effect in neck of the femur. Cancellous bone mineral content, cortical bone area and cortical bone mineral content increased with GH+EX in the vertebra, PTM, DFM and NF. The tibial muscle wet weight was increased significantly with GH+EX. Food restriction decreased cancellous bone area and cancellous bone mineral content in all the bones studied. The decrease was statistically significant only at the distal femoral metaphysis. The tibial muscle wet weight decreased when compared with the age-matched control, but this decrease was not statistically significant. We conclude that the effect of the dose of GH used and the levels of voluntary wheel running EX used increased cancellous bone in intact rats; the effect of GH is much greater and different bones respond with varying intensities. The effects of combined treatment of GH and EX on cancellous bone are not always significantly higher than those of GH alone. FR at the level studied has a mostly negative effect on cancellous bone.  相似文献   

4.
The effects of daily prostaglandin E2 (PGE2) treatment (on) and PGE2 treatment followed by withdrawal (on-off) on cancellous bone in lumbar vertebral bodies were studied in 7-month-old male Sprague-Dawley rats. The first groups of rats were given daily subcutaneous injections of 0, 1, 3, and 6 mg PGE2/kg/d for 60, 120, and 180 days, and the second group of rats were given PGE2 for 60 days followed by withdrawal for 60 and 120 days. Histomorphometric analyses were performed on double-fluorescent labeled undecalcified sections of fourth lumbar vertebral bodies. Systemic PGE2 treatment elevated cancellous bone mass of lumbar vertebral bodies 26-60% above control levels within 60 days and continued treatment maintained it for another 120 days, but the excess bone was lost after the treatment was withdrawn. PGE2 treatment for 60 days increased trabecular bone area, trabecular width, and bone formation parameters, and shortened remodeling periods in a dose-response manner. These changes were sustained at the levels achieved by 60-day treatment in the rats treated for 120 and 180 days. The eroded perimeter increased at day 60 and further at day 120 and then plateaued. In the on-off treated rats, the cancellous bone area, bone formation, and resorption parameters returned to near age-related controls by 60 days after withdrawal and were maintained there after 120 days of withdrawal. Therefore we conclude that the continuous treatment is needed in order to maintain the PGE2-induced bone gain. When these findings were compared to those previously reported for the proximal tibial metaphyses, we found that the proximal tibial spongiosa was much more responsive to PGE2 treatment than the fourth lumbar vertebral body.  相似文献   

5.
Background: Hypophysectomy (HX) results in a cessation of bone growth and a decrease in bone metabolism. The purpose of this study is to examine the effect of HX on the static and dynamic histomorphometry of cancellous bone in the secondary spongiosa of the proximal tibial metaphysis in rats. Methods: Female rats, at 2 or 3 months of age, were HX and sacrificed at 0, 5 days, 2 and 5 weeks after the surgery. Age-matched intact rats served as controls. Cancellous bone histomorphometry was performed on doublefluorescent labeled, 30-um-thick sections of the proximal tibia. Tartrateresistant acid phosphatase histomorphometry was performed at 5 days on HX and control rats to evaluate the resorption in the metaphyseal bone. Results: Although the intact rats gained in body weight, tibial length, tibial weight, and density after 5 weeks, these changes did not occur following HX. As compared to the basal group, HX resulted in a decrease in the density and dry weight of the metaphysis. The histomorphometric data showed that the cancellous bone volume and trabecular number of the secondary spongiosa were decreased and the separation was increased in the HX rats. The dynamic results showed that HX significantly decreased longitudinal growth rate and tissue-based bone formation and resorption. However, the bone surface-based eroded surface, labeled surface, the mineral apposition rate, and the bone formation rate did not differ between the intact and the HX rats at either the 2 or 5 weeks study. Five days after HX, the bone surface and tissue-based osteoclast surfaces were significantly lower in the HX than in the intact rats. Conclusions: Pituitary hormone deficiency results in cancellous bone loss. The bone loss is due primarily to the suppression of longitudinal growth-dependent bone gain and the inhibition of tissue-based bone turnover with a lower bone formation relative to bone resorption. The surfacebased bone turnover is not affected. © 1995 Wiley-Liss, Inc.  相似文献   

6.
The effects of daily prostaglandin E2 (PGE2) treatment (on) and PGE2 treatment followed by withdrawal (on-off) on cancellous bone in lumbar vertebral bodies were studied in 7-month-old male Sprague-Dawley rats. The first groups of rats were given daily subcutaneous injections of 0,1,3, and 6 mg PGE2 /kg/dfor 60, 120, and 180 days, and the second group of rats were given PGE2 for 60 days followed by withdrawal for 60 and 120 days. Histomorphometric analyses were performed on double-fluorescent labeled undecalcified sections of fourth lumbar vertebral bodies. Systemic PGE2 treatment elevated cancellous bone mass of lumbral vertebral bodies 26–60% above control levels within 60 days and continued treatment maintained it for another 120 days, but the excess bone was lost after the treatment was withdrawn. PGE2 treatment for 60 days increased trabecular bone area, trabecular width, and bone formation parameters, and shortened remodeling periods in a dose-response manner. These changes were sustained at the levels achieved by 60-day treatment in the rats treated for 120 and 180 days. The eroded perimeter increased at day 60 and further at day 120 and then plateaued. In the on-off treated rats, the cancellous bone area, bone formation, and resorption parameters returned to near agerelated controls by 60 days after withdrawal and were maintained there after 120 days of withdrawal. Therefore we conclude that the continuous treatment is needed in order to maintain the PGE2-induced bone gain. When these findings were compared to those previously reported for the proximal tibial metaphyses, we found that the proximal tibial spongiosa was much more responsive to PGE2 treatment than the fourth lumbar vertebral body.© Willey-Liss, Inc.  相似文献   

7.
The experimental increase in mechanical usage or overloading of the left hindlimb was produced by immobilization of the contralateral hindlimb. The right hindlimb was placed in a flexed position against the body and was immobilized using an elastic bandage. Some control animals were sacrificed initially at time zero and increased mechanical usage and age-matched control animals were sacrificed after 2, 10, 18, and 26 weeks of treatment. All animals received double bone fluorochrome labeling prior to sacrifice. Cortical bone histomorphometry and cross-sectional moments of inertia were determined. Marrow cavity enlargement and total cross-sectional area expansion represented the age-related cortical bone changes. Increased mechanical usage enhanced periosteal bone modeling in the formation mode and dampened endocortical bone remodeling and bone modeling in the resorption mode (resorption drift) to create a slight positive bone balance. These observations are in general agreement with Frost's postulate for mechanical effects on bone modeling and remodeling (Frost, H.M. 1987b. Bone "mass" and the "mechanostat." A proposal. Anat. Rec. 219: 1-9). The maximum moment of inertia did not change significantly in either control or overloaded tibial shafts. The minimum and polar moment of inertias in overloaded bones increases over those of controls at 18 and 26 weeks of the experiment.  相似文献   

8.
Two-and-half month-old female rats were subjected to right hindlimb immobilization or served as controls for 0, 1, 2, 8, 14, and 20 weeks. The right hindlimb was immobilized by bandaging it against the abdomen, thus unloading it. Cancellous bone histomorphometry was performed on microradiographs and double-fluorescent labeled 20 μm sections of the distal femoral metaphyses. Primary spongiosa bone loss occurred rapidly by 2 weeks, and secondary spongiosa bone loss occurred rapidly by 8 weeks of immobilization, and then equilibrated at 60% less bone mass than age-related controls. The negative bone balance induced by immobilization was caused by transient increase in bone resorption, decrease in bone formation, and longitudinal bone growth. The dynamic data of secondary spongiosa cancellous bone showed that percent eroded perimeter was transiently elevated by 55 to 82% between 1 and 8 weeks, percent labeled perimeter was transiently depressed by 32% to 50% between 1 and 14 weeks, mineral apposition rate was depressed by 23% and 19% at 1 and 2 weeks, and bone formation rate-bone area referent was transiently depressed by 35% and 59% at 1 and 2 weeks. All the above parameters were at age-related control levels by 20 weeks of immobilization. However, bone formation rate-tissue area refent was depressed (-65%) throughout the study. Immobilization depressed completely longitudinal bone growth by 2 weeks and remained so. Only 0.65 mm of new metaphysis was generated in the immobilized versus 2.1 mm in controls during the study period. The immobilization induced an early cancellous bone loss which equilibrated at a new steady state with less bone and a normal (age-related control) bone turnover rate. When these findings were compared to an earlier study of 9-month-old virgin females subjected to right hindlimb immobilization up to 26 weeks, we found the adaptive responses of the cancellous bone were identical except that they occurred earlier and equilibrated sooner in younger rats.© Willey-Liss, Inc.  相似文献   

9.
Adaptation of cancellous bone to aging and immobilization in growing rats.   总被引:2,自引:0,他引:2  
Two-and-half-month-old female rats were subjected to right hindlimb immobilization or served as controls for 0, 1, 2, 8, 14, and 20 weeks. The right hindlimb was immobilized by bandaging it against the abdomen, thus unloading it. Cancellous bone histomorphometry was performed on microradiographs and double-fluorescent labeled 20 microns sections of the distal femoral metaphyses. Primary spongiosa bone loss occurred rapidly by 2 weeks, and secondary spongiosa bone loss occurred rapidly by 8 weeks of immobilization, and then equilibrated at 60% less bone mass than age-related controls. The negative bone balance induced by immobilization was caused by transient increase in bone resorption, decrease in bone formation, and longitudinal bone growth. The dynamic data of secondary spongiosa cancellous bone showed that percent eroded perimeter was transiently elevated by 55 to 82% between 1 and 8 weeks, percent labeled perimeter was transiently depressed by 32% to 50% between 1 and 14 weeks, mineral apposition rate was depressed by 23% and 19% at 1 and 2 weeks, and bone formation rate-bone area referent was transiently depressed by 35% and 59% at 1 and 2 weeks. All the above parameters were at age-related control levels by 20 weeks of immobilization. However, bone formation rate-tissue area referent was depressed (-65%) throughout the study. Immobilization depressed completely longitudinal bone growth by 2 weeks and remained so. Only 0.65 mm of new metaphysis was generated in the immobilized versus 2.1 mm in controls during the study period. The immobilization induced an early cancellous bone loss which equilibrated at a new steady state with less bone and a normal (age-related control) bone turnover rate. When these findings were compared to an earlier study of 9-month-old virgin females subjected to right hindlimb immobilization up to 26 weeks, we found the adaptive responses of the cancellous bone were identical except that they occurred earlier and equilibrated sooner in younger rats.  相似文献   

10.
OBJECTIVES: The purpose of the present study was to compare the effect of vitamin K(2) on cortical and cancellous bones in orchidectomized young rats. METHODS: Forty male Sprague-Dawley rats, 6 weeks of age, were randomized by stratified weight method into four groups with 10 rats in each group: baseline controls (BLC), age-matched controls (AMC), orchidectomy (ORX), and ORX+vitamin K(2) administration (K). Vitamin K(2) (menatetrenone) was administered subcutaneously twice a week at dose of 30 mg/kg each. The experimental period was 8 weeks, and cortical and cancellous bone histomorphometry was performed on the tibial shaft and the proximal tibia, respectively. RESULTS: Cortical area (Ct Ar) and cancellous bone volume (BV/TV) were significantly greater in the AMC group than in the BLC group. Ct Ar was significantly lower in the ORX group than in the AMC group, and cancellous BV/TV was also significantly lower in the ORX group than in the AMC group as a result of significantly increased eroded surface (ES/BS). Although Ct Ar in the ORX+K group did not differ significantly from that in the ORX group, cancellous BV/TV was significantly greater in the ORX+K group than in the ORX group, but still significantly lower than in the AMC group. This protective effect of vitamin K(2) on cancellous bone was attributable to normalizing increased ES/BS. CONCLUSIONS: Vitamin K(2) appears to act more strongly on cancellous bone than on cortical bone in ORX young rats. High dose vitamin K(2) could partially prevent the reduction of cancellous bone gain by normalizing raised bone resorption in ORX young rats.  相似文献   

11.

Purpose

To compare the effect of vitamin K2 and risedronate on trabecular bone in glucocorticoid (GC)-treated rats.

Materials and Methods

Forty-eight Sprague-Dawley female rats, 3 months of age, were randomized by the stratified weight method into 5 groups according to the following treatment schedule: age-matched control, GC administration, and GC administration with concomitant administration of vitamin K2, risedronate, or vitamin K2 + risedronate. GC (methylprednisolone sodium succinate, 5.0 mg/kg) and risedronate (10 µg/kg) were administered subcutaneously three and five times a week, respectively. Vitamin K2 (menatetrenone, 30 mg/kg) was administered orally three times a week. At the end of the 8-week experiment, bone histomorphometric analysis was performed on trabecular bone of the tibial proximal metaphysis.

Results

GC administration decreased trabecular bone mass compared with age-matched controls because of decreased bone formation (mineralizing surface, mineral apposition rate, and bone formation rate) and increased bone erosion. Vitamin K2 attenuated GC-induced trabecular bone loss by preventing GC-induced decrease in bone formation (mineralizing surface) and subsequently reducing GC-induced increase in bone erosion. Risedronate prevented GC-induced trabecular bone loss by preventing GC-induced increase in bone erosion although it also suppressed bone formation (mineralizing surface, mineral apposition rate, and bone formation rate). Vitamin K2 mildly attenuated suppression of bone formation (mineralizing surface) and bone erosion caused by risedronate without affecting trabecular bone mass when administered in combination.

Conclusion

The present study showed differential effect of vitamin K2 and risedronate on trabecular bone in GC-treated rats.  相似文献   

12.
背景:当骨质疏松骨强度下降时,遭受轻微创伤或其他各种风险因素均易发生骨折。 目的:观察骨质疏松性骨折愈合过程中骨小梁组织学变化,骨密度及骨矿化沉积率的改变。 方法:SD大鼠随机分为骨质疏松组与对照组,骨质疏松组大鼠切除双侧卵巢,术后3个月,建立骨折模型。骨折后4,8,12,16 周,荧光显微镜下观察骨改建的动态参数,双能X线骨密度仪下测定骨痂组织的骨密度;骨折后1,2,4,6,8,12,16 周,应用自动图像系统测量骨组织形态。 结果与结论:骨质疏松组大鼠成熟小梁骨占骨痂面积比对照组小,且小梁骨厚度变薄、小梁骨间距较宽,骨质疏松组骨小梁表面荧光标记百分比及骨痂组织骨密度低于对照组;而骨矿化沉积率高于后者对照组。说明在骨质疏松性骨折愈合过程中,骨痂组织的组织学的异常改变导致骨折愈合质量的降低。  相似文献   

13.
Effects of spaceflight on trabecular bone in rats   总被引:5,自引:0,他引:5  
Alterations in trabecular bone were observed in growing male Wistar rats after 18.5 days of orbital flight on the COSMOS 1129 biosatellite. Spaceflight induced a decreased mass of mineralized tissue and an increased fat content of the bone marrow in the proximal tibial and humeral metaphyses. The osteoblast population appeared to decline immediately adjacent to the growth cartilage-metaphyseal junction, but osteoclast numbers were unchanged. These results suggested that bone formation may have been inhibited during spaceflight, but resorption remained constant. With the exception of trabecular bone mass in the proximal tibia, the observed skeletal changes returned to normal during a 29-day postflight period.  相似文献   

14.
 We investigated the short-term recuperation of bone mass during skeletal reloading after a period of unloading in young rats. One hind limb of 4-week-old rats was either unloaded irreversibly by sciatic neurectomy, or unloaded reversibly by external fixation. Other animals were sham-operated. After 9 days, the fixation-unloaded limbs were reloaded for 1–3 weeks and were compared with the hind limbs of age-matched unloaded (neurectomized) and sham-operated controls. Cortical and cancellous bone mass was measured using ashing and histomorphometry. Cortical bone mass (expressed as femoral dry and ash weight and tibial cortical bone area) was reduced in both unloaded groups and was accompanied by production of hypomineralized bone, as shown by a reduction in the percent ash of the dry weight. Cancellous bone mass (expressed as bone area and surface at the tibial metaphysis) was also reduced in both unloaded groups. Cortical bone mass deficit was greater in the fixation group than in the neurectomy group. Thereafter it increased in the neurectomy group despite a normal longitudinal growth rate, but returned to age-matched values in the reloaded group by 3 weeks. The changes in tibial cancellous bone mass were more pronounced but followed a similar pattern and normalized by 2 weeks. These data demonstrate that total unloading produced by external fixation causes a greater degree of bone mass deficit than partial unloading (produced by neurectomy); the rate of bone loss during unloading in the rat hind limb is more rapid than its recovery during reloading; and cancellous bone recuperates during the reloading phase faster than does cortical bone. Received: 11 February 1997 / Accepted: 28 May 1997  相似文献   

15.
Background: Pituitary hormones play an important role in bone growth, modeling, and remodeling. The purpose of this study is to examine the effect of hypophysectomy (HX) on tibial cortical bone with histomorphometry. Methods: Forty-Five female Sprague-Dawiey rats, at 3 months of age, were hypophysectomized or served as intact controls. They were sacrificed at 0, 2, and 5 weeks after the surgery. Cortical bone histomorphometry was performed on double-fluorescent-labeled 30-mcm-thick sections of the tibial shaft. Results: The dry weight and density of tibial diaphysis and the cortical bone area of the tibial shaft in the HX rats were significantly lower (P<0.05) than that of the age-matched intact rats, but did not differ between the HX and basal control rats. The dynamic data show that the bone formation parameters (labeled surface, mineral apposition rate, and bone formation rate) were profoundly decreased (P<0.01) on both the periosteal and endocortical surfaces in the HX rats as compared with the age-matched intact rats at the 2 and 5 weeks. However, the decrease in the labeled surface was much less on the endocortical envelope than on the periosteal envelope in the HX rats. Although no significant change was detected in the medullar size between the HX and age-matched intact rats, the eroded surface on the endocortical surface was greater (P<0.05) in the HX rats than in the intact rats at either time point. Conclusions: Hypophysectomy-suppressed, radial growth-dependent bone gain without a bone loss in the tibial shaft of the young rat. This is associated with decreased modeling-dependent bone formation. A greater eroded surface on the endosteum did not affect the marrow size at 5 weeks after hypophysectomy. © 1995 Wiley-Liss, Inc.  相似文献   

16.
Background: Ovariectomy (OVX) and immobilization (IMM) in rats are useful models of osteopenia, replicating some aspects of osteoporosis in humans. The purpose of this study was to compare changes in cancellous bone after OVX and/or IMM. Methods: Differences in cancellous bone were determined at 6 and 12 weeks after OVX or IMM. Comparisons were also made when rats were ovariectomized or immobilized for 6 weeks and then immobilized (OVX/IMM) and ovariectomized (IMM/OVX), respectively, for 6 more weeks. The femurs were used to determine bone mineral content (BMC) using single photon absorptiometry (SPA) and for scanning electron microscopy (SEM). Tibias were collected for microradiography, image analysis, and histomorphometry of metaphyseal cancellous bone. Results: Six and 12 weeks after OVX, there was less cancellous bone mass, compared with controls, as indicated by SPA, SEM, microradiography, image analyses, and histomorphometry. Bone was lost primarily from the central metaphyseal regions in the OVX animals, whereas the loss occurred throughout the metaphyses in the IMM animals. There were more rodlike bone spicules and fewer platelike trabecule in the OVX and IMM groups compared with controls. Differences in the structural aspects of the cancellous bone, including differences in the types of bone struts and marrow star volumes, indicated less trabecular connectivity and greater trabecular separation in the OVX and IMM animals, compared with controls. Endochondral growth indices in the IMM groups tended to be less, whereas the OVX groups tended to be greater than controls. Cancellous bone formation rates were generally greater in the OVX groups but less in the IMM groups compared with controls. Osteoclastic resorption surfaces were substantially elevated in the IMM and OVX groups, particularly the IMM groups. Changes reflecting OVX and IMM, independently, were apparent in the OVX/IMM and IMM/OVX groups and indices of osteopenia were different from controls, including less bone mass, trabecular connectivity, and greater trabecular separation, bone turnover rates, and osteoclastic surface. Conclusions: These results demonstrate differences in the osteopenic changes that occur in cancellous bone following OVX or IMM. The changes were generally more dramatic in the IMM than in the OVX animals. When OVX and IMM were applied in combination, the osteopenic changes are particularly severe, emphasizing the importance of mechanical usage even with a deficiency of gonadal hormones. © 1994 Wiley-Liss, Inc.  相似文献   

17.
Skeletal abnormalities reported in humans and laboratory animals after spaceflight, include cancellous osteopenia, decreased cortical and cancellous bone formation, aberrant matrix ultrastructure, decreased mineralization and reduced bone strength. Although considerable effort has been made up to now to understand the skeletal effects of spaceflight, in order to estimate health risk, our knowledge in this area is still largely incomplete.It is widely accepted that the mechanical strength of cancellous bone is related not only to the mineral content, but also to the trabecular micro-architecture arrangement. Three-dimensional numerical analysis of bone volumes has been shown to be an important tool in this field. The Cell Method, a recently introduced numerical method, has been applied to static analysis of structures obtained from 3D reconstruction of micro-computed tomography scans performed at the Elettra Synchrotron facility (Trieste, Italy) in order to quantify changes in trabecular bone architecture. In the present study, the Cell Method model is used to compare the micro-tomographed structure of fragments of rats bone explants (tibial proximal epiphyses) harvested after 3 days and after 1, 2, 3 and 4 weeks of culture in the RCCS? bioreactor, which represents the unique existing bioreactor, operating on the Earth’s surface, capable of successfully reproducing, in vitro, optimal conditions in order to simulate a microgravity environment. Although preliminary, our results seem to suggest that the exposure of tibial bone explants to simulated microgravity conditions obtained by the RCCS? bioreactor, are consistent with skeletal changes observed after spaceflight.  相似文献   

18.
We present a rapid technique for determining cancellous bone mineral changes in small experimental animals. We used the distal centimeter of the right femur from ovariectomized (OX) (N = 30) and shamovariectomized (ShOX) (N = 28) rats, aged 90 days at surgery and killed at times from 125-540 days postsurgery. We used dual photon absorptiometry to scan the segment three times: intact, after parasagittal splitting, and after removing all cancellous bone. We equated the difference between the second and third scans to cancellous bone mineral content (Cn.BMC). To validate this, we compared it with histomorphometrically determined bone volume (BV/TV) of the proximal tibial metaphysis of the same rat. Parasagittally splitting the segment removed no detectable mineral. OX rats had 40% less Cn.BMC than ShOX rats. However, OX rats had 80% lower BV/TV than ShOX rats. The subtraction technique not only makes a rapid, reasonable assessment of cancellous bone loss in OX rats but permits a smaller sample size than histomorphometry. The histomorphometric technique finds a greater difference between OX and ShOX rats because it examines a region where cancellous bone loss is more marked than does the scanning technique. The current technique measures bone of not only the central secondary spongiosa but also the juxtacortical region and the primary spongiosa, where OX-related differences are less prominent. The principles of this subtraction technique proved workable. However, for the future, we recommend a two-scan technique using a dual energy X-ray scanner. It is likely to take only 20-30 min per specimen to assess cancellous bone mineral.  相似文献   

19.
Pregnancy and lactation make demands on maternal calcium homeostasis which may affect bone strength. Recently, changes in cancellous architecture have been described in iliac crest bone biopsies from normal pregnant women but the rarity of such human material means an animal model is essential. The microanatomy of cancellous bone was compared in uniparous and multiparous rats using undecalcified histological sections of lumbar and caudal vertebrae and also proximal femora. An automated trabecular analysis system (TAS) measured a comprehensive range of structural variables including the trabecular number, connectivity and width. In the first pregnancy cycle an early stimulation of bone formation (which quadrupled at some sites) was indicated by an increase in the skeletal uptake and spacing of double calcein labels and the immediate generation of thicker more numerous and interconnected trabeculae. A 40% increase in cancellous bone volume was observed in the lumbar spine in comparison with age-matched virgin controls. In contrast, a rapid succession of 3 pregnancy cycles (including lactation) culminated in cancellous atrophy of 15% at the same site, with a loss in trabecular number ranging from 20% (caudal vertebra) to 30% (lumbar vertebrae). In comparison, the proximal femur lost 40% of its struts but, nevertheless, uniquely sustained its cancellous bone volume. When lactation was excluded the number of struts lost was halved although trabecular thinning then took place which was sufficient to maintain the previous 15% deficit in bone volume. It was concluded that a single pregnancy strengthens the cancellous component of the maternal skeleton while a quick succession of pregnancies weakens it. Lactation influences the pattern of bone loss but not its amount.  相似文献   

20.
Adequate tibial bone mineral density (BMD) is essential to soft tissue graft fixation during anterior cruciate ligament (ACL) reconstruction. The purpose of this study was to compare volumetric bone plug density measurements at the tibial region of interest for ACL reconstruction using a standardized immersion technique and Archimedes’ principle. Cancellous bone cores were harvested from the proximal, middle, and distal metaphyseal regions of the lateral tibia and from the standard tibial tunnel location used for ACL reconstruction of 18 cadaveric specimens. Proximal tibial cores displayed 32.6% greater BMD than middle tibial cores and 31.8% greater BMD than distal tibial cores, but did not differ from the BMD of the tibial tunnel cores. Correlational analysis confirmed that the cancellous BMD in the tibial tunnel related to the cancellous BMD of the proximal and distal lateral tibial metaphysis. In conjunction with its adjacent cortical bone, the cancellous BMD of the region used for standard tibial tunnel placement provides an effective foundation for ACL graft fixation. In tibia with poor BMD, bicortical fixation that incorporates cortical bone from the distal tibial tunnel region is recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号