首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Auranofin, aurothioglucose and aurothiomalate (10 microM each) inhibited 12-O-tetradecanoylphorbol 13-acetate (TPA, 16.2 nM)-induced nuclear translocation of nuclear factor-kappa B (NF-kappaB), and production of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) in rat peritoneal macrophages when the cells were pre-incubated with each gold compound for 20 h. Without pre-incubation for 20 h, aurothioglucose and aurothiomalate, but not auranofin, failed to inhibit the TPA-induced NF-kappaB nuclear translocation and production of NO and PGE(2). Auranofin, aurothioglucose and aurothiomalate did not affect the direct binding of NF-kappaB to the DNA probe. It was suggested that these gold compounds inhibit the TPA-induced production of NO and PGE(2) by inhibiting the NF-kappaB nuclear translocation.  相似文献   

2.
The effects of 14 synthetic 2'-hydroxychalcone derivatives on prostaglandin E2 (PGE2) production in rat peritoneal macrophages stimulated by the protein kinase C activator, 12-O-tetradecanoylphorbol 13-acetate (TPA), were examined to clarify the structure-activity relationship. 2',4-Dihydroxy-4'-methoxychalcone (compound 3), 2',4-dihydroxy-6'-methoxychalcone (compound 8) and 2'-hydroxy-4'-methoxychalcone (compound 9) suppressed PGE2 production more potently than the other compounds. The IC50 (50% Inhibitory concentration) value for compounds 3, 8 and 9 was calculated to be 3 microM. The activity of cyclooxygenase (COX)-1 was inhibited slightly by compound 9, but that of COX-2 was not inhibited. At concentrations that inhibited the production of PGE2, compound 9 had no effect on the release of radioactivity from [3H]arachidonic acid-labelled macrophages stimulated by TPA. Western-blot analysis revealed that the induction of COX-2 protein by TPA was inhibited by compound 9 in parallel with the inhibition of PGE2 production. Compounds 3 and 8 had similar effects. These findings suggest that 4'-methoxyl and 6'-methoxyl groups are required for the expression of more potent inhibitory activity against PGE2 production, and that the inhibition of PGE2 production by these 2'-hydroxychalcone derivatives is due to the inhibition of TPA-induced COX-2 protein expression.  相似文献   

3.
4.
Five lignans, l-sesamin, savinin, helioxanthin, taiwanin C, and cis-dibenzylbutyrolactone, were isolated from the root of Acanthopanax chiisanensis (Araliaceae), a Korean medicinal plant, and their inhibitory effects on the production of prostaglandin (PG) E(2) stimulated by 12-O-tetradecanoylphorbol 13-acetate (TPA) in rat peritoneal macrophages were examined. Among the five lignans, taiwanin C was the most potent (IC(50)=0.12 microM), followed by helioxanthin, cis-dibenzylbutyrolactone, and savinin. l-Sesamin had no effect. Taiwanin C showed no inhibitory effect on the TPA-induced release of radioactivity from [3H]arachidonic acid-labeled macrophages, nor did it inhibit the expression of cyclooxygenase (COX)-2 protein induced by TPA. However, the activities of isolated COX-1 and COX-2 were inhibited by taiwanin C (IC(50)=1.06 and 9.31 microM, respectively), reflecting the inhibition of both COX-1- and COX-2-dependent PGE(2) production in the cell culture system. These findings suggest that the mechanism of action of taiwanin C in the inhibition of PGE(2) production is the direct inhibition of COX enzymatic activity.  相似文献   

5.
Accumulating evidence suggests that nitric oxide (NO) and prostaglandin E(2) (PGE(2)) are involved in the pathogenesis of various chronic inflammatory diseases and cancer. During the course of a screening program to identify natural anti-inflammatory substances, we isolated the compound 2-amino-3H-phenoxazin-3-one (APO) from an extract of the edible brown mushroom Agaricus bisporus IMBACH. APO inhibited NO production by mouse peritoneal macrophages in response to the pro-inflammatory stimuli lipopolysaccharide (LPS) and interferon (IFN)-gamma (LPS/IFN-gamma) at low concentrations (IC(50)=1.5 microM) through reduced inducible NO synthase protein expression. PGE(2) production by LPS/IFN-gamma-stimulated macrophages was inhibited by APO at much lower concentrations (IC(50)=0.27 microM) than those required for the inhibition of NO production. Mechanistic analysis showed that APO inhibited both cyclooxygenase (COX)-1 and COX-2 enzyme activities with almost equal selectivity. Secretion of NO and the pro-inflammatory cytokine IL-6 by IFN-gamma-activated RAW264.7 cells, a murine macrophage-like cell line, was also dose-dependently reduced by APO. Furthermore, APO increased the secretion of the anti-inflammatory cytokine IL-4 by antigen-stimulated T cells and promoted the polarization of CD4(+) Th cells toward the anti-inflammatory Th2 phenotype at equimolar concentrations that inhibited NO production. Our results suggested that APO induced polarization toward the Th2 subset, at least in part through the down-regulation of IL-12 production. Thus, APO appears to have potent anti-inflammatory and immunoregulatory properties that may provide a promising therapeutic strategy for the treatment of T cell-mediated inflammatory autoimmune diseases as well as for bacteria-induced chronic-inflammatory diseases.  相似文献   

6.
We previously reported that oroxylin A, a polyphenolic compound, was a potent inhibitor of lipopolysaccharide (LPS)-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). In the present study, three oroxylin A structurally related polyphenols isolated from the Chinese herb Huang Qui, namely baicalin, baicalein, and wogonin, were examined for their effects on LPS-induced nitric oxide (NO) production and iNOS and COX-2 gene expressions in RAW 264.7 macrophages. The results indicated that these three polyphenolic compounds inhibited LPS-induced NO production in a concentration-dependent manner without a notable cytotoxic effect on these cells. The decrease in NO production was in parallel with the inhibition by these polyphenolic compounds of LPS-induced iNOS gene expression. However, these three compounds did not directly affect iNOS enzyme activity. In addition, wogonin, but not baicalin or baicalein, inhibited LPS-induced prostaglandin E2 (PGE2) production and COX-2 gene expression without affecting COX-2 enzyme activity. Furthermore, N-nitro-L-arginine (NLA) and N-nitro-L-arginine methyl ester (L-NAME) pretreatment enhanced LPS-induced iNOS (but not COX-2) protein expression, which was inhibited by these three polyphenolic compounds. Wogonin, but not baicalin or baicalein, similarly inhibited PGE2 production and COX-2 protein expression in NLA/LPS or L-NAME/LPS-co-treated RAW 264.7 cells. These results indicated that co-treatment with NOS inhibitors and polyphenolic compounds such as wogonin effectively blocks acute production of NO and, at the same time, inhibits expression of iNOS and COX-2 genes.  相似文献   

7.
8.
The gold compounds, auranofin, sodium aurothiomalate, and triethyl gold phosphine have been demonstrated to inhibit various effector functions associated with monocyte-macrophage populations. Incubation of human peripheral blood monocytes and murine peritoneal macrophages with auranofin or triethyl gold phosphine inhibited TNF production in lipopolysaccharide [LPS] stimulated murine peritoneal macrophages. The inhibitory effect of auranofin and triethyl gold phosphine on LPS stimulated monokine production was reversible when these compounds were incubated with macrophage cultures at concentrations between 0.1-0.5 micrograms/ml. These compounds also inhibited both TNF and IL-1 production by human peripheral blood monocytes. Sodium aurothiomalate at these concentrations had no inhibitory effect on TNF or IL-1 production. Auranofin and triethyl gold phosphine also inhibited TNF production in vivo when compounds were administered orally or intraperitoneally 2 hours prior to a lethal dose of endotoxin. Serum TNF levels from Balb/c mice were significantly reduced when animals were predosed with 1-25 mg/kg of auranofin. The data suggest that the inhibition of TNF production by activated macrophages may contribute to the therapeutic role of gold compounds in the management of chronic inflammatory disease.  相似文献   

9.
Platycodin D, isolated from the root of Platycodon grandiflorum A. DC. (Campanulaceae) suppressed prostaglandin E2 production at 10 and 30 microM in rat peritoneal macrophages stimulated by the protein kinase C activator 12-O-tetradecanoylphorbol 13-acetate (TPA). Platycodin D3 and oleanolic acid showed no effect at these concentrations. Western blot analysis revealed that the induction of COX-2 protein by TPA was inhibited by platycodin D in parallel with the inhibition of prostaglandin E2 production. Platycodin D showed no direct effect on COX-1 and COX-2 activities. TPA-induced release of [3H]arachidonic acid from pre-labeled macrophages was also not inhibited by platycodin D.  相似文献   

10.
Polygonum cuspidatum water extract (PCWE) was shown to be a potent inhibitor of lipopolysaccharide (LPS)-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). PCWE was compared to baicalin isolated from Scutellaria baicalensis Georgi and berberine of Coptidis rhizoma and Phellodendri cortex, for their effects on LPS-induced nitric oxide (NO) production and iNOS and COX-2 gene expressions in RAW 264.7 macrophages. Both PCWE and the compounds inhibited LPS-induced NO production in a concentration-dependent manner without a cytotoxicity. The decrease in NO production was in parallel with the inhibition of LPS-induced iNOS gene expression by PCWE and the compounds. In contrast, iNOS enzyme activity was not inhibited by PCWE and two agents. In addition, only PCWE inhibited LPS-induced prostaglandin E2 (PGE2) production and COX-2 gene expression without affecting COX-2 enzyme activity, while baicalin or berberine did not. Furthermore, N-nitro-L-arginine (NLA) and N-nitro-L-arginine methyl ester (L-NAME) pretreatment enhanced LPS-induced iNOS protein expression, which was inhibited by these PCWE and two agents, although LPS-induced COX-2 protein expression was not affected by NLA and L-NAME. PCWE inhibited PGE2 production and COX-2 protein expression in NLA/LPS or L-NAME/LPS-co-treated RAW 264.7 cell, however, baicalin or berberine did not. From the results, it was concluded that co-treatment with NOS inhibitors and PCWE effectively blocks acute production of NO and inhibits expression of iNOS and COX-2 genes.  相似文献   

11.
Cross-talk between inducible nitric oxide synthase (NOS II) and cyclooxygenase-2 (COX-2) was investigated in rat chondrocytes. In monolayers, interleukin-1beta (IL-1beta) induced COX-2 and NOS II expression in a dose- and time-dependent manner, to produce high prostaglandin E(2) (PGE(2)) and nitrite (NO(2)(-)) levels in an apparently coordinated fashion. COX-2 mRNA was induced earlier (30 min. versus 4 hr) and less markedly (4-fold versus 12-fold at 24 hr) than NOS II, and was poorly affected by the translational inhibitor cycloheximide (CHX). IL-1beta did not stabilize COX-2 mRNA in contrast to CHX. Indomethacin and NS-398 lacked any effect on NO(2)(-) levels whereas L-NMMA and SMT reduced PGE(2) levels at concentration inhibiting NO(2)(-) production from 50 to 90%, even when added at a time allowing a complete expression of both enzymes (8 hr). Basal COX activity was unaffected by NO donors. The SOD mimetic, CuDips inhibited COX-2 activity by more than 75% whereas catalase did not. Inhibition of COX-2 by CuDips was not sensitive to catalase, consistent with a superoxide-mediated effect. In tridimensional culture, IL-1beta inhibited radiolabelled sodium sulphate incorporation while stimulating COX-2 and NOS II activities. Cartilage injury was corrected by L-NMMA or CuDips but not by NSAIDs, consistent with a peroxynitrite-mediated effect. These results show that in chondrocytes: (i) COX2 and NOS II genes are induced sequentially and distinctly by IL-1beta; (ii) COX-1 and COX-2 activity are affected differently by NO-derived species; (iii) peroxynitrite accounts likely for stimulation of COX-2 activity and inhibition of proteoglycan synthesis induced by IL-1beta.  相似文献   

12.
AIM: To investigate the anti-inflammatory effects of recombinant human basic fibroblast growth factor (rh-bFGF). METHODS: Several inflammation models such as croton oil-induced ear swelling, carrageenan-induced hind paw edema, and acute peritonitis in rats or mice were prepared. Superoxide dismutase (SOD) activity was measured by hydroxyamine method, nitric oxide (NO) concentration by Griess reaction assay, nitric oxide synthase (NOS) activity by NADPH-diaphoras stain assay, N-acetyl-beta- D-glucosaminidase (NAG) activity by colorimetry, prostaglandin E2 (PGE2) production by radioimmunoassay (RIA), malondialdehyde (MDA) content by thiobarbituric acid (TBA) fluorescence technique, and protein content by Coomassie brilliant blue method in peritoneal exudate in rats. RESULTS: Recombinant human bFGF 2, 4 kU/kg im inhibited croton oil-induced ear swelling and carrageenan-induced paw edema in mice. In addition, rh-bFGF 2, 4 kU/kg im reduced neutrophil counts in the rat peritoneal exudate, and lessened protein content in peritoneal exudate in rats and mice. In the rat peritonitis induced by carrageenan, rh-bFGF 4 kU/kg decreased the MDA and NO levels, inhibited the NOS activity, augmented the SOD activity, and lowered the production of PGE(2) in exudate. However, rh-bFGF had no effect on NAG content. CONCLUSION: Recombinant human bFGF has an anti-inflammatory effect and its mechanisms are related to the inhibition of NOS activity, reduction of NO, MDA, and PGE(2) content, and increase of SOD activity.  相似文献   

13.
Effects of compounds isolated from medicinal plants in Korea on prostaglandin E(2) (PGE(2)) production in rat peritoneal macrophages were examined, and mechanism of action of the active constituents was analyzed. The active constituents were as follows; tectorigenin and tectoridin isolated from the rhizomes of Belamcanda chinensis, platycodin D isolated from the roots of Platycodon grandiflorum, imperatorin isolated from the roots of Angelica dahurica, and hyperin isolated from the roots of Acanthopanax chiisanensis. These compounds inhibit the induction of cyclooxygenase-2 (COX-2), thus inhibiting PGE(2) production. The chemically synthesized chalcone derivative, 2'-hydroxy-4'-methoxychalcone, also inhibits PGE(2) production by suppressing COX-2 induction. In contrast, taiwanin C isolated from the roots of Acanthopanax chiisanensis inhibited PGE(2) production by direct inhibition of COX-1 and COX-2.  相似文献   

14.
Fructus Ligustrum lucidi (FLL) is a widely used herbal medicine for the treatment of a variety of pathologies. We have investigated the anti-inflammatory mechanism of FLL in mouse peritoneal macrophages. FLL exerted an anti-inflammatory action through inhibition of lipopolysaccharide (LPS)-induced tumour necrosis factor (TNF)-alpha production in mouse peritoneal macrophages. The maximal inhibition rate of TNF-alpha production by FLL (0.5 mg mL(-1)) was 60.88 +/- 0.30%. In the inflammatory process, nitric oxide (NO) and prostaglandin E(2) (PGE(2)) increased in peritoneal macrophages. FLL decreased the protein level of NO and PGE(2) in LPS-stimulated mouse peritoneal macrophages. In addition, FLL inhibited nuclear factor-kappaB activation and IkappaB-alpha degradation by the decrease in IkappaB-alpha phosphorylation. Our study suggested that FLL reduced inflammation via an important molecular mechanism, which might explain its beneficial effect in the regulation of inflammatory reactions.  相似文献   

15.
The chloroform and the ethyl acetate fractions from the roots of Acanthopanax chiisanensis exhibited a significant inhibition of prostaglandin E2 (PGE2) production in rat peritoneal macrophages stimulated by the protein kinase C activator, 12-O-tetradecanoylphorbol 13-acetate (TPA). Hyperin was isolated as an active principle from the ethyl acetate fraction. It suppressed not only PGE2 production but also nitric oxide (NO) production in vitro in a concentration dependent manner, their IC50, being 24.3 and 32.9 microM, respectively. Hyperin also caused a significant inhibition of increase in acetic acid-induced vascular permeability in mice in vivo.  相似文献   

16.
2-Methyl-2-(2-methylpropenyl)-2,3-dihydronaphthoquinone[2,3-b]furan-4,9-dione (NFD-37) is a synthetic furonaphthoquinone compound. In this study, we determined that NFD-37 could inhibit the lipopolysaccharide (LPS)-induced production of inflammatory mediators in macrophages RAW 264.7. This compound inhibited LPS-induced nitric oxide (NO) or prostaglandin (PG) E2 production in dose-dependent manners, with IC50 values of 7.2 microM and 5.3 microM, respectively. As the positive controls, pyrrolidine dithiocarbamate (30 microM) exhibited a 57% inhibition of NO production, and NS-398 (1 microM) manifested a 48% inhibition of PGE2 production. The inhibitory effects of NFD-37 on NO and PGE2 production were determined to occur in conjunction with the suppression of inducible NO synthase or cyclooxygenase-2 expression. NFD-37 also inhibited the production of LPS-inducible tumor necrosis factor-alpha, interleukin (IL)-1beta and IL-6, at IC50 values of 4.8-8.9 microM. We also determined the anti-inflammatory efficacy of NFD-37 using carrageenin-induced paw edema in experimental mice.  相似文献   

17.
Nardostachin, which is an iridoid isolated from Patrinia saniculaefolia, was examined by assessing its effect on the production of tumor necrosis factor-alpha (TNF-alpha) and expression of 2 enzymes, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in lipopolysaccharide (LPS)-stimulated Raw264.7 macrophages. This compound consistently inhibited the production of nitric oxide (NO) and TNF-alpha production in a dose-dependent manner, with respective IC(50) values of 12.3 and 16.2 microM. The decrease in quantity of NO products was accompanied by a decrease in the iNOS protein level, as assessed by Western blotting probed with specific anti-iNOS antibodies. In addition, this compound also reduced the COX-2 protein expression level and the attendant PGE(2) production in LPS-stimulated macrophages. These results suggest that nardostachin may be useful for inhibiting the production of inflammatory mediators such as TNF-alpha, NO and PGE(2) in inflammatory diseases.  相似文献   

18.
Chen YC  Shen SC  Lin HY  Tsai SH  Lee TJ 《Toxicology letters》2004,153(2):191-200
Nicotine has been shown to induce relaxation via nitric oxide (NO) production with activation of endothelium nitric oxide synthase (eNOS), however the effect of nicotine on lipopolysaccharide/interferon-gamma (LPS/IFN-gamma)-induced NO production and inducible NOS (iNOS) gene expression is still undefined. Here, nicotine alone did not affect the NO and PGE2 production in RAW264.7 and primary peritoneal macrophages. Interestingly, nicotine showed the dose-dependent stimulatory effect on LPS (20 ng/ml)/IFN-gamma (10 ng/ml)-induced NO but not PGE2 production in both cells. Although nicotine stimulates NO production in the presence of LPS/IFN-gamma, LPS at the dose of 20 ng/ml, nicotine showed no obvious inductive effect on the expression of iNOS protein by Western blotting in both cells. However, nicotine significantly stimulates LPS (2.5, 5 ng/ml)/IFN-gamma (10 ng/ml)-induced iNOS expression and NO production in RAW264.7 cells. Cytotoxicity assay showed that nicotine enhanced LPS (20 ng/ml) and IFN-gamma (10 ng/ml)-induced cytotoxicity, which was inhibited by an NOS inhibitor N-nitro-L-arginine (NLA) in RAW264.7 cells. Direct and indirect NOS activity assays indicated that nicotine did not affect NOS activity. And, iNOS protein stability was not changed by nicotine after LPS/IFN-gamma treatment. These data indicates that nicotine may potentiate LPS/IFN-gamma-induced cytotoxic effects by enhancing NO production; enhancing iNOS gene expression induced by LPS/IFN-gamma is involved. A cross-talk between inflammation and smoking was proposed in the present study.  相似文献   

19.
20.
This study investigated the effects of the peripheral vasodilator hydralazine on in vitro generation of reactive species of oxygen (ROS), nitrogen (RNS) and prostaglandin (PG) biosynthesis in elicited murine peritoneal macrophages, and on the gene expression and protein synthesis of two key enzymes in the inflammatory process, inducible NO(*) synthase (NOS-2) and inducible cyclooxygenase 2 (COX-2). Hydralazine at 0.1-10 mM inhibited both extracellular and intracellular ROS production by inflammatory macrophages, by a ROS-scavenging mechanism probably affecting superoxide radical (O(2)(*-))-generation by xanthine oxidase (XO) and nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate (NADH/NADPH) oxidase. Hydralazine at 0.1-10 mM significantly reduced NO(*) generation, and this effect was attributable to an inhibition of NOS-2 gene expression and protein synthesis. At 1-10 mM, hydralazine also effectively blocked COX-2 gene expression which perfectly correlated with a reduction of protein levels and PGE(2) synthesis. These data suggest that hydralazine, at the concentrations tested, show antioxidant properties and strongly attenuates the macrophage activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号