首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
With the establishment of large consortiums of researchers, genome-wide association (GWA) studies have become increasingly popular and feasible. Although most of these association studies focus on unrelated individuals, a lot of advantages can be exploited by including families in the analysis as well. To overcome the additional genotyping cost, multi-stage designs are particularly useful. In this article, I offer a perspective view on genome-wide family-based association analyses, both within a model-based and model-free paradigm. I highlight how multi-stage designs and analysis techniques, which are quite popular in clinical epidemiology, can enter GWA settings. I furthermore discuss how they have proven successful in reducing analysis complexity, and in overcoming one of the most cumbersome statistical hurdles in the genome-wide context, namely controlling increased false positives due to multiple testing.  相似文献   

2.
Optimal designs for two-stage genome-wide association studies   总被引:3,自引:0,他引:3  
Genome-wide association (GWA) studies require genotyping hundreds of thousands of markers on thousands of subjects, and are expensive at current genotyping costs. To conserve resources, many GWA studies are adopting a staged design in which a proportion of the available samples are genotyped on all markers in stage 1, and a proportion of these markers are genotyped on the remaining samples in stage 2. We describe a strategy for designing cost-effective two-stage GWA studies. Our strategy preserves much of the power of the corresponding one-stage design and minimizes the genotyping cost of the study while allowing for differences in per genotyping cost between stages 1 and 2. We show that the ratio of stage 2 to stage 1 per genotype cost can strongly influence both the optimal design and the genotyping cost of the study. Increasing the stage 2 per genotype cost shifts more of the genotyping and study cost to stage 1, and increases the cost of the study. This higher cost can be partially mitigated by adopting a design with reduced power while preserving the false positive rate or by increasing the false positive rate while preserving power. For example, reducing the power preserved in the two-stage design from 99 to 95% that of the one-stage design decreases the two-stage study cost by approximately 15%. Alternatively, the same cost savings can be had by relaxing the false positive rate by 2.5-fold, for example from 1/300,000 to 2.5/300,000, while retaining the same power.  相似文献   

3.
We consider two-stage case-control designs for testing associations between single nucleotide polymorphisms (SNPs) and disease, in which a subsample of subjects is used to select a panel of "tagging" SNPs that will be considered in the main study. We propose a pseudolikelihood [Pepe and Flemming, 1991: JASA 86:108-113] that combines the information from both the main study and the substudy to test the association with any polymorphism in the original set. SNP-tagging [Chapman et al., 2003: Hum Hered 56:18-31] and haplotype-tagging [Stram et al., 2003a; Hum Hered 55:27-36] approaches are compared. We show that the cost-efficiency of such a design for estimating the relative risk associated with the causal polymorphism can be considerably better than for a single-stage design, even if the causal polymorphism is not included in the tag-SNP set. We also consider the optimal selection of cases and controls in such designs and the relative efficiency for estimating the location of a causal variant in linkage disequilibrium mapping. Nevertheless, as the cost of high-volume genotyping plummets and haplotype tagging information from the International HapMap project [Gibbs et al., 2003; Nature 426:789-796] rapidly accumulates in public databases, such two-stage designs may soon become unnecessary.  相似文献   

4.
The multiplicity problem has become increasingly important in genetic studies as the capacity for high-throughput genotyping has increased. The control of False Discovery Rate (FDR) (Benjamini and Hochberg. [1995] J. R. Stat. Soc. Ser. B 57:289-300) has been adopted to address the problems of false positive control and low power inherent in high-volume genome-wide linkage and association studies. In many genetic studies, there is often a natural stratification of the m hypotheses to be tested. Given the FDR framework and the presence of such stratification, we investigate the performance of a stratified false discovery control approach (i.e. control or estimate FDR separately for each stratum) and compare it to the aggregated method (i.e. consider all hypotheses in a single stratum). Under the fixed rejection region framework (i.e. reject all hypotheses with unadjusted p-values less than a pre-specified level and then estimate FDR), we demonstrate that the aggregated FDR is a weighted average of the stratum-specific FDRs. Under the fixed FDR framework (i.e. reject as many hypotheses as possible and meanwhile control FDR at a pre-specified level), we specify a condition necessary for the expected total number of true positives under the stratified FDR method to be equal to or greater than that obtained from the aggregated FDR method. Application to a recent Genome-Wide Association (GWA) study by Maraganore et al. ([2005] Am. J. Hum. Genet. 77:685-693) illustrates the potential advantages of control or estimation of FDR by stratum. Our analyses also show that controlling FDR at a low rate, e.g. 5% or 10%, may not be feasible for some GWA studies.  相似文献   

5.
In this paper we explore the use of biological knowledge to supplement statistical analysis in identifying genes associated with disease. It has been previously found that the 402H variant in complement factor H (CFH) is associated with risk for developing age related macular degeneration (AMD). By focusing on the single nucleotide polymorphisms (SNPs) in the complement pathway, we were able to use the genotype data from a recently published AMD genome wide association study to identify two additional genes, C7 and MBL2, as potentially associated with subtypes of AMD. Two SNPs situated in introns of C7 and MBL2 could help differentiate between two forms of AMD: wet (more severe form of AMD) and dry (milder form of AMD). We identified a C7 haplotype associated with protection against developing wet AMD among individuals with homozygous CFH risk allele 402H (p-value 0.001 for wet AMD versus dry AMD, odds ratio (OR) 0.16, OR 95% CI 0.05-0.49) as well as among individuals with at least one CFH risk allele (p-value 0.007 for wet AMD versus dry AMD, OR 0.35, OR 95% CI 0.16-0.77). The fact that the statistical scores for the C7 and MBL2 SNPs were significant (low false discovery rate) at the pathway level, but not significant at the genome level suggests that focusing at the pathway level can be beneficial for identifying SNP signals that would be lost at the genome-wide level.  相似文献   

6.
We describe a hierarchical regression modeling approach to selection of a subset of markers from the first stage of a genomewide association scan to carry forward to subsequent stages for testing on an independent set of subjects. Rather than simply selecting a subset of most significant marker-disease associations at some cutoff chosen to maximize the cost efficiency of a multistage design, we propose a prior model for the true noncentrality parameters of these associations composed of a large mass at zero and a continuous distribution of nonzero values. The prior probability of nonzero values and their prior means can be functions of various covariates characterizing each marker, such as their location relative to genes or evolutionary conserved regions, or prior linkage or association data. We propose to take the top ranked posterior expectations of the noncentrality parameters for confirmation in later stages of a genomewide scan. The statistical performance of this approach is compared with the traditional p-value ranking by simulation studies. We show that the ranking by posterior expectations performs better at selecting the true positive association than a simple ranking of p-values if at least some of the prior covariates have predictive value.  相似文献   

7.
Li Q  Yu K 《Genetic epidemiology》2008,32(3):215-226
Hidden population substructure can cause population stratification and lead to false-positive findings in population-based genome-wide association (GWA) studies. Given a large panel of markers scanned in a GWA study, it becomes increasingly feasible to uncover the hidden population substructure within the study sample based on measured genotypes across the genome. Recognizing that population substructure can be displayed as clustered and/or continuous patterns of genetic variation, we propose a method that aims at the detection and correction of the confounding effect resulting from both patterns of population substructure. The proposed method is an extension of the EIGENSTRAT method (Price et al. [2006] Nat Genet 38:904-909). This approach is computationally feasible and easily applied to large-scale GWA studies. We show through simulation studies that, compared with the EIGENSTRAT method, the new method requires a smaller number of markers and yields a more appropriate correction for population stratification.  相似文献   

8.
Qin H  Zhu X 《Genetic epidemiology》2012,36(3):235-243
When dense markers are available, one can interrogate almost every common variant across the genome via imputation and single nucleotide polymorphism (SNP) test, which has become a routine in current genome-wide association studies (GWASs). As a complement, admixture mapping exploits the long-range linkage disequilibrium (LD) generated by admixture between genetically distinct ancestral populations. It is then questionable whether admixture mapping analysis is still necessary in detecting the disease associated variants in admixed populations. We argue that admixture mapping is able to reduce the burden of massive comparisons in GWASs; it therefore can be a powerful tool to locate the disease variants with substantial allele frequency differences between ancestral populations. In this report we studied a two-stage approach, where candidate regions are defined by conducting admixture mapping at stage 1, and single SNP association tests are followed at stage 2 within the candidate regions defined at stage 1. We first established the genome-wide significance levels corresponding to the criteria to define the candidate regions at stage 1 by simulations. We next compared the power of the two-stage approach with direct association analysis. Our simulations suggest that the two-stage approach can be more powerful than the standard genome-wide association analysis when the allele frequency difference of a causal variant in ancestral populations, is larger than 0.4. Our conclusion is consistent with a theoretical prediction by Risch and Tang ([2006] Am J Hum Genet 79:S254). Surprisingly, our study also suggests that power can be improved when we use less strict criteria to define the candidate regions at stage 1.  相似文献   

9.
Recently, polygenic risk scores (PRS) have been shown to be associated with certain complex diseases. The approach has been based on the contribution of counting multiple alleles associated with disease across independent loci, without requiring compelling evidence that every locus had already achieved definitive genome-wide statistical significance. Whether PRS assist in the prediction of risk of common cancers is unknown. We built PRS from lists of genetic markers prioritized by their association with breast cancer (BCa) or prostate cancer (PCa) in a training data set and evaluated whether these scores could improve current genetic prediction of these specific cancers in independent test samples. We used genome-wide association data on 1,145 BCa cases and 1,142 controls from the Nurses' Health Study and 1,164 PCa cases and 1,113 controls from the Prostate Lung Colorectal and Ovarian Cancer Screening Trial. Ten-fold cross validation was used to build and evaluate PRS with 10 to 60,000 independent single nucleotide polymorphisms (SNPs). For both BCa and PCa, the models that included only published risk alleles maximized the cross-validation estimate of the area under the ROC curve (0.53 for breast and 0.57 for prostate). We found no significant evidence that PRS using common variants improved risk prediction for BCa and PCa over replicated SNP scores.  相似文献   

10.
Meta-analyses of genome-wide association studies require numerous study partners to conduct pre-defined analyses and thus simple but efficient analyses plans. Potential differences between strata (e.g. men and women) are usually ignored, but often the question arises whether stratified analyses help to unravel the genetics of a phenotype or if they unnecessarily increase the burden of analyses. To decide whether to stratify or not to stratify, we compare general analytical power computations for the overall analysis with those of stratified analyses considering quantitative trait analyses and two strata. We also relate the stratification problem to interaction modeling and exemplify theoretical considerations on obesity and renal function genetics. We demonstrate that the overall analyses have better power compared to stratified analyses as long as the signals are pronounced in both strata with consistent effect direction. Stratified analyses are advantageous in the case of signals with zero (or very small) effect in one stratum and for signals with opposite effect direction in the two strata. Applying the joint test for a main SNP effect and SNP-stratum interaction beats both overall and stratified analyses regarding power, but involves more complex models. In summary, we recommend to employ stratified analyses or the joint test to better understand the potential of strata-specific signals with opposite effect direction. Only after systematic genome-wide searches for opposite effect direction loci have been conducted, we will know if such signals exist and to what extent stratified analyses can depict loci that otherwise are missed.  相似文献   

11.
With recent advances in genomewide microarray technologies, whole-genome association (WGA) studies have aimed at identifying susceptibility genes for complex human diseases using hundreds of thousands of single nucleotide polymorphisms (SNPs) genotyped at the same time. In this context and to take into account multiple testing, false discovery rate (FDR)-based strategies are now used frequently. However, a critical aspect of these strAtegies is that they are applied to a collection or a family of hypotheses and, thus, critically depend on these precise hypotheses. We investigated how modifying the family of hypotheses to be tested affected the performance of FDR-based procedures in WGA studies. We showed that FDR-based procedures performed more poorly when excluding SNPs with high prior probability of being associated. Results of simulation studies mimicking WGA studies according to three scenarios are reported, and show the extent to which SNPs elimination (family contraction) prior to the analysis impairs the performance of FDR-based procedures. To illustrate this situation, we used the data from a recent WGA study on type-1 diabetes (Clayton et al. [2005] Nat. Genet. 37:1243-1246) and report the results obtained when excluding or not SNPs located inside the human leukocyte antigen region. Based on our findings, excluding markers with high prior probability of being associated cannot be recommended for the analysis of WGA data with FDR-based strategies.  相似文献   

12.
In this article, we develop a powerful test for identifying single nucleotide polymorphism (SNP)-sets that are predictive of survival with data from genome-wide association studies. We first group typed SNPs into SNP-sets based on genomic features and then apply a score test to assess the overall effect of each SNP-set on the survival outcome through a kernel machine Cox regression framework. This approach uses genetic information from all SNPs in the SNP-set simultaneously and accounts for linkage disequilibrium (LD), leading to a powerful test with reduced degrees of freedom when the typed SNPs are in LD with each other. This type of test also has the advantage of capturing the potentially nonlinear effects of the SNPs, SNP-SNP interactions (epistasis), and the joint effects of multiple causal variants. By simulating SNP data based on the LD structure of real genes from the HapMap project, we demonstrate that our proposed test is more powerful than the standard single SNP minimum P-value-based test for association studies with censored survival outcomes. We illustrate the proposed test with a real data application.  相似文献   

13.
Emerging data suggest that the genetic regulation of the biological response to inflammatory stress may be fundamentally different to the genetic underpinning of the homeostatic control (resting state) of the same biological measures. In this paper, we interrogate this hypothesis using a single‐SNP score test and a novel class‐level testing strategy to characterize protein‐coding gene and regulatory element‐level associations with longitudinal biomarker trajectories in response to stimulus. Using the proposed c lass‐level a ssociation s core s tatistic for l ongitudinal d ata, which accounts for correlations induced by linkage disequilibrium, the genetic underpinnings of evoked dynamic changes in repeatedly measured biomarkers are investigated. The proposed method is applied to data on two biomarkers arising from the Genetics of Evoked Responses to Niacin and Endotoxemia study, a National Institutes of Health‐sponsored investigation of the genomics of inflammatory and metabolic responses during low‐grade endotoxemia. Our results suggest that the genetic basis of evoked inflammatory response is different than the genetic contributors to resting state, and several potentially novel loci are identified. A simulation study demonstrates appropriate control of type‐1 error rates, relative computational efficiency, and power. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
We have developed a single nucleotide polymorphism (SNP) association scan statistic that takes into account the complex distribution of the human genome variation in the identification of chromosomal regions with significant SNP associations. This scan statistic has wide applicability for genetic analysis, whether to identify important chromosomal regions associated with common diseases based on whole-genome SNP association studies or to identify disease susceptibility genes based on dense SNP positional candidate studies. To illustrate this method, we analyzed patterns of SNP associations on chromosome 19 in a large cohort study. Among 2,944 SNPs, we found seven regions that contained clusters of significantly associated SNPs. The average width of these regions was 35 kb with a range of 10-72 kb. We compared the scan statistic results to Fisher's product method using a sliding window approach, and detected 22 regions with significant clusters of SNP associations. The average width of these regions was 131 kb with a range of 10.1-615 kb. Given that the distances between SNPs are not taken into consideration in the sliding window approach, it is likely that a large fraction of these regions represents false positives. However, all seven regions detected by the scan statistic were also detected by the sliding window approach. The linkage disequilibrium (LD) patterns within the seven regions were highly variable indicating that the clusters of SNP associations were not due to LD alone. The scan statistic developed here can be used to make gene-based or region-based SNP inferences about disease association.  相似文献   

15.
When several treatments are available for evaluation in a clinical trial, different design options are available. We compare multi‐arm multi‐stage with factorial designs, and in particular, we will consider a 2 × 2 factorial design, where groups of patients will either take treatments A, B, both or neither. We investigate the performance and characteristics of both types of designs under different scenarios and compare them using both theory and simulations. For the factorial designs, we construct appropriate test statistics to test the hypothesis of no treatment effect against the control group with overall control of the type I error. We study the effect of the choice of the allocation ratios on the critical value and sample size requirements for a target power. We also study how the possibility of an interaction between the two treatments A and B affects type I and type II errors when testing for significance of each of the treatment effects. We present both simulation results and a case study on an osteoarthritis clinical trial. We discover that in an optimal factorial design in terms of minimising the associated critical value, the corresponding allocation ratios differ substantially to those of a balanced design. We also find evidence of potentially big losses in power in factorial designs for moderate deviations from the study design assumptions and little gain compared with multi‐arm multi‐stage designs when the assumptions hold. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.  相似文献   

16.
Even in large-scale genome-wide association studies (GWASs), only a fraction of the true associations are detected at the genome-wide significance level. When few or no associations reach the significance threshold, one strategy is to follow up on the most promising candidates, i.e. the single nucleotide polymorphisms (SNPs) with the smallest association-test P-values, by genotyping them in additional studies. In this communication, we propose an overall test for GWASs that analyzes the SNPs with the most promising P-values simultaneously and therefore allows an early assessment of whether the follow-up of the selected SNPs is likely promising. We theoretically derive the properties of the proposed overall test under the null hypothesis and assess its power based on simulation studies. An application to a GWAS for chronic obstructive pulmonary disease suggests that there are true association signals among the top SNPs and that an additional follow-up study is promising.  相似文献   

17.
Multi‐arm clinical trials that compare several active treatments to a common control have been proposed as an efficient means of making an informed decision about which of several treatments should be evaluated further in a confirmatory study. Additional efficiency is gained by incorporating interim analyses and, in particular, seamless Phase II/III designs have been the focus of recent research. Common to much of this work is the constraint that selection and formal testing should be based on a single efficacy endpoint, despite the fact that in practice, safety considerations will often play a central role in determining selection decisions. Here, we develop a multi‐arm multi‐stage design for a trial with an efficacy and safety endpoint. The safety endpoint is explicitly considered in the formulation of the problem, selection of experimental arm and hypothesis testing. The design extends group‐sequential ideas and considers the scenario where a minimal safety requirement is to be fulfilled and the treatment yielding the best combined safety and efficacy trade‐off satisfying this constraint is selected for further testing. The treatment with the best trade‐off is selected at the first interim analysis, while the whole trial is allowed to compose of J analyses. We show that the design controls the familywise error rate in the strong sense and illustrate the method through an example and simulation. We find that the design is robust to misspecification of the correlation between the endpoints and requires similar numbers of subjects to a trial based on efficacy alone for moderately correlated endpoints. © 2015 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.  相似文献   

18.
非综合征性唇腭裂部分基因SNPs研究进展   总被引:2,自引:0,他引:2  
非综合征性唇裂伴或不伴腭裂是人类最常见的先天性畸形之一,是一种遗传、环境因素及两者相互作用所致的多基因多因素遗传疾病.单核苷酸多态性是新一代遗传标记,可被用来寻找各种致病基因,目前认为单核苷酸多态性及其特定组合可能是造成以多基因多因素遗传病为代表的复杂性状疾病易感性的重要原因.  相似文献   

19.
Association studies depend on linkage disequilibrium (LD) between a causative mutation and linked marker loci. Selecting markers that give the best chance of showing useful levels of LD with the causative mutation will increase the chances of successfully detecting an association. This report examines the variation in the extent of LD between a disease locus and one or two diallelic marker loci (termed single nucleotide polymorphisms or SNPs). We use a simulation method based on the neutral coalescent in a population of variable size to find the distribution of LD as a function of allele frequencies, the recombination rate, and the population history. Given that LD exists, the allele frequencies determine if a site will be useful for detecting an association with the disease mutation. We show that there is extensive variation in LD even for closely linked loci, implying that several markers may be needed to detect a disease locus. The distribution of LD between common variants is strongly influenced by ancestral population size. We show that in general, best results will be obtained if the frequencies of marker alleles are at least as large as the frequency of the causative mutation. Haplotypes of two or more SNPs generally have a higher probability than individual SNPs of showing useful LD with a disease mutation, although exceptions are described.  相似文献   

20.
The standard procedure to assess genetic equilibrium is a χ2 test of goodness‐of‐fit. As is the case with any statistical procedure of that type, the null hypothesis is that the distribution underlying the data is in agreement with the model. Thus, a significant result indicates incompatibility of the observed data with the model, which is clearly at variance with the aim in the majority of applications: to exclude the existence of gross violations of the equilibrium condition. In current practice, we try to avoid this basic logical difficulty by increasing the significance bound to the P‐value (e.g. from 5 to 10%) and inferring compatibility of the data with Hardy Weinberg Equilibrium (HWE) from an insignificant result. Unfortunately, such direct inversion of a statistical testing procedure fails to produce a valid test of the hypothesis of interest, namely, that the data are in sufficiently good agreement with the model under which the P‐value is calculated. We present a logically unflawed solution to the problem of establishing (approximate) compatibility of an observed genotype distribution with HWE. The test is available in one‐ and two‐sided versions. For both versions, we provide tools for exact power calculation. We demonstrate the merits of the new approach through comparison with the traditional χ2 goodness‐of‐fit test in 2×60 genotype distributions from 43 published genetic studies of complex diseases where departure from HWE was noted in either the case or control sample. In addition, we show that the new test is useful for the analysis of genome‐wide association studies. Genet. Epidemiol. 33:569–580, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号