首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Corticostriatal projections to the dorsocentral striatum (DCS) were investigated using retrograde fluorescent axonal tracing. The DCS is of interest because of its role in directed attention and recovery from multimodal hemispatial neglect following cortical lesions of medial agranular cortex (AGm), an association area that is its major source of cortical input. A key finding was that the multimodal posterior parietal cortex (PPC) also contributes substantial input to DCS. This is significant because PPC and AGm are linked by corticocortical connections and are both critical components of the circuitry involved in spatial processing and directed attention. Other cortical areas providing input to DCS include visual association areas, lateral agranular cortex and orbital cortex. These areas also have reciprocal connections with AGm and PPC. Less consistent labeling was seen in somatic sensorimotor areas FL, HL and Par 1. Thalamic afferents to DCS are prominent from the intralaminar, ventrolateral, mediodorsal, ventromedial, laterodorsal (LD) and lateral posterior (LP) nuclei. Collectively, these nuclei constitute the sources of thalamic input to cortical areas AGm and PPC. Nuclei LD and LP are only labeled with injections in dorsal DCS, the site of major input from PPC, and PPC receives its thalamic input from LD and LP. We conclude that DCS receives inputs from cortical and thalamic areas that are themselves linked by corticocortical and thalamocortical connections. These findings support the hypothesis that DCS is a key component of an associative network of cortical, striatal and thalamic regions involved in multimodal processing and directed attention.  相似文献   

2.
Interareal feedback connections are a fundamental aspect of cortical architecture, yet many aspects of their organization and functional relevance remain poorly understood. Previous studies have investigated the topography of feedback projections from extrastriate cortex to macaque area 17. We have extended this analysis to the ferret. We made restricted injections of cholera toxin B (CTb) into ferret area 17 and mapped the distribution of retrogradely labeled cells in extrastriate cortex. In addition to extensive label spreading within area 17, we found dense cell label in areas 18, 19, and 21 and the suprasylvian cortex and sparser connections from the lateral temporal and posterior parietal cortex. We made extensive physiological assessments of magnification factors in the extrastriate visual cortex and used these measures to convert the spread of labeled cortex in millimeters into a span in degrees of visual field. We also directly measured the visuotopic extents of receptive fields in the regions containing labeled cells in cases in which we made both CTb injections and physiological recordings in the same animals; we then compared the aggregate receptive field (ARF) of the labeled region in each extrastriate area with that of the injection site. In areas 18, 19, and 21, receptive fields of cells in regions containing labeled neurons overlapped those at the injection site but spanned a greater distance in visual space than the ARF of the injection site. The broad visuotopic extent of feedback connections is consistent with the suggestion that they contribute to response modulation by stimuli beyond the classical receptive field.  相似文献   

3.
The origins and terminations of entorhinal cortical projections in the rat were analyzed in detail with retrograde and anterograde tracing techniques. Retrograde fluorescent tracers were injected in different portions of olfactory, medial frontal (infralimbic and prelimbic areas), lateral frontal (motor area), temporal (auditory), parietal (somatosensory), occipital (visual), cingulate, retrosplenial, insular, and perirhinal cortices. Anterograde tracer injections were placed in various parts of the rat entorhinal cortex to demonstrate the laminar and topographical distribution of the cortical projections of the entorhinal cortex. The retrograde experiments showed that each cortical area explored receives projections from a specific set of entorhinal neurons, limited in number and distribution. By far the most extensive entorhinal projection was directed to the perirhinal cortex. This projection, which arises from all layers, originates throughout the entorhinal cortex, although its major origin is from the more lateral and caudal parts of the entorhinal cortex. Projections to the medial frontal cortex and olfactory structures originate largely in layers II and III of much of the intermediate and medial portions of the entorhinal cortex, although a modest component arises from neurons in layer V of the more caudal parts of the entorhinal cortex. Neurons in layer V of an extremely laterally located strip of entorhinal cortex, positioned along the rhinal fissure, give rise to the projections to lateral frontal (motor), parietal (somatosensory), temporal (auditory), occipital (visual), anterior insular, and cingulate cortices. Neurons in layer V of the most caudal part of the entorhinal cortex originate projections to the retrosplenial cortex. The anterograde experiments confirmed these findings and showed that in general, the terminal fields of the entorhinal-cortical projections were densest in layers I, II, and III, although particularly in the more densely innervated areas, labeling in layer V was also present. Comparably distributed, but much weaker projections reach the contralateral hemisphere. Our results show that in the rat, hippocampal output can reach widespread portions of the neocortex through a relay in a very restricted part of the entorhinal cortex. However, most of the hippocampal-cortical connections will be mediated by way of entorhinal-perirhinal-cortical connections. We conclude that, in contrast to previous notions, the overall organization of the hippocampal-cortical connectivity in the rat is largely comparable to that in the monkey. Hippocampus 7:146–183, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
The organization of projections from V1 to areas V2 and V3 in the macaque monkey was studied with a combination of anatomical techniques, including lesions and tracer injections made in different portions of V1 and V2 in 20 experimental hemispheres. Our results indicate that dorsal V1 (representing the inferior contralateral visual quadrant) consistently projects in topographically organized fashion to V3 in the lunate and parietooccipital sulci as well as to the middle temporal area (MT) and dorsal V2. In contrast, ventral V1 (representing the superior contralateral quadrant) projects only to MT and ventral V2. A corresponding dorsoventral asymmetry in myeloarchitecture supports the idea that V3 is an area that is restricted to dorsal extrastriate cortex and lacks a complete representation of the visual field. The average surface area of myeloarchitectonically identified V3 was 89 mm2. Additional information was obtained concerning the laminar distribution of connections from V1 to V2 and V3, the patchiness of these projections, and the consistency of projections to other extrastriate areas, including V4 and V3A.  相似文献   

5.
Organization of the Visual Reticular Thalamic Nucleus of the Rat   总被引:2,自引:0,他引:2  
The visual sector of the reticular thalamic nucleus has come under some intense scrutiny over recent years, principally because of the key role that the nucleus plays in the processing of visual information. Despite this scrutiny, we know very little of how the connections between the reticular nucleus and the different areas of visual cortex and the different visual dorsal thalamic nuclei are organized. This study examines the patterns of reticular connections with the visual cortex and the dorsal thalamus in the rat, a species where the visual pathways have been well documented. Biotinylated dextran, an anterograde and retrograde tracer, was injected into different visual cortical areas [17; rostral 18a: presumed area AL (anterolateral); caudal 18a: presumed area LM (lateromedial); rostral 18b: presumed area AM (anteromedial); caudal 18b: presumed area PM (posteromedial)] and into the different visual dorsal thalamic nuclei (posterior thalamic, lateral posterior, lateral geniculate nuclei), and the patterns of anterograde and retrograde labelling in the reticular nucleus were examined. From the cortical injections, we find that the visual sector of the reticular nucleus is divided into subsectors that each receive an input from a distinct visual cortical area, with little or no overlap. Further, the resulting pattern of cortical terminations in the reticular nucleus reflects largely the patterns of termination in the dorsal thalamus. That is, each cortical area projects to a largely distinct subsector of the reticular nucleus, as it does to a largely distinct dorsal thalamic nucleus. As with each of the visual cortical areas, each of the visual dorsal thalamic (lateral geniculate, lateral posterior, posterior thalamic) nuclei relate to a separate territory of the reticular nucleus, with little or no overlap. Each of these dorsal thalamic territories within the reticular nucleus receives inputs from one or more of the visual cortical areas. For instance, the region of the reticular nucleus that is labelled after an injection into the lateral geniculate nucleus encompasses the reticular regions which receive afferents from cortical areas 17, rostral 18b and caudal 18b. These results suggest that individual cortical areas may influence the activity of different dorsal thalamic nuclei through their reticular connections.  相似文献   

6.
The subthalamic nucleus (STN) and the zona incerta (ZI) are two major structures of the subthalamus. The STN has strong connections between the basal ganglia and related nuclei. The ZI has strong connections between brainstem reticular nuclei, sensory nuclei, and nonspecific thalamic nuclei. Both the STN and ZI receive heavy projections from a subgroup of layer V neurons in the cerebral cortex. The major goal of this study was to investigate the following two questions about the cortico‐subthalamic projections using the lentivirus anterograde tracing method in the rat: 1) whether cortical projections to the STN and ZI have independent functional organizations or a global organization encompassing the entire subthalamus as a whole; and 2) how the cortical functional zones are represented in the subthalamus. This study revealed that the subthalamus receives heavy projections from the motor and sensory cortices, that the cortico‐subthalamic projections have a large‐scale functional organization that encompasses both the STN and two subdivisions of the ZI, and that the group of cortical axons that originate from a particular area of the cortex sequentially innervate and form separate terminal fields in the STN and ZI. The terminal zones formed by different cortical functional areas have highly overlapped and fuzzy borders, as do the somatotopic representations of the sensorimotor cortex in the subthalamus. The present study suggests that the layer V neurons in the wide areas of the sensorimotor cortex simultaneously control STN and ZI neurons. Together with other known afferent and efferent connections, possible new functionality of the STN and ZI is discussed. J. Comp. Neurol. 522:4043–4056, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
Connections of the retrosplenial dysgranular cortex in the rat.   总被引:6,自引:0,他引:6  
Although the retrosplenial dysgranular cortex (Rdg) is situated both physically and connectionally between the hippocampal formation and the neocortex, few studies have focused on the connections of Rdg. The present study employs retrograde and anterograde anatomical tracing methods to delineate the connections of Rdg. Each projection to Rdg terminates in distinct layers of the cortex. The thalamic projections to Rdg originate in the anterior (primarily the anteromedial), lateral (primarily the laterodorsal), and reuniens nuclei. Those from the anteromedial nucleus terminate predominantely in layers I and IV-VI, whereas the axons arising from the laterodorsal nucleus have a dense terminal plexus in layers I and III-IV. The cortical projections to Rdg originate primarily in the infraradiata, retrosplenial, postsubicular, and areas 17 and 18b cortices. The projections arising from visual areas 18b and 17 predominantly terminate in layer I of Rdg, axons from contralateral Rdg form a dense terminal plexus in layers I-IV, with a smaller number of terminals in layers V and VI, afferents from postsubiculum terminate in layers I and III-V, and the projection from infraradiata cortex terminates in layers I and V-VI. The efferent projections from Rdg are widespread. The major cortical projections from Rdg are to infraradiata, retrosplenial granular, area 18b, and postsubicular cortices. Subcortical projections from Rdg terminate primarily in the ipsilateral caudate and lateral thalamic nuclei and bilaterally in the anterior thalamic nuclei. The efferent projections from Rdg are topographically organized. Rostral Rdg projects to the dorsal infraradiata cortex and the rostral postsubiculum, while caudal Rdg axons terminate predominantely in the ventral infraradiata and the caudal postsubicular cortices. Caudal but not rostral Rdg projects to areas 17 and 18b of the cortex. The Rdg projections to the lateral and anterior nuclei also are organized along the rostral-caudal axis. Together, these data suggest that Rdg integrates thalamic, hippocampal, and neocortical information.  相似文献   

8.
To examine how fibers from functionally distinct cortical zones interrelate within their target areas of the superior temporal sulcus (STS) in the rhesus monkey, separate anterograde tracers were injected in two different regions of the same hemisphere known to project to the STS. Paired injections were placed in dorsal prearcuate cortex and the caudal inferior parietal lobule (IPL), interconnected regions that are part of a hypothesized distributed network concerned with visuospatial analysis or directed attention; in a presumed auditory region of the superior temporal gyrus (STG) and in extrastriate visual cortex, the caudal IPL and lower rim of the intraparietal sulcus; and in dorsal prearcuate cortex and the STG. Overlapping and nonoverlapping projections were then examined in STS visual and polysensory areas. Prefrontal and parietal fibers directly overlapped extensively in area MST and all subdivisions of presumed polysensory cortex (areas TPOc, TPOi, and TPOr), although nonoverlapping connections were also found. Although STG and IPL fibers targeted all TPO subdivisions, connections were to nonoverlapping, but often adjacent, columns. Paired prefrontal and STG injections revealed largely nonoverlapping vertical columns of connections but substantial overlap within layers VI and I of areas TPOc and TPOi. The findings suggest that area TPO contains differently connected modules that may maintain at least initial segregation of visual versus auditory inputs. Other modules within area TPO receive directly converging input from the posterior parietal and the prefrontal cortices and may participate in a distributed cortical network concerned with visuospatial functions. © 1996 Wiley-Liss, Inc.  相似文献   

9.
Once the visual pathway reaches striate cortex, it fans out to a number of extrastriate areas. The projections to the second visual area (V2) are known to terminate in a patchy manner. V2 contains a system of repeating pale-thin-pale- thick stripes of cytochrome oxidase (CO) activity. We examined whether the patchy terminal fields arising from primary visual cortex (V1) projections are systematically related to the CO stripes in V2. Large injections of an anterograde tracer, [(3)H]proline, were made into V1 of both hemispheres in 5 macaques. The resulting V2 label appeared in layers 2-6, with the densest concentration in layer 4. In 21/29 injections, comparison of adjacent flatmount sections processed either for autoradiography or CO activity showed that the heaviest [(3)H]proline labeling was located in pale CO stripes. In 7/29 injections, there was no clear enrichment of labeling in the CO pale stripes. In 1 injection, the proline label correlated with dark CO stripes. On a fine scale, CO levels vary within V2 stripes, giving them an irregular, mottled appearance. In all stripe types, the density of proline label would often wax and wane in opposing contrast to these local fluctuations in CO density. Our data showed that V1 input is generally anti-correlated with the intensity of CO staining in V2, with strongest input to pale stripes. It is known that the pulvinar projects preferentially to dark stripes. Therefore, V2 receives interleaved projections from V1 and the pulvinar. Because these projections favor different stripe types, they may target separate populations of neurons.  相似文献   

10.
The interhemispheric efferent and afferent connections of the V1/V2 border have been examined in the adult macaque monkey with the tracers horseradish peroxidase and horseradish peroxidase conjugated to wheat germ agglutinin. The V1/V2 border was found to have reciprocal connections with the contralateral visual area V1, as well as with three other cortical sites situated in the posterior bank of the lunate sulcus, the anterior bank of the lunate sulcus, and the posterior bank of the superior temporal sulcus. Within V1, callosal projecting cells were found mainly in layer 4B with a few cells in layer 3. Anterograde labeled terminals were restricted to layers 2, 3, 4B, and 5. In extrastriate cortex, retrograde labeled cells were in layers 2 and 3 and only very rarely in infragranular layers. In the posterior bank of the lunate sulcus, labeled terminals were scattered throughout all cortical layers except layers 1 and 4. In the anterior bank of the lunate sulcus and in the superior temporal sulcus, anterograde labeled terminals were largely focused in layer 4. Callosal connections in all contralateral regions were organized in a columnar fashion. Columnar organization of callosal connections was more apparent for anterograde labeled terminals than for retrograde labeled neurons. In the posterior bank of the lunate sulcus, columns of callosal connections were superimposed on regions of high cytochrome activity. The tangential extent of callosal connections in V1 and V2 was found to be influenced by eccentricity in the visual field. Callosal connections were denser in the region of V1 subserving foveal visual field than in cortex representing the periphery. In V1 subserving the fovea, callosal connections extended up to 2 mm from the V1/V2 border and only up to 1 mm in more peripheral located cortex. In area V2 subserving the fovea, cortical connections extended up to 8 mm from the V1/V2 border and only up to 3 mm in peripheral cortex.  相似文献   

11.
Because convulsive seizures develop very rapidly from kindling sites in the anterior perirhinal cortex, we studied perirhinal efferents by using the anterograde tracer Phaseolus vulgaris leucoagglutinin (PhAL). PhAL injections into the anterior perirhinal cortex labelled a prominent network of fibers within the frontal cortex that was most dense within layers I and II and layer VI. As individual PhAL injection sites within the perirhinal cortex were restricted to one or two adjacent laminae, we were able to determine that layer V was the main source of the perirhinofrontal projection. This was confirmed by frontal cortex injections of the retrograde tracer Fluorogold (FG). Other cortical areas with densely labelled fibers following perirhinal PhAL injections included the agranular insular, infralimbic, orbital, parietal, and entorhinal cortices. Moderate to mild fiber labelling was also noted in the posterior piriform, temporal and occipital cortices, and the claustrum. Subcortical labelling was seen in the nucleus accumbens; fundus striati; basal and lateral amygdala nuclei; thalamic nuclei, including the reuniens, posterior and ventral posteromedial nuclei; the “acoustic thalamus”; and the central grey. Several of these cortical and subcortical projections were bilateral. The different laminar origin of these perirhinal efferents is discussed. These results confirmed our prediction of extensive direct projections from the anterior perirhinal cortex to the frontal cortex in the rat. The significance of this projection is discussed with special reference to the anatomical basis of convulsive limbic seizures. © 1996 Wiley-Liss, Inc.  相似文献   

12.
We studied cortical connections of functionally distinct movement zones of the posterior parietal cortex (PPC) in galagos identified by intracortical microstimulation with long stimulus trains (~500 msec). All these zones were in the anterior half of PPC, and each of them had a different pattern of connections with premotor (PM) and motor (M1) areas of the frontal lobe and with other areas of parietal and occipital cortex. The most rostral PPC zone has major connections with motor and visuomotor areas of frontal cortex as well as with somatosensory areas 3a and 1‐2 and higher order somatosensory areas in the lateral sulcus. The dorsal part of anterior PPC region representing hand‐to‐mouth movements is connected mostly to the forelimb representation in PM, M1, 3a, 1‐2, and somatosensory areas in the lateral sulcus and on the medial wall. The more posterior defensive and reaching zones have additional connections with nonprimary visual areas (V2, V3, DL, DM, MST). Ventral aggressive and defensive face zones have reciprocal connections with each other as well as connections with mostly face, but also forelimb representations of premotor areas and M1 as well as prefrontal cortex, FEF, and somatosensory areas in the lateral sulcus and areas on the medial surface of the hemisphere. Whereas the defensive face zone is additionally connected to nonprimary visual cortical areas, the aggressive face zone is not. These differences in connections are consistent with our functional parcellation of PPC based on intracortical long‐train microstimulation, and they identify parts of cortical networks that mediate different motor behaviors. J. Comp. Neurol. 517:783–807, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Although the retrosplenial granular b cortex (Rgb) is situated in a critical position between the hippocampal formation and the neocortex, surprisingly few studies have examined its connections carefully. The present experiments use both anterograde and retrograde tracing techniques to characterize the connections of Rgb. The main cortical projections from Rgb are to the caudal part of the anterior cingulate cortex, area 18b, retrosplenial granular a cortex (Rga), and postsubiculum, and less dense terminal fields are present in the prelimbic and caudal occipital cortices. The major subcortical projections are to the anterior thalamic nuclei and the rostral pontine nuclei, and very small terminal fields are present in the caudal dorsomedial part of the striatum, the reuniens and reticular nuclei of the thalamus, and the mammillary bodies. Contralaterally, Rgb primarily projects to itself, i.e., homotypically, and more sparsely projects to Rga and postsubiculum. In general, the axons from Rgb terminate ipsilaterally in cortical layers I and III-V and contralaterally in layer V, with a smaller number of terminals in layers I and VI. Thalamic projections from Rgb target the anteroventral and laterodorsal nuclei of the thalamus, with only a few axons terminating in the anterodorsal nucleus, the reticular nucleus, and the nucleus reuniens of the thalamus. Rgb is innervated by the anterior cingulate cortex, precentral agranular cortex, cortical area 18b, dorsal subiculum, and postsubiculum. Subcortical projections to Rgb originate mainly in the claustrum, the horizontal limb of the diagonal band of Broca, and the anterior thalamic nuclei. These data demonstrate that, in the rat, Rgb is a major nodal point for the integration and subsequent distribution of information to and from the hippocampal formation, the midline limbic and visual cortices, and the thalamus. Thus, similarly to the entorhinal cortex, Rgb in the rat is a prominent gateway for information exchange between the hippocampal formation and other limbic areas of the brain.  相似文献   

14.
The origins and terminations of the amygdaloid connections with the modality-specific visual cortical areas TEa (anterior TE area), TEp (posterior TE area), TEO, V4, V2, MST (medial superior temporal visual area), MT (middle temporal visual area), and V1 were studied in macaques. These were compared with the amygdaloid connections of a vision-related polysensory area TG by making cortical injections of horseradish peroxidase (HRP) and incubating the sections with tetramethylbenzidine (TMB) as the chromogen. Both areas TEa and TEp receive a major projection from the lateral basal nucleus and a minor one from the accessory basal nucleus of the amygdaloid complex, whereas these areas send a major projection to the lateral nucleus and a minor one to the lateral basal nucleus. Areas TEO, V4, V2, MST, MT, and V1 receive projections only from the lateral basal nucleus; none of them project to any amygdaloid nucleus. Thus, the amygdalofugal projections are more widespread and more complex than the amygdalopetal projections. These findings indicate that the connections between the amygdaloid nuclei and the visual areas are generally nonreciprocal and underlie the importance of a feedback mechanism from the amygdala to the visual cortical areas in visual information processing. There appears to be a caudorostral (occipitotemporal) gradient in the distribution and density of the amygdaloid projections, which become progressively more widespread and heavier among the progressively more rostral visual areas (from area V1 to area TEa). The amygdaloid connections with area TG are distinctly different from the connections with the visual areas. Area TG is reciprocally connected mainly with the periamygdaloid cortex, and with the lateral, accessory basal, and medial basal nuclei of the amygdala as well.  相似文献   

15.
Neuronal response properties vary markedly at increasing levels of the cortical hierarchy. At present it is unclear how these variations are reflected in the organization of the intrinsic cortical circuitry. Here we analyze patterns of intrinsic horizontal connections at different hierarchical levels in the visual cortex of the macaque monkey. The connections were studied in tangential sections of flattened cortices, which were injected with the anterograde tracer biocytin. We directly compared the organization of connections in four cortical areas representing four different levels in the cortical hierarchy. The areas were visual areas 1, 2, 4 and Brodman's area 7a (V1, V2, V4 and 7a, respectively). In all areas studied, injections labeled numerous horizontally coursing axons that formed dense halos around the injection sites. Further away, the fibers tended to form separate clusters. Many fibers could be traced along the way from the injection sites to the target clusters. At progressively higher order areas, there was a striking increase in the spread of intrinsic connections: from a measured distance of 2.1 mm in area V1 to 9.0 mm in area 7a. Average interpatch distance also increased from 0.61 mm in area V1 to 1.56 mm in area 7a. In contrast, patch size changed far less at higher order areas, from an average width of 230 m?M in area V1 to 310 m?m in area 7a. Analysis of synaptic bouton distribution along axons revealed that average interbouton distance remained constant at 6.4 m?m (median) in and out of the clusters and in the different cortical areas. Larger injections resulted in a marked increase in the number of labeled patches but only a minor increase in the spread of connections or in patch size. Thus, in line with the more global computational roles proposed for the higher order visual areas, the spread of intrinsic connections is increased with the hierarchy level. On the other hand, the clustered organization of the connections is preserved at higher order areas. These clusters may reflect the existence of cortical modules having blob-like dimensions throughout macaque monkey visual cortex. © 1993 Wiley-Liss, Inc.  相似文献   

16.
Cheatwood JL  Corwin JV  Reep RL 《Brain research》2005,1036(1-2):90-100
Dorsocentral striatum (DCS) is an associative region necessary for directed attention in rats. DCS is defined as the main region in which axons from ipsilateral medial agranular cortex (AGm) terminate within the striatum. In this double-labeling study, we placed a green axonal tracer in area AGm and a red one in an additional brain region. We examined the spatial relationship between terminals from area AGm and other portions of the cortical-basal ganglia-thalamic-cortical network involved in directed attention and its dysfunction, hemispatial neglect, in the rat. These include lateral agranular cortex (AGl), posterior parietal cortex (PPC), ventrolateral orbital cortex (VLO), and secondary visual cortex (Oc2M). One important finding is the presence of a dense focus of labeled axons within DCS after injections in cortical area PPC or Oc2M. In these foci, axons from PPC or Oc2M extensively overlap and interdigitate with axons from cortical area AGm. Additionally, retrograde labeling of striatal neurons, along with double anterograde labeling, suggests that axons from cortical area AGm and AGl cross and possibly make contact with the dendritic processes of single medium spiny neurons. Axons from thalamic nucleus LP were observed to form a dense band dorsal to DCS which is similar to that seen following PPC injections, and a significant number of LP axons were also observed within DCS. Projections from thalamic nucleus VL are present in the dense dorsolateral AGm band that abuts the external capsule, are densest in the dorsolateral striatum, and were not observed in DCS. These results extend previous findings that DCS receives input from diverse cortical areas and thalamic nuclei which are themselves interconnected.  相似文献   

17.
To identify the cortical connections of the medial superior temporal (MST) and fundus of the superior temporal (FST) visual areas in the extrastriate cortex of the macaque, we injected multiple tracers, both anterograde and retrograde, in each of seven macaques under physiological control. We found that, in addition to connections with each other, both MST and FST have widespread connections with visual and polysensory areas in posterior prestriate, parietal, temporal, and frontal cortex. In prestriate cortex, both areas have connections with area V3A. MST alone has connections with the far peripheral field representations of V1 and V2, the parieto-occipital (PO) visual area, and the dorsal prelunate area (DP), whereas FST alone has connections with area V4 and the dorsal portion of area V3. Within the caudal superior temporal sulcus, both areas have extensive connections with the middle temporal area (MT), MST alone has connections with area PP, and FST alone has connections with area V4t. In the rostral superior temporal sulcus, both areas have extensive connections with the superior temporal polysensory area (STP) in the upper bank of the sulcus and with area IPa in the sulcal floor. FST also has connections with the cortex in the lower bank of the sulcus, involving area TEa. In the parietal cortex, both the central field representation of MST and FST have connections with the ventral intraparietal (VIP) and lateral intraparietal (LIP) areas, whereas MST alone has connections with the inferior parietal gyrus. In the temporal cortex, the central field representation of MST as well as FST has connections with visual area TEO and cytoarchitectonic area TF. In the frontal cortex, both MST and FST have connections with the frontal eye field. On the basis of the laminar pattern of anterograde and retrograde label, it was possible to classify connections as forward, backward, or intermediate and thereby place visual areas into a cortical hierarchy. In general, MST and FST receive forward inputs from prestriate visual areas, have intermediate connections with parietal areas, and project forward to the frontal eye field and areas in the rostral superior temporal sulcus. Because of the strong inputs to MST and FST from area MT, an area known to play a role in the analysis of visual motion, and because MST and FST themselves have high proportions of directionally selective cells, they appear to be important stations in a cortical motion processing system.  相似文献   

18.
We defined cortical areas involved in the analysis of motion in the far peripheral visual field, a poorly understood aspect of visual processing in primates. This was accomplished by small tracer injections within and around the representations of the monocular field of vision ('temporal crescents') in the middle temporal area (MT) of marmoset monkeys. Quantitative analyses demonstrate that the representation of the far periphery receives specific connections from the retrosplenial cortex (areas 23v and prostriata), as well as comparatively stronger inputs from the primary visual area (V1) and from areas surrounding MT (in particular, the medial superior temporal area, MST). In contrast, the far peripheral representation receives little or no input from most other extrastriate areas, including the second visual area (V2), the densely myelinated areas of the dorsomedial cortex, and ventral stream areas; these areas are shown to have robust projections to other parts of MT. Our results demonstrate that the responses of cells in different parts of a same visual area can be determined by different combinations of synaptic inputs, in terms of areas of origin. They also suggest that the interconnections responsible for motion processing in the far periphery of the visual field convey information that is crucial for rapid-response aspects of visual function such as orienting, postural and defensive reactions.  相似文献   

19.
Patterns of connections in rat visual cortex   总被引:1,自引:0,他引:1  
The definition of visual areas is one of the central problems in visual cortex research. Rodent extrastriate cortex offers a striking example of the complexity of this issue, in that different parcelation schemes identify within it from 2 to as many as 13 separate visual areas. In the experiments reported here, patterns of connections within rat visual cortex were studied in an effort to better define its organizational layout. The experimental paradigm used consisted of the following steps: first, the pattern of callosal connections was revealed in vivo with the fluorescent tracer bisbenzimide. Then, using the callosal pattern as a landmark, single injections of WGA-HRP were placed at various sites in striate and extrastriate cortex. Subsequently, the relation between the tangential distribution of ipsilateral corticocortical connections, the callosal connections, and the borders of striate cortex were examined in the flattened cortex preparation. The experiments revealed widespread, patchy connections within rat visual cortex. These connections appeared to reflect 3 organizational trends. First, neighboring sites were more extensively connected than distant ones. Second, extrastriate sites receiving common striate cortex inputs tended to be interconnected. Finally, projections from opposite poles in striate cortex tended to form interdigitating patterns of connections in regions of overlap. Altogether these trends suggest that the extrastriate band adjoining striate cortex has a single, global map organization. However, within the global map, a clear modular organization was evident, which appeared to correspond to the multiple visuotopic representations reported for this region. Based on its location, and some organizational similarities. it is suggested that the global map may constitute the rat homolog of area V2 in cat and monkey.  相似文献   

20.
We have used anterograde and retrograde horseradish peroxidass tracing methods in this study. Peroxidase injections in the lateralis medialis thalamic nucleus (LIB of the cat resulted in labeled neurons in cortical and subcortical structures that averaged 71 % and 29%, respectively. Every LM sector receives abundant projections from the polymodal sylvian anterior cortical area, the reticular thalamic nucleus, and the stratum opticum and intermediate layer of the superior colliculus. Less abundant but consistent projections were detected in cingular, auditory II, lateral suprasylvian and anterior ectosylvian visual cortices, and cortical area 7. A topographical distribution of afferent connections to different LM sectors arising from other cortical and subcortical structures could be established. The ventromedial sector receives connections mainly from the insular agranular, limbic and prefrontal cortical areas, as well as from brain stem structures and the contralateral pretectal region. The dorsolateral sector is mainly related to cortical areas and subcortical strictures processing visual information. The existence of overlap among neuronal LM populations receiving and sending connections to and from various cortical areas suggests that this nucleus is an appropriate substrate for effective interaction between different and distant cortical areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号