首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 897 毫秒
1.
Preconception exposure to EtOH through the paternal route may affect neurobehavioral and developmental features of offspring. This study investigates the effects of paternal exposure to EtOH before conception on the hyperactivity, inattention, and impulsivity behavior of male offspring in mice. Sire mice were treated with EtOH in a concentration range approximating human binge drinking (0–4 g/kg/day EtOH) for 7 weeks and mated with untreated females mice to produce offspring. EtOH exposure to sire mice induced attention deficit hyperactivity disorder (ADHD)‐like hyperactive, inattentive, and impulsive behaviors in offspring. As a mechanistic link, both protein and mRNA expression of dopamine transporter (DAT), a key determinant of ADHD‐like phenotypes in experimental animals and humans, were significantly decreased by paternal EtOH exposure in cerebral cortex and striatum of offspring mice along with increased methylation of a CpG region of the DAT gene promoter. The increase in methylation of DAT gene promoter was also observed in the sperm of sire mice, suggesting germline changes in the epigenetic methylation signature of DAT gene by EtOH exposure. In addition, the expression of two key regulators of methylation‐dependent epigenetic regulation of functional gene expression, namely, MeCP2 and DNMT1, was markedly decreased in offspring cortex and striatum sired by EtOH‐exposed mice. These results suggest that preconceptional exposure to EtOH through the paternal route induces behavioral changes in offspring, possibly via epigenetic changes in gene expression, which is essential for the regulation of ADHD‐like behaviors. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
3.
Dopamine is an important neuromodulator that exerts widespread effects on the central nervous system (CNS) function. Disruption in dopaminergic neurotransmission can have profound effects on mood and behavior and as such is known to be implicated in various neuropsychiatric behavioral disorders including autism and depression. The subsequent effects on other neurocircuitries due to dysregulated dopamine function have yet to be fully explored. Due to the marked social deficits observed in psychiatric patients, the neuropeptide, oxytocin is emerging as one particular neural substrate that may be influenced by the altered dopamine levels subserving neuropathologic‐related behavioral diseases. Oxytocin has a substantial role in social attachment, affiliation and sexual behavior. More recently, it has emerged that disturbances in peripheral and central oxytocin levels have been detected in some patients with dopamine‐dependent disorders. Thus, oxytocin is proposed to be a key neural substrate that interacts with central dopamine systems. In addition to psychosocial improvement, oxytocin has recently been implicated in mediating mesolimbic dopamine pathways during drug addiction and withdrawal. This bi‐directional role of dopamine has also been implicated during some components of sexual behavior. This review will discuss evidence for the existence dopamine/oxytocin positive interaction in social behavioral paradigms and associated disorders such as sexual dysfunction, autism, addiction, anorexia/bulimia, and depression. Preliminary findings suggest that whilst further rigorous testing has to be conducted to establish a dopamine/oxytocin link in human disorders, animal models seem to indicate the existence of broad and integrated brain circuits where dopamine and oxytocin interactions at least in part mediate socio‐affiliative behaviors. A profound disruption to these pathways is likely to underpin associated behavioral disorders. Central oxytocin pathways may serve as a potential therapeutic target to improve mood and socio‐affiliative behaviors in patients with profound social deficits and/or drug addiction.  相似文献   

4.
Despite the increased prevalence of cocaine use and abuse in males when compared with females, possible effects of paternal cocaine exposure on biobehavioral development have received little attention. We therefore exposed male mice to cocaine (20 mg/kg, i.p.) or vehicle for 10 weeks and then used those mice as sires. We then behaviorally phenotyped the F1 offspring to assess the consequences of paternal cocaine exposure on brain function. We report the presence of a subtle but significant increase in immobility in the tail suspension test, a measure of behavioral depression, following paternal cocaine. Body weight was also significantly decreased in paternal cocaine‐exposed offspring. Other aspects of neurobehavioral function, including locomotor activity, anxiety, and learning and memory, were not affected by paternal cocaine history. These data suggest alterations in brain systems and/or circuitry underlying mood regulation in the offspring of cocaine‐using fathers. Synapse 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Biochemical adaptations to drugs of abuse and alcohol are especially profound in midbrain dopaminergic neurons. Long-lasting molecular and structural changes in mesolimbic dopaminergic neurons that result from chronic exposure to drugs of abuse and alcohol are thought to underlie adverse behaviors such as compulsive drug seeking and relapse. Recent studies suggest that a subset of these changes is prevented/reversed by activation of the glial cell line-derived neurotrophic factor (GDNF) signaling pathway. Behavioral effects of drugs of abuse such as cocaine and alcohol are also negatively regulated by GDNF: inhibition of the endogenous GDNF pathway enhances the activity of drugs of abuse, while administration of GDNF reduces the severity of the effects. In this review, we summarize the data implicating GDNF as a negative regulator of drug and alcohol addiction. We also provide evidence to suggest that therapies that activate GDNF signaling may be useful for the treatment of drug and alcohol addiction.  相似文献   

6.
Exposure to both drugs of abuse and environmental enrichment (EE) are widely studied experiences that induce large changes in dendritic morphology and synaptic connectivity. As there is an abundance of literature using EE as a treatment strategy for drug addiction, we sought to determine whether EE could remediate the effects of prenatal nicotine (PN) exposure. Using Golgi‐Cox staining, we examined eighteen neuroanatomical parameters in four brain regions [medial prefrontal cortex (mPFC), orbital frontal cortex (OFC), nucleus accumben, and Par1] of Long‐Evans rats. EE in adolescence dramatically altered structural plasticity in the male and female brain, modifying 60% of parameters investigated. EE normalized three parameters (OFC spine density and dendritic branching and mPFC dendritic branching) in male offspring exposed to nicotine prenatally but did not remediate any measures in female offspring. PN exposure interfered with adolescent EE‐induced changes in five neuroanatomical measurements (Par1 spine density and dendritic branching in both male and female offspring, and mPFC spine density in male offspring). And in four neuroanatomical parameters examined, PN exposure and EE combined to produce additive effects [OFC spine density in females and mPFC dendritic length (apical and basilar) and branching in males]. Despite demonstrated efficacy in reversing drug addiction, EE was not able to reverse many of the PN‐induced changes in neuronal morphology, indicating that modifications in neural circuitry generated in the prenatal period may be more resistant to change than those generated in the adult brain. Synapse 68:293–305, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
Motherhood has profound effects on physiology, neuronal plasticity, and behavior. We conducted a series of experiments to test the hypothesis that fatherhood, similarly to motherhood, affects brain plasticity (such as cell proliferation and survival) and various behaviors in the highly social prairie vole (Microtus ochrogaster). In Experiment 1, adult males were housed with their same‐sex cage mate (control), single‐housed (isolation), or housed with a receptive female to mate and produce offspring (father) for 6 weeks. Fatherhood significantly reduced cell survival (assessed by bromodeoxyuridine labeling), but not cell proliferation (assessed by Ki67‐labeling), in the amygdala, dentate gyrus of the hippocampus, and ventromedial hypothalamus, suggesting that fatherhood affects brain plasticity. In Experiment 2, neither acute (20 min) nor chronic (20 min daily for 10 consecutive days) pup exposure altered cell proliferation or survival in the brain, but chronic pup exposure increased circulating corticosterone levels. These data suggest that reduced cell survival in the brain of prairie vole fathers was unlikely to be due to the level of pup exposure and display of paternal behavior, and may not be mediated by circulating corticosterone. The effects of fatherhood on various behaviors (including anxiety‐like, depression‐like, and social behaviors) were examined in Experiment 3. The data indicated that fatherhood increased anxiety‐ and depression‐like behaviors as well as altered aggression and social recognition memory in male prairie voles. These results warrant further investigation of a possible link between brain plasticity and behavioral changes observed due to fatherhood.  相似文献   

8.
Depression and anxiety risk are highly influenced by both genetic and environmental factors. Recently, it has been proposed that epigenetic mechanisms may also contribute to the transmission of both depression‐ and anxiety‐related behaviors across multiple generations. This review highlights long‐lasting epigenetic alterations observed in offspring of fathers, including some distinct effects on male and female offspring, in animal models. Available evidence emphasizes how both the developmental time point and the type of paternal stress (social vs. asocial) influence the complex transmission patterns of these phenotypes to future generations. This research is critical in understanding the factors that influence risk for depression and anxiety disorders and has the potential to contribute to the development of innovative treatments that can more precisely target vulnerable populations.  相似文献   

9.
Parental exposure to stress or glucocorticoids either before or during pregnancy can have profound influences on neurodevelopment, neuroendocrine function and behaviours in offspring. Specific outcomes are dependent on the nature, intensity and timing of the exposure, as well as species, sex and age of the subject. Most recently, it has become evident that outcomes are not confined to first‐generation offspring and that there may be intergenerational and transgenerational transmission of effects. There has been intense focus on the mechanisms by which such early exposure leads to long‐term and potential transgenerational outcomes, and there is strong emerging evidence that epigenetic processes (histone modifications, DNA methylation, and small non‐coding RNAs) are involved. New knowledge in this area may allow the development of interventions that can prevent, ameliorate or reverse the long‐term negative outcomes associated with exposure to early adversity. This review will focus on the latest research, bridging human and pre‐clinical studies, and will highlight some of the limitations, challenges and gaps that exist in the field.  相似文献   

10.
The transmission of traits across generations has typically been attributed to the inheritance by offspring of genomic information from parental generations. However, recent evidence suggests that epigenetic mechanisms are capable of mediating this type of transmission. In the case of maternal care, there is evidence for the behavioral transmission of postpartum behavior from mothers to female offspring. The neuroendocrine and molecular mediators of this transmission have been explored in rats and implicate estrogen-oxytocin interactions and the differential methylation of hypothalamic estrogen receptors. These maternal effects can influence multiple aspects of neurobiology and behavior of offspring and this particular mode of inheritance is dynamic in response to environmental variation. In this review, evidence for the generational transmission of maternal care and the mechanisms underlying this transmission will be discussed as will the implications of this inheritance system for offspring development and for the transmission of environmental information from parents to offspring.  相似文献   

11.
The potential health risks of cannabis are of growing concern, including effects on reproduction and development. Extensive research has investigated risks associated with maternal exposure to THC during gestation and its impacts on the development of offspring, but little research has been done regarding paternal THC exposure effects prior to conception. We have previously found that paternal THC exposure in rats causes changes in sperm methylation. In an initial study we also showed that a 12-day paternal THC exposure prior to conception alters locomotor activity and impairs cognitive function of their offspring. This study investigated the cross-generational effects of chronic paternal THC exposure in rats (0, 2, or 4 mg/kg/day SC for 28 days) prior to mating with drug naïve females. The offspring of THC-exposed male rats had significant alterations in locomotor activity and cognitive function. Specifically, during adolescence there was significant locomotor hyperactivity in the offspring of males exposed to 2 mg/kg/day of THC. During the novel object recognition task, the controls maintained their relative preference for the novel object across the duration of the ten-min session while the rats whose fathers received THC (2 mg/kg/day) showed a significantly greater drop-off in interest in the novel object during the second half of the session. Learning in the radial-arm maze was significantly delayed in the offspring of males exposed to 4 mg/kg/day of THC. This study shows that premating chronic paternal THC exposure at multiple dose regimens can cause long-lasting detrimental behavioral effects in their offspring, including abnormal locomotor activity and impaired cognitive function. Future studies should investigate the underlying mechanisms driving these aberrant developmental outcomes and seek to identify possible treatments of alleviation in the presence of paternal THC exposure.  相似文献   

12.
Addiction is a devastating disorder that produces persistent maladaptive changes to the central nervous system, including glial cells. Although there is an extensive body of literature examining the neuronal mechanisms of substance use disorders, effective therapies remain elusive. Glia, particularly microglia and astrocytes, have an emerging and meaningful role in a variety of processes beyond inflammation and immune surveillance, and may represent a promising therapeutic target. Indeed, glia actively modulate neurotransmission, synaptic connectivity and neural circuit function, and are critically poised to contribute to addictive‐like brain states and behaviors. In this review, we argue that glia influence the cellular, molecular, and synaptic changes that occur in neurons following drug exposure, and that this cellular relationship is critically modified following drug exposure. We discuss direct actions of abused drugs on glial function through immune receptors, such as Toll‐like receptor 4, as well as other mechanisms. We highlight how drugs of abuse affect glia‐neural communication, and the profound effects that glial‐derived factors have on neuronal excitability, structure, and function. Recent research demonstrates that glia have brain region‐specific functions, and glia in different brain regions have distinct contributions to drug‐associated behaviors. We will also evaluate the evidence demonstrating that glial activation is essential for drug reward and drug‐induced dopamine release, and highlight clinical evidence showing that glial mechanisms contribute to drug abuse liability. In this review, we synthesize the extensive evidence that glia have a unique, pivotal, and underappreciated role in the development and maintenance of addiction.  相似文献   

13.
The critical brain areas and molecular mechanisms involved in drug abuse and dependence have been extensively studied. Drug‐induced persistent behaviors such as sensitization, tolerance, or relapse, however, far outlast any previously reported mechanisms. A challenge in the field of addiction, therefore, has been to identify drug‐induced changes in brain circuitry that may subserve long‐lasting changes in behavior. This study examined behavioral changes and electron microscopic evidence of altered synaptic connectivity within the nucleus accumbens (NAc) following repeated administration of cocaine or morphine. The unbiased quantitative stereological physical disector method was used to estimate the number of synapses per neuron. Increases in the synapse‐to‐neuron ratio were found in the NAc shell of cocaine‐treated (49.1%) and morphine‐treated (55.1%) rats and in the NAc core of cocaine‐treated animals (49.1%). This study provides direct ultrastructural evidence of drug‐induced synaptic plasticity and identifies synaptic remodeling as a potential neural substrate underlying drug‐induced behavioral sensitization. Synapse, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Maternal toxicant exposure during gestation can have deleterious effects on neurobehavioral development of the offspring. The potential risks engendered by paternal toxicant exposure prior to conception have been largely understudied. Recently, we found that chronic THC exposure prior to conception in male rats causes long-lasting behavioral impairment in their offspring. The current study examined the effects of chronic preconception exposure to cannabis smoke extract in Sprague-Dawley rats at two different phases in sperm development. One group received daily subcutaneous (sc) injections of THC in cannabis extract at 4 mg/kg/day for 28 days until three days prior to mating with untreated females (late exposure group). Another group received the same regimen except they underwent 56 days of drug abstinence prior to mating (early exposure group). These were compared with a control group treated with vehicle. The offspring underwent a battery of tests for behavioral function to assess motor, emotional and cognitive function. On the elevated plus maze test, the offspring of both paternal cannabis smoke extract (CSE) exposure groups had significantly more time on the open arms than control offspring, indicative of greater risk-taking behavior. No significant main effects of CSE exposure were seen on adolescent or adult locomotor activity in the figure-8 apparatus. In the novel object recognition test, there was a significantly greater drop-off in novel object preference across the session in the male, but not female offspring of the late exposure group. There was also a sex-selective effect of paternal CSE treatment in the 16-arm radial maze test of memory function. Female offspring of the late exposure group had significantly more working memory errors than control females in the first half of the 12-session training sequence. No significant effects were seen in the operant visual signal sustained detection test of attention. This study shows that there are long-lasting behavioral consequences of preconception CSE exposure through the paternal lineage in rats.  相似文献   

15.
It could be habit forming: drugs of abuse and striatal synaptic plasticity   总被引:21,自引:0,他引:21  
Drug addiction can take control of the brain and behavior, activating behavioral patterns that are directed excessively and compulsively toward drug usage. Such patterns often involve the development of repetitive and nearly automatic behaviors that we call habits. The striatum, a subcortical brain region important for proper motor function as well as for the formation of behavioral habits, is a major target for drugs of abuse. Here, we review recent studies of long-term synaptic plasticity in the striatum, emphasizing that drugs of abuse can exert pronounced influences on these processes, both in the striatum and in the dopaminergic midbrain. Synaptic plasticity in the ventral striatum appears to play a prominent role in early stages of drug use, whereas dopamine- and endocannabinoid-dependent synaptic plasticity in the dorsal striatum could contribute to the formation of persistent drug-related habits when casual drug use progresses towards compulsive drug use and addiction.  相似文献   

16.
17.
The causal mechanism underlying the well-established relation between advancing paternal age and schizophrenia is hypothesized to involve mutational errors during spermatogenesis that occur with increasing frequency as males age. Point mutations are well known to increase with advancing paternal age while other errors such as altered copy number in repeat DNA and chromosome breakage have in some cases also been associated with advancing paternal age. Dysregulation of epigenetic processes may also be an important mechanism underlying the association between paternal age and schizophrenia. Evidence suggests that advancing age as well as environmental exposures alter epigenetic regulation. Errors in epigenetic processes, such as parental imprinting can have serious effects on the offspring both pre- and postnatally and into adulthood. This article will discuss parental imprinting on the autosomal and X chromosomes and the alterations in epigenetic regulation that may lead to such errors.  相似文献   

18.
Opioid addiction is a chronic and relapsing mental health disorder. However, only some individuals exposed to opioids, either recreationally or during the course of pain management, will develop addiction. The reasons why some individuals develop addiction and some are spared are not fully understood. Studies indicate that it is likely a combination of genetic predispositions and environmental conditions. Given the role of environmental factors in human addiction, this review examines the role of social environments and social interactions in the development of opioid addictive-like behaviors in rodent studies. To date, three major behavioral approaches have been used in these studies, namely social isolation, environmental enrichment, and social housing with a variety of cage-mates that differ in their drug administration conditions. This review highlights the importance of an individual’s social network in influencing the outcomes of drug abuse and the need to further elucidate the molecular mechanisms underlying these effects. Better understanding is likely to contribute to the development of novel and more effective treatments for addiction disorders.  相似文献   

19.
AimsLimited vs extended drug exposure has been proposed as one of the key factors in determining the risk of relapse, which is the primary characteristic of addiction behaviors. The current studies were designed to explore the related behavioral effects and neuronal alterations in the insular cortex (IC), an important brain region involved in addiction.MethodsExperiments started with rats at the age of 35 days, a typical adolescent stage when initial drug exposure occurs often in humans. The drug‐seeking/taking behaviors, and membrane properties and intrinsic excitability of IC pyramidal neurons were measured on withdrawal day (WD) 1 and WD 45‐48 after limited vs extended cocaine intravenous self‐administration (IVSA).ResultsWe found higher cocaine‐taking behaviors at the late withdrawal period after limited vs extended cocaine IVSA. We also found minor but significant effects of limited but not extended cocaine exposure on the kinetics and amplitude of action potentials on WD 45, in IC pyramidal neurons.ConclusionOur results indicate potential high risks of relapse in young rats with limited but not extended drug exposure, although the adaptations detected in the IC may not be sufficient to explain the neural changes of higher drug‐taking behaviors induced by limited cocaine IVSA.  相似文献   

20.
Dopaminergic projections from the ventral tegmental area (VTA) to the nucleus accumbens (NAcc) mediate the behavioral and motivational effects of many drugs of abuse, including nicotine. Repeated intermittent administration of these drugs, a pattern often associated with initial drug exposure, sensitises the reactivity of dopamine (DA) neurons in this pathway, enhances the locomotor behaviors the drugs emit, and promotes their pursuit and self‐administration. Here we show that activation of nicotinic acetylcholine receptors (nAChRs) in the VTA, but not the NAcc, is essential for the induction of locomotor sensitisation by nicotine. Repeated intermittent nicotine exposure (4 × 0.4 mg/kg, base, i.p., administered over 7 days), a regimen leading to long‐lasting locomotor sensitisation, also produced upregulation of nAChRs in the VTA, but not the NAcc, in the hours following the last exposure injection. Functional nAChR upregulation was observed selectively in DA but not GABA neurons in the VTA. These effects were followed by long‐term potentiation of excitatory inputs to these cells and increased nicotine‐evoked DA overflow in the NAcc. Withdrawal symptoms were not observed following this exposure regimen. Thus, intermittent activation and upregulation by nicotine of nAChRs in DA neurons in the VTA may contribute to the development of behavioral sensitisation and increased liability for nicotine addiction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号