首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Response properties of single units in the mouse barrel cortex were studied to determine the sequence in which the neurons that form a cortical column become activated by a single‘natural’stimulus. Mice (n= 11) were anaesthetized with urethane. For a total of 153 cells, grouped by cortical layer, responses to a standardized deflection of a single whisker were characterized using poststimulus time and latency histograms. Usually, for each unit, data were collected for stimulation of its principal whisker (PW; the whiskers corresponding to the barrel column in which the cell was located) and of the four whiskers surrounding the PW. In all layers, PW stimulation evoked responses at shorter latency than surround whisker stimulation. In layers II – III and IV a bimodal distribution of cells according to latency to PW stimulation was found. Statistical analysis indicated the presence of two classes of cells in each of these layers:‘fast’units (latency < 15 ms) and 'slow’units (latency >15 ms). The great majority of cells in layers I, V and VI fired at latencies of >20 ms to PW stimulation. In general, stimulation of surround whiskers evoked a smaller response than PW stimulation. The fast cells of layer IV showed the greatest response to PW stimulation (mean = 1.78 spikes/100 ms poststimulus). Their firing was maximal during the 10–20 ms poststimulus epoch, while the slow layer IV cells fired maximally during the 20 – 30 ms poststimulus epoch. Surround inhibition occurred in all layers within the first 10 ms after stimulus onset, during which period the fast cells are the most active ones, and are thus likely to be responsible for the surround inhibition. This notion is supported by an analysis of spike duration that showed that eight of the ten cells with a thin spike (supposed to be GABAergic; McCormick et al., J. Neurophysiol., 54 , 782 – 806, 1985), had PW latencies of <15 ms. We conclude that the activation of a barrel column is initially inhibitory in nature.  相似文献   

2.
The rodent barrel field cortex integrates somatosensory information from two separate thalamic nuclei, the ventral posterior medial nucleus (VPM) and the rostral sector of the posterior complex (POm). This paper compares the sensory responses of POm and VPM cells in urethane-anesthetized rats as a first step in determining how cortex integrates multiple sensory pathways. A complete representation of the contralateral body surface was identified in POm. Trigeminal receptive fields (RFs) of POm and VPM cells were mapped by computer-controlled displacement of individual whiskers; responses were quantified by using peristimulus time histograms. Average RF size was similar in POm (5.1 whiskers) and VPM (4.4 whiskers), but evoked responses in the two nuclei differed significantly according to all other measures. VPM cells were maximally responsive to one single whisker--the "center RF." Stimulating this whisker evoked, on average, a response of 1.4 spikes/stimulus at a latency of 7 ms; surrounding whiskers evoked responses of less than 1 spike/stimulus at latencies of greater than 8 ms. In contrast, POm cells were nearly equally responsive to several whiskers. Quantitative criteria allowed us to designate a single whisker as the "center RF" and stimulating this whisker evoked, on average, a response of 0.5 spikes/stimulus at a latency of 19 ms. VPM cells, but not POm cells, were able to "follow" repeated whisker deflection at greater than 5 Hz. We conclude that, when a single whisker is deflected, VPM activates the related cortical barrel-column at short latency--before the onset of activity in POm. The timing of activation could allow POm cells to modulate the spread of activity between cortical columns.  相似文献   

3.
To understand the physiological properties and anatomical organization of the spatiotemporal interaction of the responses to multiwhisker stimulation in neurons of the rat barrel cortex, single-unit recordings of 114 neurons were performed across all layers (layer II/III, n = 39; IV, n = 33; V/VI, n = 42) of the posteromedial barrel subfield of the primary somatosensory cortex of anesthetized rats. Two neighboring principal and adjacent whiskers (PW and AW, respectively) in the same row were deflected rostrally or caudally at varying interstimulus intervals (ISIs). In 37% of the neurons, the response to the combined stimulus was significantly larger than the sum of the responses to stimulation of the individual whiskers. In instances in which response facilitation was observed, selectivity was noted for the combination (75%) of the PW with a particular AW or for a particular direction (60%) of whisker deflection. The direction bias of the responses to multiwhisker stimulation was well correlated with that of the sum of the responses to single whisker stimulation (r = 0.83; p < 0.001). The pattern and magnitude of the response interaction in the neurons of the superficial layers were closely related to the location of the recorded cell in the barrel columns. Multiwhisker stimulation at short ISIs (相似文献   

4.
Although subthreshold inputs of neocortical sensory neurons are broadly tuned, the spiking output is more restricted. These subthreshold inputs provide a substrate for stimulus intensity‐dependent changes their spiking output, as well as for experience‐dependent plasticity to alter firing properties. Here we investigated how different stimulus intensities modified the firing output of individual neurons in layer 2/3 of the mouse barrel cortex. Decreasing stimulus intensity over a 30‐fold range lowered the firing rates evoked by principal whisker stimulation and reduced the overall size of the responding ensemble in whisker‐undeprived animals. We then examined how these responses were changed after single‐whisker experience (SWE). After 7 days of SWE, the mean magnitude of response to spared whisker stimulation at the highest stimulus intensity was not altered. However, lower‐intensity whisker stimulation revealed a more than 10‐fold increase in mean firing output compared with control animals. Also, under control conditions, only ~15% of neurons showed any firing at low stimulus intensity, compared with more than 70% of neurons after SWE. However, response changes measured in the immediately surrounding representations were detected only for the highest stimulus intensity. Overall, these data showed that the measurement of experience‐dependent changes in the spike output of neocortical neurons was highly dependent upon stimulus intensity.  相似文献   

5.
The mouse trigeminal (V) system undergoes significant postnatal structural and functional developmental changes. Histological modules (barrelettes, barreloids and barrels) in the brainstem, thalamus and cortex related to actively moved (whisking) tactile hairs (vibrissae) on the face allow detailed studies of development. High‐resolution [3H]2‐deoxyglucose (2DG) emulsion autoradiography with cytochrome oxidase histochemistry was used to analyze neuronal activity changes related to specific whisker modules in the developing and mature mouse V system provoked by passive (experimenter‐induced) and active (animal‐induced) displacements of a single whisker (D4). We tested the hypothesis that neuronal activity patterns change in relation to the onset of active touch (whisking) on postnatal day (P)14. Quantitative image analyses revealed: (i) on P7, when whisker‐like patterns of modules are clear, heightened 2DG activity in all appropriate modules in the brainstem, thalamus and cortex; (ii) on P14, a transitory activity pattern coincident with the emergence of whisking behavior that presages (iii) strong labeling of the spinal V subnucleus interpolaris and barrel cortex produced by single‐whisker‐mediated active touch in adults and (iv) at all above‐listed ages and structures, significant suppression of baseline activity in some modules surrounding those representing the stimulated whisker. Differences in activity patterns before and after the onset of whisking behavior may be caused by neuronal activity induced by whisking, and by strengthening of modulatory projections that alter the activity of subcortical inputs produced by whisking behavior during active touch.  相似文献   

6.
In spines on basal dendrites of layer 2/3 pyramidal neurons in somatosensory barrel cortex, calcium transients evoked by back‐propagating action potentials (bAPs) were investigated (i) along the length of the basal dendrite, (ii) with postnatal development and (iii) with sensory deprivation during postnatal development. Layer 2/3 pyramidal neurons were investigated at three different ages. At all ages [postnatal day (P)8, P14, P21] the bAP‐evoked calcium transient amplitude increased with distance from the soma with a peak at around 50 μm, followed by a gradual decline in amplitude. The effect of sensory deprivation on the bAP‐evoked calcium was investigated using two different protocols. When all whiskers on one side of the rat snout were trimmed daily from P8 to P20‐24 there was no difference in the bAP‐evoked calcium transient between cells in the contralateral hemisphere, lacking sensory input from the whisker, and cells in the ipsilateral barrel cortex, with intact whisker activation. When, however, only the D‐row whiskers on one side were trimmed the distribution of bAP‐evoked calcium transients in spines was shifted towards larger amplitudes in cells located in the deprived D‐column. In conclusion, (i) the bAP‐evoked calcium transient gradient along the dendrite length is established at P8, (ii) the calcium transient increases in amplitude with age and (iii) this increase is enhanced in layer 2/3 pyramidal neurons located in a sensory‐deprived barrel column that is bordered by non‐deprived barrel columns.  相似文献   

7.
Neonatal single whisker experience changes the response properties of spared barrel neurons to deflections of principal and adjacent whiskers. However little is known about the temporal characteristics of the paired whisker inputs. To address this issue we used computer controlled mechanical displacement of paired whiskers in control and plucked animals (plucking of all whiskers but D2 started at 0, 5 and 8 postnatal days). The principal whisker (PW) and its caudal adjacent whisker (AW) were deflected simultaneously or serially at different inter-stimulus intervals (10, 20, 30, 50 and 100 ms). Neuronal responses were recorded in D2 spared barrel both in layers IV and V. In the control group, combined deflection of AW prior to PW led to suppression of ON and OFF responses to PW deflection both in layers IV and V. The magnitude of this suppression was strongly dependent on the inter-stimulus intervals (ISIs). At almost all tested ISIs, whisker plucking from P0, P5 and P8 weakened suppressive interactions in layers IV and V barrel neurons for both ON and OFF responses. The most decrease in inhibitory interactions was observed in P5 plucked animals. Principal whisker-evoked ON responses were increased only in P0 plucked animals both in layers IV and V. AW-evoked ON responses are decreased in P5 plucked animals in layer IV. The available data suggest that sensory experience can modulate temporal aspects of response integration and receptive field properties of layers IV and V neurons in barrel cortex. These changes have different critical periods.  相似文献   

8.
When sensory inputs are presented serially, response amplitudes to stimulus repetitions generally decrease as a function of presentation rate, diminishing rapidly as inter‐stimulus intervals (ISIs) fall below 1 s. This ‘adaptation’ is believed to represent mechanisms by which sensory systems reduce responsivity to consistent environmental inputs, freeing resources to respond to potentially more relevant inputs. While auditory adaptation functions have been relatively well characterized, considerably less is known about visual adaptation in humans. Here, high‐density visual‐evoked potentials (VEPs) were recorded while two paradigms were used to interrogate visual adaptation. The first presented stimulus pairs with varying ISIs, comparing VEP amplitude to the second stimulus with that of the first (paired‐presentation). The second involved blocks of stimulation (N = 100) at various ISIs and comparison of VEP amplitude between blocks of differing ISIs (block‐presentation). Robust VEP modulations were evident as a function of presentation rate in the block‐paradigm, with strongest modulations in the 130–150 ms and 160–180 ms visual processing phases. In paired‐presentations, with ISIs of just 200–300 ms, an enhancement of VEP was evident when comparing S2 with S1, with no significant effect of presentation rate. Importantly, in block‐presentations, adaptation effects were statistically robust at the individual participant level. These data suggest that a more taxing block‐presentation paradigm is better suited to engage visual adaptation mechanisms than a paired‐presentation design. The increased sensitivity of the visual processing metric obtained in the block‐paradigm has implications for the examination of visual processing deficits in clinical populations.  相似文献   

9.
Cortical processing of sensory stimuli typically recruits multiple areas, but how each area dynamically incorporates activity from other areas is not well understood. We investigated interactions between cortical columns of bilateral primary sensory regions (S1s) in rats by recording local field potentials and multi‐unit activity simultaneously in both S1s with electrodes positioned at each cortical layer. Using dynamic connectivity analysis based on Granger‐causal modeling, we found that, shortly after whisker stimulation (< 10 ms), contralateral S1 (cS1) already relays activity to granular and infragranular layers of S1 in the other hemisphere, after which cS1 shows a pattern of within‐column interactions that directs activity upwards toward superficial layers. This pattern of predominant upward driving was also observed in S1 ipsilateral to stimulation, but at longer latencies. In addition, we found that interactions between the two S1s most strongly target granular and infragranular layers. Taken together, the results suggest a possible mechanism for how cortical columns integrate local and large‐scale neocortical computation by relaying information from deeper layers to local processing in superficial layers.  相似文献   

10.
The neural pathways responsible for detecting peripheral tactile stimuli are well known; however, the interactions between different somatosensory regions have been less well investigated. This study demonstrates how the contralateral sensory response of rat barrel cortex to whisker stimulation is affected by stimulation of contralateral forepaw and ipsilateral whisker and forepaw. The barrel cortex in the right hemisphere was located using optical imaging. A 16-channel multielectrode was used to measure field potentials evoked by contralateral electrical stimulation of the whisker pad. A standard response in the right barrel cortex to single pulse electrical stimulation of the contralateral whisker pad was modulated by applying conditioning stimulation to one of three other regions of the body (the ipsilateral whisker pad, the ipsilateral or contralateral forepaws). In conditions where the standard contralateral whisker stimulus preceded the conditioning pulse, the size of response was identical to when it was stimulated alone. However, when the ipsilateral whisker and contralateral forepaw conditioning stimuli preceded the contralateral whisker pad stimulation, up to a 35% reduction in the contralateral whisker response was observed. These results confirm and extend previous studies [Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 11026-11031; J. Neurosci. 21 (2001) 5251-5261], which show bilateral integration of neural activity within the rat somatosensory system. Furthermore, the longer latency of the inhibition following stimulation of the contralateral forepaw suggests the possible involvement of extracortical circuitry.  相似文献   

11.
The adaptation of neuronal responses to stimulation, in which a peak transient response is followed by a sustained plateau, has been well‐studied. The blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) signal has also been shown to exhibit adaptation on a longer time scale. However, some regions such as the visual and auditory cortices exhibit significant BOLD adaptation, whereas other such as the whisker barrel cortex may not adapt. In the sensory cortex a combination of thalamic inputs and intracortical activity drives hemodynamic changes, although the relative contributions of these components are not entirely understood. The aim of this study is to assess the role of thalamic inputs vs. intracortical processing in shaping BOLD adaptation during stimulation in the somatosensory cortex. Using simultaneous fMRI and electrophysiology in awake rabbits, we measured BOLD, local field potentials (LFPs), single‐ and multi‐unit activity in the cortex during whisker and optogenetic stimulation. This design allowed us to compare BOLD and haemodynamic responses during activation of the normal thalamocortical sensory pathway (i.e., both inputs and intracortical activity) vs. the direct optical activation of intracortical circuitry alone. Our findings show that whereas LFP and multi‐unit (MUA) responses adapted, neither optogenetic nor sensory stimulation produced significant BOLD adaptation. We observed for both paradigms a variety of excitatory and inhibitory single unit responses. We conclude that sensory feed‐forward thalamic inputs are not primarily responsible for shaping BOLD adaptation to stimuli; but the single‐unit results point to a role in this behaviour for specific excitatory and inhibitory neuronal sub‐populations, which may not correlate with aggregate neuronal activity.  相似文献   

12.
Using in situ hybridization histochemistry, we investigated the effects of whisker stimulation in freely moving rats on the expression of the immediate-early genes zif 268 and c-fos in the barrel cortex. Whiskers equipped with metal filaments were stimulated for 5–15 minutes with a pulsating magnetic field. Such whisker stimulation resulted in increased zif 268 and c-fos expression that was largely restricted to radial columns across the barrels representing the stimulated whiskers. In these columns, gene expression was elevated, to a variable degree, across the entire cortical thickness, with a distinct maximum in layer IV. The magnitude of gene expression in a barrel was proportional to the intensity of stimulation. Cellular analysis confirmed that whisker stimulation induced c-fos expression mostly in stellate cells of layer IV and in some pyramidal cells in other layers. However, even after the strongest stimulation, only subsets of neurons were labeled in all layers, suggesting that subpopulations of neurons with a differential genomic response to sensory input exist. These results indicate that the expression of these immediate-early genes is regulated by normal neuronal activity under physiological conditions, and suggest that such gene regulation is an integral part of neuronal function. J. Comp. Neurol. 380:145–153, 1997. © 1997 Wiley-Liss, Inc.
  • 1 This article is a US government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    13.
    We used a dual anterograde-tracing paradigm to characterize the organization of corticocortical projections from primary somatosensory (SI) barrel cortex. In one group of rats, biotinylated dextran amine (BDA) and Fluoro-Ruby (FR) were injected into separate barrel columns that occupied the same row of barrel cortex; in the other group, the tracers were deposited into barrel columns residing in different rows. The labeled corticocortical terminals in the primary motor (MI) and secondary somatosensory (SII) cortices were plotted, and digital reconstructions of these plots were quantitatively analyzed. In all cases, labeled projections from focal tracer deposits in SI barrel cortex terminated in elongated, row-like strips of cortex that corresponded to the whisker representations of the MI or SII cortical areas. When both tracers were injected into separate parts of the same SI barrel row, FR- and BDA-labeled terminals tended to merge into a single strip of labeled MI or SII cortex. By comparison, when the tracers were placed in different SI barrel rows, both MI and SII contained at least two row-like FR- and BDA-labeled strips that formed mirror image representations of the SI injection sites. Quantitative analysis of these labeling patterns revealed three major findings. First, labeled overlap in SII was significantly greater for projections from the same barrel row than for projections from different barrel rows. Second, in the infragranular layers of MI but not in the supragranular layers, labeled overlap was significantly higher for projections from the same SI barrel row. Finally, in all layers of SII and in the infragranular layers of MI, the amount of labeled overlap was proportional to the proximity of the tracer injection sites. These results indicate that SI projections to MI and SII have an anisotropic organization that facilitates the integration of sensory information received from neighboring barrels that represent whiskers in the same row.  相似文献   

    14.
    OBJECTIVE: To elucidate the temporal profile of interactions between sensory information from both hands in the somatosensory cortex. METHODS: Somatosensory evoked fields (SEFs), generated by stimulation applied to the right index finger after a preceding stimulation to the left index finger, were recorded using a whole head-type magnetoencephalography (MEG). The paired electrical stimuli were applied with a stimulation onset asynchrony (SOA) of 50, 100, 200, 300, or 400 ms. RESULTS: The mean SEF intensities in the primary somatosensory area (SI) of five subjects, which were evoked approximately 40 ms after the latter of the paired stimuli, were not significantly smaller than that evoked in the control condition when only the right finger was stimulated. In contrast, SEFs in the secondary somatosensory area (SII), generated approximately 100 ms after the stimuli, were suppressed when the paired stimuli were applied at an SOA of 100 ms (P<0.05, t test). In addition, SEFs at approximately 150 ms after the stimuli were significantly suppressed at SOAs of 50, 100 (P<0.05), 200, and 300 ms (P<0.1). CONCLUSION: Within a time window of approximately 300 ms, sensory information from the left finger significantly affected the SEFs generated by sensory inputs from the right finger. This time window may be required for the integration of sensory input.  相似文献   

    15.

    Objective

    To evaluate the effect of electrical stimulation of dorsal raphe nucleus (DRN) on response properties of layer IV barrel cortex neurons following long-term sensory deprivation.

    Methods

    Male Wistar rats were divided into sensorydeprived (SD) and control (unplucked) groups. In SD group, all vibrissae except the D2 vibrissa were plucked on postnatal day one, and kept plucked for a period of 60 d. After that, whisker regrowth was allowed for 8–10 d. The D2 principal whisker (PW) and the D1 adjacent whisker (AW) were either deflected singly or both deflected in a serial order that the AW was deflected 20 ms before PW deflection for assessing lateral inhibition, and neuronal responses were recorded from layer IV of the D2 barrel cortex. DRN was electrically stimulated at inter-stimulus intervals (ISIs) ranging from 0 to 800 ms before whisker deflection.

    Results

    PW-evoked responses increased in the SD group with DRN electrical stimulation at ISIs of 50 ms and 100 ms, whereas AW-evoked responses increased at ISI of 800 ms in both groups. Whisker plucking before DRN stimulation could enhance the responsiveness of barrel cortex neurons to PW deflection and decrease the responsiveness to AW deflection. DRN electrical stimulation significantly reduced this difference only in PW-evoked responses between groups. Besides, no DRN stimulation-related changes in response latency were observed following PW or AW deflection in either group. Moreover, condition test (CT) ratio increased in SD rats, while DRN stimulation did not affect the CT ratio in either group. There was no obvious change in 5-HT2A receptor protein density in barrel cortex between SD and control groups.

    Conclusion

    These results suggest that DRN electrical stimulation can modulate information processing in the SD barrel cortex.  相似文献   

    16.
    The neural circuitry within sensory cortex determines its functional properties, and different solutions have evolved for integrating the activity that arises from an array of sensory inputs to cortex. In rodent, circumscribed receptors, such as whiskers, are represented in somatic sensory (S-I) cortex in islands of cells in layer IV called "barrels" surrounded by narrow channels that separate barrels called "septa." These two cortical domains were previously shown to receive sensory inputs through parallel subcortical pathways. Here, by using small biocytin injections, we demonstrate that distinct intrinsic and corticocortical circuitries arise from barrel and septal columns. The intracortical S-I projections originating from barrel columns are rather short-ranged, terminating for the most part within the far boundaries of the most immediate neighboring barrel columns, whereas corticocortical projections reach the second somatosensory (S-II) cortex. In contrast, the intrinsic projections arising from septal columns extend two to three barrels' distance along the row of whisker representation, producing terminals preferentially in other septal columns. Septal corticocortical projections terminate in the dysgranular cortex anterior to E-row barrels and in the posteromedial parietal cortex in addition to S-II. Whereas layer IV barrels are largely isolated from lateral connections, septa are the main conduits of intracortical projections arising from neighboring barrel and septal columns. These results indicate that the two subcortical pathways from whiskers to cortex continue as two distinct partially segregated pathways in cortex.  相似文献   

    17.
    Rodents explore their surroundings through whisking by localizing objects and detecting textures very precisely. During such tactile exploration, whisker deflection is first mechanically transduced by receptors and then information encoded throughout the somatosensory pathway ending in the somatosensory ‘barrel’ cortex. In the barrel cortex, tactile information from a single whisker is segregated and processed in a cortical column corresponding to the deflected whisker. Local Field Potentials (LFPs) generated by whisker deflection in the barrel cortex present typical signatures in terms of shape and amplitude that are related to the activation of the local neuronal populations. Therefore, rigorous analysis of such responses may reveal important features about the function of underlying neuronal microcircuits. In this context, software methods for characterizing single-trial LFPs are needed that are also suitable for online extraction of LFP features and for brain–machine interfacing applications. In this work, we present an automated and efficient method to analyze evoked LFP responses in the rat barrel cortex through automatic removal of stimulation artifacts, detection of single events and characterization of their relevant parameters. Evoked single-trial LFPs recorded under two different anesthetics are examined to demonstrate the feasibility, accuracy and applicability of the method.  相似文献   

    18.
    We used optical imaging of voltage-sensitive dye signals to study the spatiotemporal spread of activity in the mouse barrel cortex, evoked by stimulation of thalamocortical afferents in an in vitro slice preparation. Stimulation of the thalamus, at low current intensity, results in activity largely restricted to a single barrel, and to the border between layers Vb and VI. Low concentrations of the GABA(A) receptor antagonist bicuculline increase the amplitude of the optical signals, without affecting their spatiotemporal propagation. Higher concentrations of bicuculline result in paroxysmal activity, which propagates via intracolumnar and intercolumnar excitatory pathways. Enhancing the activity of NMDA receptors, by removing Mg(2+) from the extracellular solution, dramatically alters the spatiotemporal pattern of excitation: activity spreads to supragranular and infragranular layers and adjacent barrel columns. This enhanced propagation is suppressed by the NMDA receptor antagonist AP5. A similar enhancement of activity propagation can be produced by stimulating the thalamus with a short, high-frequency pulse train. Application of AP5 suppresses the frequency-dependent spread of activity. These findings indicate that the spatiotemporal spread of activity in the barrel cortex is altered by varying the temporal patterns of thalamic inputs, via an NMDA receptor-mediated mechanism, and suggest that a similar process occurs during repetitive whisking activity.  相似文献   

    19.
    There is intensive gap‐junctional coupling between glial processes, but their significance in sensory functions remains unknown. Connexin‐43 (Cx43), a major component of astrocytic gap‐junction channels, is abundantly expressed in astrocytes. To investigate the role of Cx43‐mediated gap junctions between astrocytes in sensory functions, we generated Cx43 knockout (KO) mice with a mouse line carrying loxP sites flanking exon 2 of the Cx43 gene and the transgenic line expressing Cre recombinase under control of the glial fibrillary acidic protein promoter, which exhibited a significant loss of Cx43 in astrocytes in the barrel cortex. Although Cx43 expression between the astrocytes measured by immunohistochemistry was virtually abolished in Cx43 KO mice, they had normal architecture in the barrel cortex but the intensity of cytochrome oxide histochemistry decreased significantly. In vivo electrophysiological analysis revealed that the long‐term potentiation of the vibrissal evoked responses in the barrel cortex evoked by high‐frequency rhythmic vibrissal stimuli (100 Hz, 1 s) was abolished in Cx43 KO mice. Current source density analysis also revealed that astrocytic Cx43 was important to the flow of excitation within the laminar connections in barrel cortex. Behavioral tests showed that the ability of Cx43 KO mice to sense the environment with their whiskers decreased. Even so, the jump‐stand experiment showed that they could still discriminate rough from smooth surfaces. Our findings suggest that Cx43‐mediated gap‐junctional coupling between astrocytes is important in the neuron–glia interactions required for whisker‐related sensory functions and plasticity.  相似文献   

    20.
    To make accurate perceptual estimates, observers must take the reliability of sensory information into account. Despite many behavioural studies showing that subjects weight individual sensory cues in proportion to their reliabilities, it is still unclear when during a trial neuronal responses are modulated by the reliability of sensory information or when they reflect the perceptual weights attributed to each sensory input. We investigated these questions using a combination of psychophysics, EEG‐based neuroimaging and single‐trial decoding. Our results show that the weighted integration of sensory information in the brain is a dynamic process; effects of sensory reliability on task‐relevant EEG components were evident 84 ms after stimulus onset, while neural correlates of perceptual weights emerged 120 ms after stimulus onset. These neural processes had different underlying sources, arising from sensory and parietal regions, respectively. Together these results reveal the temporal dynamics of perceptual and neural audio‐visual integration and support the notion of temporally early and functionally specific multisensory processes in the brain.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号