首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of 2-chloro-3-(4-hexylphenyl)-amino-1,4-naphthoquinone (NQ304), an antithrombotic agent, on aggregation, binding of fibrinogen to glycoprotein IIb/IIIa and intracellular signals were investigated using human platelets. NQ304 inhibited thrombin-, arachidonic acid- and thapsigargin-induced aggregation of washed human platelets with the IC50 values of 22.2+/-0.7, 6.5+/-0.2, and 7.6+/-0.1 microM, respectively. NQ304 significantly inhibited fluorescein isothiocyanate-conjugated fibrinogen binding to human platelet surface glycoprotein IIb/IIIa receptor by 75%, but failed to inhibit the fibrinogen binding to purified glycoprotein IIb/IIIa receptor. This result suggests that NQ304 inhibit platelet aggregation by suppression of an intracellular pathway that involves exposure of the glycoprotein IIb/IIIa receptor, rather than by direct inhibition of fibrinogen-glycoprotein IIb/IIIa binding. NQ304 significantly inhibited thrombin-induced increase in intracellular Ca2+ mobilization at the dose of 30 microM and ATP secretion in a dose-dependent manner. It also inhibited thrombin- and arachidonic acid-induced thromboxane A2 formation in human platelet dose-dependently. In conclusion, the antiplatelet mechanism of NQ304 may be due to the reduction of the thromboxane A2 formation, inhibition of adenosine triphosphate release and intracellular calcium mobilization.  相似文献   

2.
The effects of 2-chloro-3-(4-acetophenyl)-amino-1,4-naphthoquinone (NQ301), an antithrombotic agent, on aggregation, binding of fibrinogen to glycoprotein (GP)IIb/IIIa complex and intracellular signals were investigated using human platelets. NQ301 significantly inhibited the collagen-, thrombin-, arachidonic acid-, thapsigargin- and calcium ionophore A23187-induced aggregation of washed human platelets with IC50 values of 13.0+/-0.1, 11.2+/-0.5, 21.0+/-0.9, 3.8+/-0.1 and 46.2+/-0.8 microM, respectively. NQ301 also significantly inhibited FITC-conjugated fibrinogen binding to human platelet surface GPIIb/IIIa complex, but failed to inhibit the fibrinogen binding to purified GPIIb/IIIa complex. These data demonstrate that NQ301 inhibits platelet aggregation by suppression of the intracellular pathway, rather than by direct inhibition of fibrinogen-GPIIb/IIIa complex binding. NQ301 significantly inhibited the increase of cytosolic Ca2+ concentration and ATP secretion, and also significantly increased platelet cAMP levels in the activated platelets. These results suggest that the antiplatelet activity of NQ301 may be mediated by inhibition of cytosolic Ca2+ mobilization, enhancement of cAMP production and inhibition of ATP secretion in activated platelets.  相似文献   

3.
The possibility of NQ12 (2-chloro-3-[4-(ethylcarboxy)-phenyl]-amino-1,4-naphthoquinone) as a novel antithrombotic agent and its mode of action were investigated. The effects of NQ12 on platelet aggregation in human platelet-rich plasma in vitro, in rats ex vivo, and on murine pulmonary thrombosis in vivo, as well as the mode of antithrombotic action were examined. NQ12 potently inhibited ADP-, collagen-, epinephrine-, and calcium ionophore-induced human platelet aggregations in vitro concentration-dependently. NQ12 significantly inhibited rat platelet aggregation in an ex vivo study. NQ12 prevented murine pulmonary thrombosis in a dose-dependent manner. However, NQ12 did not affect coagulation parameters such as activated partial thromboplastin time, prothrombin time, and thrombin time. NQ12 inhibited fibrinogen binding to the platelet surface GPIIb/IIIa receptor, but failed to inhibit binding to the purified GPIIb/IIIa receptor. Thromboxane B(2) formation caused by thrombin or collagen was inhibited significantly by NQ12. The phosphoinositide breakdown induced by thrombin or collagen was inhibited concentration-dependently by NQ12. These results suggest that NQ12 may be a promising antithrombotic agent, and its antithrombotic activity may be due to antiplatelet aggregation activity, which may result from the inhibition of phosphoinositide breakdown and thromboxane A(2) formation.  相似文献   

4.
In this study, we examined whether PC-09, a new pyridazinone derivative, has antiplatelet activity in vitro and further investigated the possible mechanisms involved. Pretreatment with PC-09 resulted in an inhibition on rabbit platelet aggregation and ATP release induced by arachidonic acid, collagen or thrombin, with the IC(50) values of 5.4 to 76.8 muM. The thromboxane B(2) formation caused by collagen or thrombin was markedly inhibited by PC-09, but there was no alteration in that caused by arachidonic acid. The rise of platelet intracellular calcium level stimulated by aggregation agonists and collagen-induced platelet membrane surface glycoprotein IIb/IIIa expression was also reduced by PC-09. In addition, PC-09 itself significantly increased the cyclic AMP level through inhibiting cyclic AMP phosphodiesterase activity. These findings demonstrate that PC-09 is an inhibitor of platelet aggregation, which may be associated with mechanisms including inhibition of thromboxane A(2) formation, intracellular calcium mobilization and platelet surface GPIIb/IIIa expression accompanied by increasing cyclic AMP level.  相似文献   

5.
To elucidate the role of platelets in brain damage during focal cerebral ischemia, the effect of YM337, a glycoprotein IIb/IIIa antagonist, on infarct areas and neurologic deficits was measured in monkeys with thrombotic distal middle cerebral artery occlusions. Distal middle cerebral arteries were occluded by a platelet‐rich thrombus formed after photochemical reaction between rose bengal dye and green light. The experimental drugs were intravenously injected 30 min after rose bengal injection and continuously infused for 24 h thereafter. YM337, but not the thromboxane A2 synthetase inhibitor sodium ozagrel, significantly inhibited ex vivo ADP‐induced platelet aggregation. The percentage of ADP‐induced platelet aggregation 4 h after the start of administration was 87.0% of predosing value in the saline group, 55.6% in the YM337 low dose group, 28.8% in the YM337 high dose group and 89.0% in the sodium ozagrel group. However, while sodium ozagrel significantly inhibited thromboxane B2 generation accompanying arachidonic acid‐induced platelet aggregation, YM337 had little effect on this pathway. The neurologic deficit was milder and infarct area significantly smaller in the YM337‐treated groups compared with the saline control group. The ratio of infarcted area to the whole area of the cerebrum was 12.3% in the saline group, 5.5% in the YM337 low dose group, 5.7% in the YM337 high dose group, and 11.0% in the ozagrel group. These results suggest that a blockade of glycoprotein IIb/IIIa is a beneficial approach to treat cerebral artery thrombosis and cerebral infarction. Drug Dev. Res. 45:162–169, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

6.
We have previously reported that green tea catechins (GTC) display a potent antithrombotic activity, which might be due to antiplatelet rather than anticoagulation effects. In the current study, we investigated the antiplatelet mechanism of GTC. We tested the effects of GTC on the aggregation of human platelets and on the binding of fluorescein isothiocyanate-conjugated fibrinogen to human platelet glycoprotein (GP) IIb/IIIa. GTC inhibited the collagen-, thrombin-, adenosine diphosphate (ADP)-, and calcium ionophore A23187-induced aggregation of washed human platelets, with 50% inhibitory concentration values of 0.64, 0.52, 0.63, and 0.45 mg/ml, respectively. GTC significantly inhibited fibrinogen binding to human platelet surface GPIIb/IIIa complex but failed to inhibit binding to purified GPIIb/IIIa complex. These results indicate that the antiplatelet activity of GTC may be due to inhibition of an intracellular pathway preceding GPIIb/IIIa complex exposure. We also investigated the effects of GTC on intracellular calcium levels, which are critical in determining the activation status of platelets and on induction of platelet aggregation by thapsigargin, which is a selective inhibitor of the Ca(2+)-ATPase pump. Pretreatment of human platelets with GTC significantly inhibited the rise in intracellular Ca(2+) concentration induced by thrombin treatment, and GTC significantly inhibited the thapsigargin-induced platelet aggregation. We also examined the effect of GTC on the second messenger, inositol 1,4,5-triphosphate (IP(3)). GTC significantly inhibited the phosphoinositide breakdown induced by thrombin. Taken together, these observations suggest that the antiplatelet activity of GTC is be mediated by inhibition of cytoplasmic calcium increase, which leads to the inhibition of fibrinogen-GPIIb/IIIa binding via the activation of Ca(2+)-ATPase and inhibition of IP(3) formation.  相似文献   

7.
Platelet aggregation is inhibited by the polyamines putrescine, spermidine, and spermine. To date, the mechanism of action has not been clearly identified. Evidence suggests that polyamines may interact with the fibrinogen receptor (GP IIb/IIIa), interfering with platelet-platelet attachment. The effect of polyamines on human platelet aggregation and GP IIb/IIIa activation was evaluated. For the aggregation experiments, platelets were obtained from heparin- or citrate-collected blood. Our results indicate that the polyamines putrescine, spermidine, and spermine cause a dose-dependent inhibition of ADP- or collagen-mediated platelet aggregation with an order of potency spermine>spermidine>putrescine. In addition, spermine arrests or inhibits thrombin-, epinephrine-, arachidonate-, or ristocetin-induced platelet aggregation. Expression of platelet membrane glycoproteins IIb, IIIa, and IX is not reduced by polyamines. However, spermine inhibits the ADP- or thrombin-induced activation of GP IIb/IIIa. It is concluded that the final step in aggregation, common to all agonists, ie, fibrinogen binding to GP IIb/IIIa, is inhibited by spermine through inhibition of the agonist-induced activation of GP IIb/IIIa that precedes fibrinogen-ligand binding.  相似文献   

8.
Wang WY  Wu YC  Wu CC 《Molecular pharmacology》2006,70(4):1380-1389
Binding fibrinogen to activated glycoprotein (GP)IIb/IIIa is the final common pathway of platelet aggregation and has become a successful target for antiplatelet therapy. In the present study, we found that a small chemical compound, 3,4-methyl-enedioxy-beta-nitrostyrene (MNS), exhibited potent and broad-spectrum inhibitory effects on human platelet aggregation caused by various stimulators. Moreover, addition of MNS to human platelets that had been aggregated by ADP caused a rapid disaggregation. We demonstrated that the antiaggregatory activity of MNS is due to inhibition of GPIIb/IIIa activation by measuring the binding amount of PAC-1 in platelets. In contrast, MNS is not a direct antagonist of GPIIb/IIIa, because MNS did not affect fibrinogen binding to fixed ADP-stimulated platelets. By investigating how MNS inhibits GPIIb/IIIa activation, we found that MNS potently inhibited the activity of tyrosine kinases (Src and Syk) and prevented protein tyrosine phosphorylation and cytoskeletal association of GPIIb/IIIa and talin, but it had no direct effects on protein kinase C, Ca2+ mobilization, Ca2+-dependent enzymes (myosin light chain kinase and calpain), and arachidonic acid metabolism, and it did not affect the cellular levels of cyclic nucleotides. Therefore, MNS represents a new class of tyrosine kinase inhibitor that potently prevents GPIIb/IIIa activation and platelet aggregation without directly affecting other signaling pathways required for platelet activation. Because MNS inhibits GPIIb/IIIa functions in a manner different from GPIIb/IIIa antagonists, this feature may provide a new strategy for treatment of platelet-dependent thrombosis.  相似文献   

9.
Morphine dose-dependently (0.6, 1, and 5 microM) potentiated platelet aggregation and ATP release stimulated by agonists (i.e., collagen and U46619) in washed human platelets. Furthermore, morphine (1 and 5 microM) markedly potentiated collagen (1 microg/ml) evoked an increase of intracellular Ca2+ mobilization in fura 2-AM loading human platelets. Morphine (1 and 5 microM) did not influence the binding of fluorescein isothiocyanate-triflavin to platelet glycoprotein IIb/IIIa complex. Yohimbine (0.1 microM), a specific alpha2-adrenoceptor antagonist, markedly abolished the potentiation of morphine in platelet aggregation stimulated by collagen. Moreover, morphine (0.6-5 microM) markedly inhibited prostaglandin E1 (10 microM)-induced cAMP formation in human platelets, and yohimbine (0.1 microM) significantly reversed the inhibition of cAMP by morphine (0.6 and 1 microM) in this study. Morphine (1 and 5 microM) significantly potentiated thromboxane B2 formation stimulated by collagen in human platelets, and yohimbine also reversed this effect of morphine in this study. In addition, morphine (1 and 5 microM) did not significantly affect nitrate production in human platelets. Morphine may exert its potentiation in platelet aggregation by binding to alpha2-adrenoceptors in human platelets, which leads to reduced cAMP formation and subsequently to increased intracellular Ca2+ mobilization; this, in turn, is followed by increased thromboxane A formation and finally potentiates platelet aggregation and ATP release.  相似文献   

10.
The Role of the Platelet in the Pathogenesis of Atherothrombosis   总被引:15,自引:0,他引:15  
Platelet adhesion, activation, and aggregation at sites of vascular endothelial disruption caused by atherosclerosis are key events in arterial thrombus formation. Platelet tethering and adhesion to the arterial wall, particularly under high shear forces, are achieved through multiple high-affinity interactions between platelet membrane receptors (integrins) and ligands within the exposed subendothelium, most notably collagen and von Willebrand factor (vWF). Platelet adhesion to collagen occurs both indirectly, via binding of the platelet glycoprotein (GP) Ib-V-IX receptor to circulating vWF, which binds to exposed collagen, and directly, via interaction with the platelet receptors GP VI and GP Ia/IIb. Platelet activation, initiated by exposed collagen and locally generated soluble platelet agonists (primarily thrombin, ADP, and thromboxane A2), provides the stimulus for the release of platelet-derived growth factors, adhesion molecules and coagulation factors, activation of adjacent platelets, and conformational changes in the platelet alpha(IIb)beta3 integrin (GP IIb/IIIa receptor). Platelet aggregation, mediated primarily by interaction between the activated platelet GP IIb/IIIa receptor and its ligands, fibrinogen and vWF, results in the formation of a platelet-rich thrombus. Currently available antiplatelet drugs (aspirin [acetylsalicylic acid], dipyridamole, clopidogrel, ticlopidine, abciximab, eptifibatide, tirofiban) act on specific targets to inhibit platelet activation and aggregation. Elucidation of the multiple mechanisms involved in platelet thrombus formation provides opportunities for selectively inhibiting the pathways most relevant to the pathophysiology of atherothrombosis.  相似文献   

11.
Antagonists of the platelet fibrinogen receptor (GP IIb/IIIa receptor) are expected to be a promising new class of antithrombotic agents. The binding of fibrinogen to the fibrinogen receptor depends on an Arg-Gly-Asp-Ser (RGDS) tetrapeptide recognition motif. Structural modifications of the RGDS lead have led to the discovery of a non-peptide RGD mimetic GP IIb/IIIa antagonist 44 (S 1197). Compound 44 inhibited, in a dose dependent and reversible manner, human and dog platelet aggregation as well as 125I-fibrinogen binding to ADP-activated human gel filtered platelets and isolated GP IIb/IIIa with K(i) values of 9 nM and 0.17 nM, respectively. A pharmacophore mapping procedure with QXP and a 3D-QSAR analysis applying the GRID/GOLPE methodology yielded a stable, rather predictive model and revealed structural features which are important for binding. Hydrophobic substitutions both at the hydantoin nucleus and at the C-terminus increase the affinity toward the fibrinogen receptor. The crystalline ethyl ester prodrug 48 (HMR 1794) is an orally active antithrombotic agent which is a promising drug candidate for the treatment of thrombotic diseases in humans.  相似文献   

12.
AIMS: P256 is a divalent antibody which aggregates human platelets by interaction with glycoprotein (GP) IIb/IIIa receptors. We investigated the effect of tirofiban, an antagonist of the GP IIb/IIIa receptor, on P256-mediated platelet aggregation. METHODS: Responses to agonists were measured turbidometrically at 37 degrees C in stirred citrated platelet-rich plasma from venous blood samples from healthy human volunteers. Inhibitory effects were determined by comparison with aggregation to the same concentration of agonist in a vehicle treated sample. RESULTS: Tirofiban inhibited a near maximally effective dose of P256 (10-7 mol l-1 ) with an IC50 of 9. 3x10-8 mol l-1. Tirofiban (10-7 mol l-1 ) inhibited responses to arachidonic acid, U46619 and P256 similarly, whereas aspirin (1. 1x10-4 mol l-1 ) inhibited arachidonic acid more effectively than P256 (P<0.007 by anova ). CONCLUSIONS: Tirofiban potently and selectively inhibits P256-stimulated aggregation of human platelets.  相似文献   

13.
1. Activation of human platelets by thrombin is mediated by the proteolytic cleavage of two G-protein coupled protease-activated receptors, PAR-1 and PAR-4. However, thrombin also binds specifically to the platelet surface glycoprotein GPIb. It has been claimed that thrombin can induce aggregation of platelets via a novel GPIb-mediated pathway, which is independent of PAR activation and fibrinogen binding to alpha(IIb)beta(3) integrin, but dependent upon polymerizing fibrin and the generation of intracellular signals. 2. In the presence of both fibrinogen and the alpha(IIb)beta(3) receptor antagonist lotrafiban, thrombin induced a biphasic platelet aggregation response. The initial primary response was small but consistent and associated with the release of platelet granules. The delayed secondary response was more substantial and was abolished by the fibrin polymerization blocking peptide GPRP. 3. Cleavage of the extracellular portion of GPIb by mocarhagin partially inhibited thrombin-induced alpha(IIb)beta(3)-dependent aggregation and release, but had no effect on the secondary fibrin-dependent response. 4. Fixing of the platelets abolished alpha(IIb)beta(3)-dependent aggregation and release of adenine nucleotides, whereas the fibrin-dependent response remained, indicating that platelet activation and intracellular signalling are not necessary for this secondary 'aggregation'. 5. In conclusion, the secondary fibrin-dependent 'aggregation' response observed in the presence of fibrinogen and lotrafiban is a platelet trapping phenomenon dependent primarily on the conversion of soluble fibrinogen to polymerizing fibrin by thrombin.  相似文献   

14.
2-(2-Br-phenyl)-8-methoxy-benzoxazinone (HPW-RX2), a newly synthetic benzoxazinone derivative, has previously been shown to inhibit rabbit platelet aggregation caused by thrombin and arachidonic acid. In the present study, the mechanism for the antiplatelet effect of HPW-RX2 was further investigated. In human platelets, HPW-RX2 concentration-dependently inhibited platelet aggregation, ATP release, P-selectin expression, and intracellular calcium mobilization caused by thrombin. In contrast, HPW-RX2 had no significant effect on either SFLLRN- or GYPGKF-induced platelet aggregation, indicating that HPW-RX2 did not interfere with platelet thrombin receptors. Moreover, HPW-RX2 inhibited the amidolytic activity of thrombin and prolonged the fibrinogen clotting time. These results suggest that the inhibitory effect of HPW-RX2 on thrombin-induced platelet aggregation is via direct inhibition of thrombin proteolytic activity. Besides the inhibition on thrombin, HPW-RX2 also prevented platelet aggregation, ATP release, and increase in [Ca2+]i caused by arachidonic acid and low concentration collagen. In a parallel manner, both arachidonic acid-induced thromboxane B2 and prostaglandin D2 formations were decreased in platelets treated with HPW-RX2. This indicates that HPW-RX2 is able to inhibit the arachidonic acid cascade at the cyclooxygenase level. This is the first report of a benzoxazinone derivative possessing both thrombin and cyclooxygenase inhibitory properties. The dual effect of HPW-RX2 might provide extra therapeutic benefits for treatment of arterial thrombosis.  相似文献   

15.
TP 82, a monoclonal antibody against CD 9 antigen, induced human platelet activation at concentrations higher than 0.4 microgram/mL in terms of aggregation, release of intracellular granule contents, production of arachidonic acid metabolites, and elevation of the intracellular Ca2+ concentration. The effects of a competitive inhibitor of ADP, acetylsalicylic acid, EGTA, and GRGDSP which blocks fibrinogen binding to IIb/IIIa complex suggested that each of released ADP, thromboxane A2, extracellular Ca2+, and close cell contact acts together to potentiate platelet activation induced by TP 82. While each of these inhibitors severely suppressed platelet activation induced by lower concentrations of the antibody (less than or equal to 0.8 microgram/mL), that induced by higher concentrations (greater than or equal to 3.2 micrograms/mL) was only partially blocked. Intracellular Ca2+ elevation was totally dependent upon the production of thromboxane A2, regardless of the antibody concentrations.  相似文献   

16.
In this study, we investigated the effects of cordycepin-enriched (CE)-WIB801C, a n-butanol extract of Cordyceps militaris-hypha on collagen-stimulated platelet aggregation. CE-WIB801C dose dependently inhibited collagen-induced platelet aggregation, and had a synergistic effect together with cordycepin (W-cordycepin) from CE-WIB801C on the inhibition of collagen-induced platelet aggregation. CE-WIB801C and cordycepin stimulated the phosphorylation of VASP (Ser157) and the dephosphorylation of PI3K and Akt, and inhibited the binding of fibrinogen to glycoprotein IIb/IIIa (αIIb/β3) and the release of ATP and serotonin in collagen-induced platelet aggregation. A-kinase inhibitor Rp-8-Br-cAMPS reduced CE-WIB801C-, and cordycepin-increased VASP (Ser157) phosphorylation, and increased CE-WIB801C-, and cordycepin-inhibited the fibrinogen binding to αIIb/β3. Therefore, we demonstrate that CE-WIB801C-, and cordycepin-inhibited fibrinogen binding to αIIb/β3 are due to stimulation of cAMP-dependent phosphorylation of VASP (Ser157), and inhibition of PI3K/Akt phosphorylation. These results strongly indicate that CE-WIB801C and cordycepin may have preventive or therapeutic potential for platelet aggregation-mediated diseases, such as thrombosis, myocardial infarction, atherosclerosis, and ischemic cerebrovascular disease.  相似文献   

17.
By means of Sephadex G-75 and CM-Sephadex C-50 column chromatography and reverse-phase HPLC, a low molecular weight (Mr = 7500), cysteine-rich peptide, halysin, was purified from Agkistrodon halys (mamushi) snake venom. Halysin is a potent platelet aggregation inhibitor that concentration-dependently inhibited human platelet aggregation stimulated by ADP, thrombin and collagen (IC50 = 0.16 to 0.36 microM) without affecting platelet secretion. It was active in inhibiting platelet aggregation of platelet-rich plasma and whole blood. Halysin had no effect on thromboxane B2 formation of platelets or intracellular Ca2+ mobilization of Quin 2-AM loaded platelets stimulated by thrombin. It inhibited the fibrinogen-induced aggregation of elastase-treated platelets. Halysin concentration-dependently inhibited the 125I-fibrinogen binding to ADP-stimulated platelets in a competitive manner (IC50 = 0.16 microM). 125I-Halysin bound to resting platelets (Kd = 1.6 x 10(-7) M) and to ADP-stimulated platelets (Kd = 3.4 x 10(-8) M) in a saturable manner. EDTA, the Arg-Gly-Asp (RGD)-containing snake venom peptides trigamin and rhodostomin, Arg-Gly-Asp-Ser (RGDS), and Gly-Gln-Gln-His-His-Leu-Gly-Gly-Ala-Lys-Gln-Ala-Gly-Asp-Val blocked both 125I-fibrinogen binding and 125I-halysin binding to ADP-stimulated platelets. The monoclonal antibody, 7E3, raised against glycoprotein IIb-IIIa complex blocked both 125I-fibrinogen and 125I-halysin binding, whereas 10E5 had no significant effect on halysin binding to ADP-stimulated platelets, indicating that 7E3 and halysin bind to an epitope which is different from that of 10E5. RGDS concentration-dependently inhibited 125I-halysin binding in a competitive manner. We determined the primary structure of halysin which is a single peptide chain of 71 amino acid residues. An RGD sequence appeared in the carboxy-terminal domain of halysin. Halysin showed about an 85% identical sequence with trigamin which is a specific antagonist of fibrinogen receptor associated with glycoprotein IIb-IIIa complex. In conclusion, halysin inhibited platelet aggregation by interfering with fibrinogen binding to the fibrinogen receptor of the activated platelets. The RGD sequence of halysin plays an important role in the expression of its biological activity.  相似文献   

18.
In this study, specific platelet activating factor (PAF) receptor antagonist ginkgolide B (BN52021) was tested for its antiplatelet activity in zymosan activated polymorphonuclear neutrophil-induced platelet aggregation. Triflavin was also tested for its antiplatelet activity compared with PAF receptor antagonist. Triflavin, an Arg–Gly–Asp-containing disintegrin purified from venom peptide inhibited platelet aggregation by interfering with the interaction of fibrinogen with the glycoprotein IIb/IIIa complex. Furthermore, we also report an efficient high resolution method for quantitative analysis of PAF using high-performance capillary electrophoresis (HPCE). The supernatant of polymorphonuclear neutrophils after their activation by opsonized zymosan induces the aggregation of washed rabbit platelets. In rabbit platelets, BN52021 (100–1000 μM) only partially inhibited activated polymorphonuclear neutrophil-induced platelet aggregation, and its maximal inhibition was estimated to be about 79%. Triflavin also partially inhibited platelet aggregation about 82% induced by activated polymorphonuclear neutrophils. Furthermore, after treatment with a combination of triflavin (0.26 μM) with various concentrations of BN52021 (4–1000 μM), the inhibitory effect of platelet aggregation was almost completely. This inhibition was greater than that produced by the individual drugs alone. These results indicate that a combination of glycoprotein IIb/IIIa complex and PAF receptor antagonist could completely inhibit activated polymorphonuclear neutrophil-induced platelet aggregation. In addition, the amount of PAF released from zymosan (6 mg/ml)-activated polymorphonuclear neutrophils was accurately calculated about 11.8±1.5 ng/106 cells, and did not further increase even at a high concentration of zymosan (10 mg/ml). These results suggest that PAF play a major role in the interaction between platelets and polymorphonuclear neutrophils. This interaction may be important in the pathogenesis of thrombosis and inflammatory diseases. Our present findings support the hypothesis that combination therapy with glycoprotein IIb/IIIa complex antagonists and PAF receptor antagonists may represent a new approach to the treatment of ischemic disorders.  相似文献   

19.
The intracellular mechanisms underlying the signaling pathways of activated matrix metalloproteinase-9 (MMP-9) in platelets are not yet completely understood. Therefore, the aim of this study was to further examine the effects of activated MMP-9 in preventing platelet aggregation. In this study, activated MMP-9 time-dependently (3-60 min) inhibited platelet aggregation in washed human platelet suspensions stimulated by agonists. However, activated MMP-9 had no significant effect on the binding of FITC-triflavin to the platelet glycoprotein IIb/IIIa complex. Triflavin is a specific antagonist of the glycoprotein IIb/IIIa complex purified from snake venom. Moreover, activated MMP-9 (21 and 90 ng/ml) markedly decreased the fluorescence intensity of platelet membranes tagged with diphenylhexatriene. The thrombin-evoked increase in pHi was inhibited in the presence of activated MMP-9 (21 and 90 ng/ml). In addition, activated MMP-9 (21 and 90 ng/ml) markedly reduced the electron spin resonance (ESR) signal intensity of hydroxyl radicals in collagen (1 mug/ml)-activated platelets. These results indicate that the antiplatelet activity of activated MMP-9 may involve the following pathways: (1) activated MMP-9 may initially induce conformational changes in platelet membranes and hydroxyl radical formation, leading to inhibition of platelet aggregation; and (2) activated MMP-9 also inhibits the Na(+)/H(+) exchanger, leading to reduced intracellular Ca(2+) mobilization, and ultimately to inhibition of platelet aggregation. This study further provides new insights concerning the effects of activated MMP-9 on platelet aggregation.  相似文献   

20.
We investigated the antiplatelet mechanisms of TA-993 [(-)-cis-3-acetoxy-5-(2-(dimethylamino)ethyl)-2, 3-dihydro-8-methyl-2-(4-methylphenyl)-1,5-benzothiazepin-4(5H)-one maleate] and its metabolite MB3 (deacetyl and N-monomethyl TA-993) in human platelets stimulated by ADP in vitro. TA-993 and MB3 concentration-dependently inhibited fibrinogen binding to the ADP-stimulated platelets as well as inhibiting platelet aggregation. The antiplatelet effect of MB3 was about 300 times more potent than those of TA-993 and a glycoprotein IIb/IIIa receptor antagonist, Arg-Gly-Asp-Ser (RGDS). Aggregation of ADP-treated fixed platelets caused by the addition of fibrinogen was inhibited by RGDS but not by TA-993 and MB3. TA-993 and MB3 inhibited ADP-induced polymerization of actin filaments. Neither TA-993 nor MB3 affected cyclic AMP and cyclic GMP levels in resting platelets, and nor suppressed the increase in intracellular Ca(2+) concentration induced by ADP. These results suggest that the antiplatelet mechanisms of TA-993 and MB3 may involve inactivation of glycoprotein IIb/IIIa receptors via inhibition of the polymerization of actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号