首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder that involves mainly the motor neuron system. Five to 10 percent of the ALS cases are familial; most others are sporadic. Several mutations in the superoxide dismutase-1 (SOD1) gene have recently been shown to be associated with about 20% of familial ALS patients. The reduced enzyme activity of many mutant SOD1 points to the possibility that a loss-of-function effect of the mutant enzyme is responsible for the pathogenesis of the disease. However, this conflicts with the autosomal dominant inheritance of SOD1 mutation-associated ALS and the normal SOD1 activity in homozygous patients in a SOD1-linked ALS family. Current biochemical investigations have provided evidence that mutant SOD1 may catalyze the peroxynitrite-mediated nitration of protein tyrosine residues, release copper and zinc ions, facilitate apoptosis of neurons and have enhanced peroxidase activity. Immunocytochemical studies demonstrated the presence of intense SOD1 immunoreactivity in Lewy body-like inclusions, which are characteristic features of a certain form of familial ALS with posterior column involvement, in the lower motor neurons of patients in ALS families with different SOD1 mutations. More recently, strains of transgenic mice expressing mutant SOD1 have been established. These mice clinicopathologically develop a motor neuron disease mimicking human ALS with the exception of pronounced intraneuronal vacuolar degeneration. The overexpression of wild-type SOD1 in mice has failed to give rise to the disease. Only one transgene for mutant SOD1 is enough to cause motor neuron degeneration and the severity of clinical course correlates with the transgene copy number. These observations in SOD1-linked familial ALS and its transgenic mouse model suggest a novel neurotoxic function of mutant SOD1.  相似文献   

2.
Transgenic mice expressing multiple copies of the G93A mutant form of SOD1 develop motor neuron pathology and clinical symptoms similar to those seen in patients with amyotrophic lateral sclerosis (ALS). The phenotype of these mice is dependent on the number of transgene copies in their genome. Changes in transgene copy number, although rare, can sometimes occur while mating due to intra locus recombination events during meiosis. The objective of this study was to develop a real time quantitative PCR method to determine changes in transgene copy number in these mice and to evaluate the effect of transgene copy number on the phenotype of the G93A SOD1 mouse model of ALS.  相似文献   

3.
Peripherin is a type III intermediate filament protein detected in axonal spheroids associated with amyotrophic lateral sclerosis (ALS). The overexpression of peripherin induces degeneration of spinal motor neurons during aging in transgenic mice and in cultured neuronal cells derived from peripherin transgenic embryos. Here, we investigated whether peripherin is a contributor of pathogenesis in mice overexpressing a mutant superoxide dismutase 1 (SOD1(G37R)) gene linked to familial ALS. This was done by the generation and analysis of SOD1(G37R) mice that either overexpress a peripherin transgene (G37R;TgPer mice) or lack the endogenous peripherin gene (G37R;Per-/- mice). Surprisingly, upregulation or suppression of peripherin expression had no effects on disease onset, mortality, and loss of motor neurons in SOD1(G37R) mice. These results provide compelling evidence that peripherin is not a key contributor of motor neuron degeneration associated with toxicity of mutant SOD1.  相似文献   

4.
5.
About 15–20% of patients with familial amyotrophic lateral sclerosis (ALS) carry one of several missense mutations in the gene for Cu,Zn superoxide dismutase (SOD1). We have previously reported on an animal model of this disease produced by the transgenic expression of a mutant form of human SOD1 containing a Gly93→Ala amino acid substitution. Several lines of transgenic mice were produced, characterized by a differing tempo and severity of disease that generally correlated with the number of mutant gene copies that these lines expressed. We reported that mice expressing high copy numbers (18–25) developed a disease with a relatively short course and with a pathology mainly characterized by severe vacuolar degeneration of motor neurons and their processes. Lewy-like bodies and swollen axons were also present. The exquisite localization to motor neurons was the feature that made the pathology in these overexpressors germane to the human disease. Severe vacuolar degeneration, however, was considered to be at variance with human ALS, in which similar changes have not been described. In the present study, we have made a temporal characterization of microscopic and immunohistochemical changes in a line of transgenic mice expressing lower copy numbers of the mutant gene. These mice, designated G5/G5, survive more than 400 days and present pathological changes which are virtually identical to those in the human disease. In fact, in these animals, anterior horn cell depletion, atrophy, astrocytosis, and the presence of numerous ubiquitinated Lewy-like bodies and axonal swellings are the main pathological features, while vacuolar pathology is minimal. This study underscores the importance of the level of expression of the mutant enzyme in the resulting clinical and pathological disease, and supports the value of this transgenic model as an excellent tool for investigating both pathogenesis of human ALS and possible therapeutic avenues. Received: 11 September 1996 / Revised, accepted: 18 October 1996  相似文献   

6.
Mutations in copper–zinc superoxide dismutase gene (SOD1) have been linked to some familial cases of ALS. We report here that rats that express a human SOD1 transgene with two different ALS‐associated mutations (G93A and H46R) develop striking motor neuron degeneration and paralysis. By comparing the two transgenic rats with different SOD1 mutations, we demonstrate that the time course in these rats was similar to human SOD1‐mediated familial ALS. As in the human disease and transgenic ALS mice, pathological analysis shows selective loss of motor neurons in the spinal cords of these transgenic rats. In addition, typical neuronal Lewy body‐like hyaline inclusions as well as astrocytic hyaline inclusions identical to those in human familial ALS are observed in the spinal cords. The larger size of this rat model as compared with the ALS mice will facilitate studies involving manipulations of spinal fluid (implantation of intrathecal catheters for chronic therapeutic studies; CSF sampling) and spinal cord (e.g., direct administration of viral‐ and cell‐mediated therapies).  相似文献   

7.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that is characterized by progressive motor neuron degeneration and leads to death within a few years of diagnosis. One of the pathogenic mechanisms of ALS is proposed to be a dysfunction in the protein quality‐control machinery. Dorfin has been identified as a ubiquitin ligase (E3) that recognizes and ubiquitinates mutant SOD1 proteins, thereby accelerating their degradation and reducing their cellular toxicity. We examined the effects of human Dorfin overexpression in G93A mutant SOD1 transgenic mice, a mouse model of familial ALS. In addition to causing a decrease in the amount of mutant SOD1 protein in the spinal cord, Dorfin overexpression ameliorated neurological phenotypes and motor neuron degeneration. Our results indicate that Dorfin overexpression or the activation or induction of E3 may be a therapeutic avenue for mutant SOD1‐associated ALS. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
OBJECTIVE: Transgenic mice that overexpress a human gene encoding mutant cytosolic superoxide dismutase (SOD1) develop a progressive motor neuron loss that resembles human ALS. Why mutant SOD1 initiates motor neuron death is unknown. One hypothesis proposes that the mutant molecule has enhanced peroxidase activity, reducing hydrogen peroxide (H2O2) to form toxic hydroxyl adducts on critical targets. To test this hypothesis, the authors generated transgenic ALS mice with altered levels of glutathione peroxidase (GSHPx), the major soluble enzyme that detoxifies H2O2. METHODS: SOD1(G93A) ALS mice were bred with mice bearing a murine GSHPx transgene that have a four-fold elevation in brain GSHPx levels and with mice having targeted inactivation of the GSHPx gene and reduced brain GSHPx activity. RESULTS: Survival was not prolonged in ALS mice with elevated brain GSHPx activity (p = 0.09). ALS mice with decreased GSHPx brain activity (20% of normal) showed no acceleration of the disease course (p = 0.89). The age at disease onset in the ALS mice was unaffected by brain GSHPx activity. CONCLUSION: The level of GSHPx activity in the CNS of transgenic ALS mice does not play a critical role in the development of motor neuron disease.  相似文献   

9.
The causes of motor neuron death in amyotrophic lateral sclerosis (ALS) are still unknown. Several lines of evidence suggest that mitochondrial dysfunction may be involved in the pathogenesis of ALS. Biochemical and morphological mitochondrial abnormalities have been demonstrated in postmortem spinal cords of ALS patients. Furthermore, in transgenic mice expressing mutant Cu,Zn-superoxide dismutase (SOD1), the antioxidant enzyme associated with familial ALS (FALS), mitochondrial abnormalities precede the disease onset, suggesting that mitochondrial dysfunction is causally involved in the pathogenesis of SOD1-FALS. Despite this evidence, it is not yet fully understood how mutant SOD1 damages mitochondria. Recent work has demonstrated that a portion of mutant SOD1 is localized in mitochondria, both in transgenic mice and in FALS patients, where it forms proteinaceous aggregates. These findings have opened new avenues of investigation addressing the hypothesis that mutant SOD1 may directly damage mitochondria. Major future challenges will be to better understand the mechanisms and the consequences of mitochondrial dysfunction in ALS. If mitochondrial dysfunction is convincingly involved in ALS pathogenesis, either as a primary cause or as contributing factor, it is likely to become a novel target for therapeutic intervention.  相似文献   

10.
Mutations in Cu/Zn superoxide dismutase (SOD1) have been linked to some familial cases of amyotrophic lateral sclerosis (ALS). In order to reproduce the different degree of toxicity to the mutant protein by mutations, we generated new transgenic mice with two mutations from which the progression of the disease in human family is rapid (L84V) or extremely slow (H46R). By comparing the two transgenic mice with different SOD1 mutations, we demonstrate that the time course and the first symptoms in these mice were likely to human SOD1-mediated familial ALS. In addition, we report here that rats that express a human SOD1 transgene with two different ALS-associated mutations (G93A and H46R) develop striking motor neuron degeneration and paralysis. The larger size of this rat model as compared with the ALS mice will facilitate studies involving manipulations of spinal fluid (implantation of intrathecal catheters for chronic therapeutic studies; CSF sampling) and spinal cord (e.g., direct administration of viral- and cell-mediated therapies). Using this rat model we showed that intrathecal administration of the hepatocyte growth factor attenuates motoneuron death and prolongs the duration of the disease of transgenic rats.  相似文献   

11.
Familial amyotrophic lateral sclerosis (FALS) has been modeled in transgenic mice by introducing mutated versions of human genomic DNA encompassing the entire gene for Cu,Zn superoxide dismutase (SOD1). In this setting, the transgene is expressed throughout the body and results in mice that faithfully recapitulate many pathological and behavioral aspects of FALS. By contrast, transgenic mice made by introducing recombinant vectors, encoding cDNA genes, that target mutant SOD1 expression to motor neurons, only, or astrocytes, only, do not develop disease. Here, we report that mice transgenic for human SOD1 cDNA with the G37R mutation, driven by the mouse prion promoter, develop motor neuron disease. In this model, expression of the transgene is highest in CNS (both neurons and astrocytes) and muscle. The gene was not expressed in cells of the macrophage lineage. Although the highest expressing hemizygous transgenic mice fail to develop disease by 20 months of age, mice homozygous for the transgene show typical ALS-like phenotypes as early as 7 months of age. Spinal cords and brain stems from homozygous animals with motor neuron disease were found to contain aggregated species of mutant SOD1. The establishment of this SOD1-G37R cDNA transgenic model indicates that expression of mutant SOD1 proteins in the neuromuscular unit is sufficient to cause motor neuron disease. The expression levels required to induce disease coincide with the levels required to induce the formation of SOD1 aggregates.  相似文献   

12.
Familial amyotrophic lateral sclerosis (ALS) has been linked in some families to dominantly inherited mutations in the gene encoding copper-zinc superoxide dismutase 1 (Cu-Zn SOD1). Transgenic mice expressing a mutant human Cu-Zn SOD1 (G93A) develop a dominantly inherited adult-onset paralytic disorder that replicates many of the clinical and pathological features of familial ALS. Increased p53 immunoreactivity has been reported in the motor cortex and spinal ventral horns of postmortem tissue from ALS patients. The nuclear phosphoprotein p53 is an important regulator of cellular proliferation, and increasing evidence supports the role of p53 in regulating cellular apoptosis. To assess the role of p53-mediated apoptosis in amyotrophic lateral sclerosis, mice deficient in both p53 alleles (p53-/-) were crossed with transgenic mice expressing the G93A mutant (G93A+), creating novel transgenic knockout mice. The animals (p53 +/+G93A+, p53+/-G93A+, p53-/-G93A+) were examined at regular intervals for cage activity, upper and lower extremity strength, and mortality. At 120 days from birth mice from each genotype were sacrificed, and L2-L3 anterior horn motor neurons were counted. There was no significant difference in time to onset of behavioral decline, mortality, or motor neuron degeneration between the different genotypes. Despite evidence that p53 plays an important role after acute neuronal injury, the current study suggests that p53 is not significantly involved in cell death in the G93A+ transgenic mouse model of familial ALS.  相似文献   

13.
Strong evidence shows that mitochondrial dysfunction is involved in amyotrophic lateral sclerosis (ALS), but despite the fact that mitochondria play a central role in excitotoxicity, oxidative stress and apoptosis, the intimate underlying mechanism linking mitochondrial defects to motor neuron degeneration in ALS still remains elusive. Morphological and functional abnormalities occur in mitochondria in ALS patients and related animal models, although their exact nature and extent are controversial. Recent studies postulate that the mislocalization in mitochondria of mutant forms of copper-zinc superoxide dismutase (SOD1), the only well-documented cause of familial ALS, may account for the toxic gain of function of the enzyme, and hence induce motor neuron death. On the other hand, mitochondrial dysfunction in ALS does not seem to be restricted only to motor neurons as it is also present in other tissues, particularly the skeletal muscle. The presence of this 'systemic' defect in energy metabolism associated with the disease is supported in skeletal muscle tissue by impaired mitochondrial respiration and overexpression of uncoupling protein 3. In addition, the lifespan of transgenic mutant SOD1 mice is increased by a highly energetic diet compensating both the metabolic defect and the motorneuronal function. In this review, we will focus on the mitochondrial dysfunction linked to ALS and the cause-and-effect relationships between mitochondria and the pathological mechanisms thought to be involved in the disease.  相似文献   

14.
15.
Fragmentation of the Golgi apparatus (GA) of motor neurons was first described in sporadic amyotrophic lateral sclerosis (ALS) and later confirmed in transgenic mice expressing the G93A mutation of the gene encoding the enzyme Cu,Zn superoxide dismutase (SOD1(G93A)) found in some cases of familial ALS. In these transgenic mice, however, the fragmentation of the neuronal GA was associated with cytoplasmic and mitochondrial vacuoles not seen in ALS. The present new series of transgenic mice expressing 14-17 trans gene copies of SOD1(G93A), compared to 25 copies in the mice we studied previously, showed consistent fragmentation of the GA of spinal cord motor neurons, axonal swellings, Lewy-like body inclusions in neurons and glia, but none of the cytoplasmic or mitochondrial vacuoles originally reported. Thus, this animal model recapitulates the clinical and most neuropathological findings of sporadic ALS. Neurofilaments (NF) accumulate in axons and, less often, in neuronal perikarya in most cases of sporadic ALS and they have been implicated in its pathogenesis. In order to investigate whether fragmentation of the neuronal GA also occurs in association with accumulation of perikaryal NFs, we studied the organelle in transgenic mice expressing the heavy subunit of human neurofilaments (NF-H) which developed a motor neuronopathy resembling ALS. The neuronal GA of mice expressing NF-H, however, was intact despite massive accumulation of NFs in both perikarya and axons of motor neurons. In contrast, in transgenic mice expressing SOD1(G93A), the GA was fragmented despite the absence of accumulation of perikaryal NFs. These findings suggest that, in transgenic mice with neuronopathies caused by the expression of mutant SOD1(G93A) or the human NF-H, the GA and the perikaryal NFs are independently involved in the pathogenesis. The evidence suggests that the GA plays a central role in the pathogenesis of the vast majority of sporadic ALS and in FALS with SOD1 mutations.  相似文献   

16.
Dominant mutation in the gene of superoxide dismutase 1 (SOD1) leads amyotrophic lateral sclerosis (ALS), an adult-onset progressive fatal motor neuron disease. Recent research progress in ALS has been made by the use of transgenic mouse model of familial ALS, which expresses mutant form of SOD1 and recapitulates the phenotype and pathology of motor neuron disease. There is accumulating evidence indicating non-cell-autonomous motor neuron death in ALS mouse model. In this symposium, I review the recent advance of ALS research focusing on the development of animal models, the role of glial cells in ALS, and therapeutic intervention of rodent models and discuss their prospect.  相似文献   

17.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by a selective loss of motor neurons in the motor cortex, brainstem, and spinal cord. It has been shown that oxidative stress plays a pivotal role in the progression of this motor neuron loss. We have previously reported that L-745,870, a dopamine D4 receptor antagonist, selectively inhibits oxidative stress-induced cell death in vitro and exerts a potent neuroprotective effect against ischemia-induced neural cell damage in gerbil. To investigate the efficacy of L-745,870 in the treatment of ALS, we here conducted a chronic administration of L-745,870 to transgenic mice expressing a mutated form of human superoxide dismutase gene (SOD1H46R); a mouse model of familial ALS, and assessed whether the mice benefit from this treatment. The pre-onset administration of L-745,870 significantly delayed the onset of motor deficits, slowed the disease progression, and extended a life span in transgenic mice. These animals showed a delayed loss of anterior horn cells in the spinal cord concomitant with a reduced level of microglial activation at a late symptomatic stage. Further, the post-onset administration of L-745,870 to the SOD1H46R transgenic mice remarkably slowed the disease progression and extended their life spans. Taken together, our findings in a rodent model of ALS may have implication that L-745,870 is a possible novel therapeutic means to the treatment of ALS.  相似文献   

18.
Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disorder, characterised by progressive motor neuron degeneration and muscle paralysis. Heat shock proteins (HSPs) have significant cytoprotective properties in several models of neurodegeneration. To investigate the therapeutic potential of heat shock protein 27 (HSP27) in a mouse model of ALS, we conducted an extensive characterisation of transgenic mice generated from a cross between HSP27 overexpressing mice and mice expressing mutant superoxide dismutase (SOD1(G93A)). We report that SOD1(G93A)/HSP27 double transgenic mice showed delayed decline in motor strength, a significant improvement in the number of functional motor units and increased survival of spinal motor neurons compared to SOD1(G93A) single transgenics during the early phase of disease. However, there was no evidence of sustained neuroprotection affecting long-term survival. Marked down-regulation of HSP27 protein occurred during disease progression that was not associated with a reduction in HSP27 mRNA, indicating a translational dysfunction due to the presence of mutant SOD1 protein. This study provides further support for the therapeutic potential of HSPs in ALS and other motor neuron disorders.  相似文献   

19.
Amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disorder. While most cases of ALS are sporadic, 10-15% are familial, and of these 15-20% possess a mutation in the gene that codes for the enzyme Cu/Zn superoxide dismutase (SOD1). In families of ALS patients with specific SOD1 mutations, affected members demonstrate significant heterogeneity of disease and a large variation in age of onset and severity, suggesting that there are genetic modifiers of disease expression. Transgenic mice expressing mutant forms of SOD1 demonstrate symptoms similar to those seen in patients with ALS. We have observed in our colony of G93A SOD1 transgenic mice a milder phenotype in mice in a C57BL/6J background than the C57BL/6JxSJL/J hybrid background used by Jackson Laboratories to maintain their colony. To investigate the effect of genetic background on phenotype, we have constructed congenic lines on two genetic backgrounds, C57BL/6J (B6) and SJL/J (SJL). We report the influence of background and gender on the survival of these congenic lines compared to the hybrid C57BL/6JxSJL/J background. The mean survival of G93A SOD1 mice in the hybrid B6/SJL background was 130 days, with females surviving significantly longer than males. When compared to the hybrid B6/SJL background, the survival of mice in the SJL background significantly decreased, and the gender difference in survival was maintained. On the other hand, mean survival in the B6 background significantly increased, and in contrast to the B6/SJL and SJL backgrounds, there was no difference in survival between males and females. Transgene copy numbers were verified in all animals to ensure that any phenotypic differences observed were not due to alterations in copy number. This is the first report of a shortened lifespan when the G93A SOD1 transgene is placed on the SJL/J background and an increased survival with the loss of gender influences when the transgene is placed on the C57BL/6J background.  相似文献   

20.
Mutations in Cu,Zn superoxide dismutase (SOD1) are associated with familial amyotrophic lateral sclerosis (ALS). Mutant SOD1 causes a complex array of pathological events, through toxic gain of function mechanisms, leading to selective motor neuron degeneration. Mitochondrial dysfunction is among the well established toxic effects of mutant SOD1, but its mechanisms are just starting to be elucidated. A portion of mutant SOD1 is localized in mitochondria, where it accumulates mostly on the outer membrane and inside the intermembrane space (IMS). Evidence in cultured cells suggests that mutant SOD1 in the IMS causes mitochondrial dysfunction and compromises cell viability. Therefore, to test its pathogenic role in vivo we generated transgenic mice expressing G93A mutant or wild-type (WT) human SOD1 targeted selectively to the mitochondrial IMS (mito-SOD1). We show that mito-SOD1 is correctly localized in the IMS, where it oligomerizes and acquires enzymatic activity. Mito-G93ASOD1 mice, but not mito-WTSOD1 mice, develop a progressive disease characterized by body weight loss, muscle weakness, brain atrophy, and motor impairment, which is more severe in females. These symptoms are associated with reduced spinal motor neuron counts and impaired mitochondrial bioenergetics, characterized by decreased cytochrome oxidase activity and defective calcium handling. However, there is no evidence of muscle denervation, a cardinal pathological feature of ALS. Together, our findings indicate that mutant SOD1 in the mitochondrial IMS causes mitochondrial dysfunction and neurodegeneration, but per se it is not sufficient to cause a full-fledged ALS phenotype, which requires the participation of mutant SOD1 localized in other cellular compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号