首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Nitric oxide (NO) is involved in many physiological and pathological processes in the brain. NO is synthesized from arginine by nitric oxide synthase (NOS), with citrulline generated as a by-product of the reaction. Thus, citrulline can by recycled to arginine by argininosuccinate synthetase (AS) and argininosuccinate lyase (AL) via the citrulline–NO cycle. Rat astroglioma C6 cells were treated with bacterial lipopolysaccharide (LPS), interferon-γ (IFNγ) and tumor necrosis factor-α, and the expression of the enzymes of the citrulline–NO cycle was investigated by RNA blot and immunoblot analyses. NO production from arginine and citrulline was also assessed. iNOS mRNA and protein were induced 6–12 h after stimulation with LPS and cytokines and decreased at 24 h. AS mRNA increased up to 12 h and decreased at 24 h. AS protein increased gradually up to 48 h. On the other hand, AL mRNA remained unchanged by stimulation. NO production from arginine was enhanced by the treatment with LPS and cytokines. NO production was also observed when arginine was replaced by citrulline. These results indicate that NO production is enhanced in LPS- and cytokine-stimulated C6 cells due to induction of iNOS and that the citrulline–arginine recycling is important for NO production.  相似文献   

3.
4.
To determine whether heme oxygenase-1 (HO-1) protein is induced by endogenous nitric oxide (NO) in rat glial cultures, we examined the effects of lipopolysaccharide (LPS), interferon-γ (IFN-γ), and NO donors such as S-nitroso-N-acetylpenicillamine (SNAP), in mixed glial cells and in vivo rat hippocampus. In cultured glial cells, treatment with LPS induced the expression of 130-kd inducible NO synthase (iNOS) after 6 h, and NO2accumulation and enhancement of the protein level of 33-kd HO-1 after 12 h. In addition, treatment with SNAP induced HO-1 expression after 6 h. Although NOS inhibitors such as NG-nitro-L-arginine (NNA) and NG-methyl-L-arginine did not change LPS-induced iNOS expression, these inhibitors suppressed both NO2 accumulation and the enhancement of HO-1. Immunocytochemistry showed that treatment with LPS for 24 h induced iNOS immunoreactivity predominantly in ameboid microglia, while this treatment induced HO-1-immunoreactivity in both microglia and astrocytes. In in vivo rat hippocampus, microinjection of LPS plus IFN-γ, or SNAP after 24 h also induced HO-1 immunoreactivity in reactive microglia and astrocytes. In addition, intraperitoneal administration of NNA inhibited HO-1 immunoreactivity induced by the microinjection of LPS plus IFN-γ. These results suggest that endogenous NO production by iNOS in microglia causes autocrine and paracrine induction of HO-1 protein in microglia and astrocytes in vitro and in rat brain. GLIA 22:138–148, 1998.© 1998 Wiley-Liss, Inc.  相似文献   

5.
Nitric oxide (NO) produced by activated microglia has been implicated in many pathophysiological events in the brain including neurodegenerative diseases. Cellular NO production depends absolutely on the availability of arginine, a substrate of NO synthase (NOS). Murine microglial MG5 cells were treated with bacterial lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma), and expression of inducible NO synthase (iNOS) and arginine-supplying enzymes was investigated by RNA blot analysis. iNOS mRNA was strongly induced after treatment and reached a maximum at 6-12 h. mRNA for argininosuccinate synthetase (AS), a citrulline-arginine recycling enzyme, increased at 6 h and reached a maximum at 12 h. Immunoblot analysis showed that iNOS and AS proteins were also induced. In addition, mRNA encoding the cationic amino acid transporter-2 (CAT-2) was strongly induced shortly after treatment. Induction of mRNAs for iNOS, AS, and CAT-2 by LPS/IFN-gamma was also observed following stimulation of rat primary microglial cells. These results strongly suggest that both arginine transport by CAT-2 and citrulline-arginine recycling are important for high-output production of NO in activated microglial cells.  相似文献   

6.
Sung CS  Wen ZH  Chang WK  Ho ST  Tsai SK  Chang YC  Wong CS 《Brain research》2004,1015(1-2):145-153
The effect of the pro-inflammatory cytokine interleukin-1beta (IL-1beta) on the inducible nitric oxide synthase-nitric oxide (iNOS-NO) cascade in nociceptive signal transduction was examined in the intact rat spinal cord. All rats were implanted with an intrathecal (i.t.) catheter; some were also implanted with an i.t. microdialysis probe. The paw withdrawal latency to radiant heat was used to assess thermal hyperalgesia. The iNOS protein expression in the spinal cord dorsal horn was examined by western blot analysis and NOS activity assay. NO production in the CSF dialysate was also measured. IL-1beta i.t. (100 ng) produced thermal hyperalgesia from 4 to 24 h after i.t. injection. The iNOS protein expression was induced at 4 h after i.t. IL-1beta injection, peaked at the 6th hour, and disappeared at 24 h. The iNOS activity showed a similar time-dependent change as the iNOS protein expression. NO release increased by 1.1- to 1.9-fold between 4 and 12 h, also with a peak at the 6th hour, after i.t. IL-1beta administration. Pretreatment with the iNOS inhibitor 1400W (10 microg, i.t.) 1 h before i.t. IL-1beta injection prevented all the responses of IL-1beta. Neither 1400W nor artificial CSF (aCSF) affected the thermal nociceptive threshold and NO production. These results demonstrate that i.t. administration of IL-1beta induced thermal hyperalgesia by activating the iNOS-NO cascade in the rat spinal cord. On the basis of the present findings, we suggest that i.t. administration of iNOS inhibitors may have potential in the treatment of inflammatory and neuropathic pain syndromes.  相似文献   

7.
Although the inducible isoform of nitric oxide synthase (iNOS) is a well-established source of nitric oxide (NO*) during inflammation of the central nervous system (CNS), little is known about the involvement of constitutive isoforms of NOS (cNOS) in the inflammatory process. The aim of this study was to compare the responses of the expression and activity of iNOS and the two cNOS isoforms, neuronal and endothelial (nNOS and eNOS, respectively), in the brain to systemic inflammation and their roles in the cascade of events leading to degeneration and apoptosis. A systemic inflammatory response in C57BL/6 mice was induced by intraperitoneal injection of lipopolysaccharide [LPS; 1 mg/kg body weight (b.w.)]. The relative roles of the NOS isoforms were evaluated after injection of NG-nitro-L-arginine (NNLA; 30 mg/kg b.w.), which preferentially inhibits cNOS, or 1400W (5 mg/kg b.w.), an inhibitor of iNOS. Biochemical and morphological alterations were analyzed up to 48 hr after administration of LPS. Systemic LPS administration evoked significant ultrastructural alterations in brain capillary vessels, neuropils, and intracellular organelles of neurons, astrocytes, and microglia. Apoptotic/autophagic processes occurred in many neurons of the substantia nigra (SN), which coincided with exclusive enhancement of iNOS expression and activity in this brain region. Moreover, inhibitors of both iNOS and cNOS prevented LPS-evoked release of apoptosis-inducing factor (AIF) from SN mitochondria. Collectively, the results indicate that synthesis of NO* by both the inducible and constitutive NOS isoforms contribute to the activation of apoptotic pathways in the brain during systemic inflammation.  相似文献   

8.
9.
Nitric oxide (NO) is known to be involved in the modulation of neuroendocrine function. To clarify the role of different isoforms of NO synthase (NOS) in the neuroendocrine response to immune challenge, the expressions of neuronal NOS (nNOS) and inducible NOS (iNOS) genes in the hypothalamus following lipopolysaccharide (LPS) injection were examined using in situ hybridization. NOS activity was also determined by NADPH-diaphorase (NADPH-d) histochemistry. LPS (25 mg/kg) or sterile saline was injected intraperitoneally to male Wistar rats and the rats sacrificed 30 min, or 1, 2, 3, 5, 12 or 24 h after injection. nNOS mRNA expression in the paraventricular nucleus (PVN) was significantly increased 2 h after LPS injection. iNOS mRNA, which was not detected until 2 h after LPS injection, was significantly increased in the PVN 3 h after LPS injection. Both RNA expressions had returned to basal levels by 12 h after LPS injection. The number of NADPH-d positive cells was significantly increased 5 h after LPS injection. iNOS expression was more robust in parvocellular PVN, while nNOS was distributed mainly in the magnocellular PVN. Double in situ hybridization histochemistry revealed that some of the iNOS- (48.4%) or nNOS-positive cells (34. 3%) in the parvocellular PVN expressed CRF mRNA. The results demonstrate that LPS-induced sepsis causes significant increases in nNOS and iNOS gene expression with different time-courses and distributions, and that iNOS mRNA was more frequently co-localized with CRF-producing parvocellular neurons in the PVN. Thus, NO produced by iNOS and nNOS may play an important role in the neuroendocrine response to an immune challenge. Distinct differences in the distribution and time-course changes of iNOS and nNOS suggest different roles for the hypothalamic-pituitary-adrenal axis and/or neurohypophyseal system.  相似文献   

10.
We investigated the effect of agmatine, an arginine metabolite synthesized in the brain, in cultured microglia obtained from neonatal rat cerebral cortex. Agmatine (1–300 μM) did not affect viability of cultured microglia. Activation of microglia by lipopolysaccharide (LPS, 1 μg/ml) caused the expression of inducible nitric oxide synthase (iNOS) and the production of nitric oxide (NO) assessed as the accumulation of nitrite in the culture supernatants. Agmatine had no effect on the expression of iNOS, but significantly suppressed the LPS-induced NO production in a concentration-dependent manner. Agmatine was also effective in suppressing the production of NO induced by a combination of interferon-γ (500 U/ml) and amyloid β protein (10 μM). In co-cultures of rat cortical neurons and microglia, LPS caused significant loss of neuron viability. The LPS neurotoxicity was not observed in the absence of microglia, and was completely blocked by the NOS inhibitor diphenyleneiodoium chloride. The neuronal death induced by microglia-derived NO was significantly attenuated by the presence of agmatine. These results suggest that agmatine works to protect neurons by inhibiting the production of NO in microglia.  相似文献   

11.
12.
Nitric oxide (NO) has important roles in inflammatory processes. It was the aim of this study to ascertain whether changes in nitric oxide synthase (NOS) mRNA expression lead to similar temporal and anatomical changes in NO production in an experimental model of CNS inflammation. NOS-II (inducible NOS) mRNA expression was analyzed 2, 4, 6 and 24 h after intracerebroventricular (i.c.v.) injection of interleukin-1beta (IL-1beta) or vehicle. Increased expression of NOS-II mRNA was observed surrounding the microinjection site and meninges. The changes were significantly higher than controls at 4 and 6 h, returning to baseline at 24 h. Using the novel fluorometric NO detection system, 4,5-Diaminofluorescein diacetate (DAF-2/DA), for the direct detection of NO production, we observed a significant increase in NO production after 4 and 6 h. NO production was observed in areas surrounding the injection site, meninges surrounding the brain and perivascular cells and neuron-like cells throughout the cortex. However, increases in NO production in these areas remained significantly higher than controls at 24 h. These findings demonstrate for the first time that, in fresh frozen tissue, that the anatomical distribution of NOS-II mRNA is consistent with the distribution of NO production. We conclude that increases in NOS-II mRNA following i.c.v. administration of IL-1beta lead to increases in NO production. While the mRNA is degraded by 24 h post treatment, the enzyme remains active. We propose that the DAF-2/DA method can be used as a potential marker in the diagnosis of CNS inflammation.  相似文献   

13.
OBJECTIVES: Recent reports point to a role for the nitric oxide/nitric oxide synthase (NO/NOS) system in implantation. It has been suggested that inducible NOS expressed at peri-implantation would lead to enhanced NO production, which could promote the attachment of the blastocyst. Short-term administration of NO donors during the pre-implantation period reduced the pregnancy rate in a dose-dependent manner. Thus, it is thought that optimal levels of NO are critical for embryo implantation, so regulation of NOS must be crucial. Taking this into consideration, interleukin-10 (IL-10), synthesized and secreted by the embryo, could be modulating NOS during implantation. In this study we have investigated the in vitro effect of IL-10 on NOS in the uterus. METHODS: To determine the effect of IL-10, slices of uterus from estrogenized mice were pre-incubated for 60 min with different concentrations of IL-10 and NOS activity was measured. RESULTS: IL-10 (50 and 100 ng/ml in vitro) diminished NOS activity. The in vivo administration of lipopolysaccharide (LPS; 8 mg/kg) significantly increased the conversion of arginine into citrulline. This effect was abolished after 60 min of preincubation with IL-10 (100 ng/ml). The stimulatory effect of LPS and estrogen on NOS activity is exerted on the Ca-independent isoform and IL-10 in vitro abolished this increase. We observed that the uterus of pregnant mice on day 5 of gestation synthesized NO. This production was significantly inhibited by preincubation with IL-10 (100 ng/ml). CONCLUSIONS: This report demonstrates that IL-10 is capable of inhibiting NO synthesis in estrogenized, LPS-treated and pregnant rat uterus.  相似文献   

14.
To clarify whether the inducible nitric oxide synthase (iNOS) protein can be induced in in vivo brain, we examined the influence of direct intrahippocampal injection with interferon-γ (IFN-γ) plus lipopolysaccharide (LPS) in the rat. In the area surrounding the microinjection site, NOS activity (NO2 accumulation) was enhanced 24 h after injection with IFN-γ plus LPS. Although the level of 160-kDa nNOS protein was not changed, the 130-kDa iNOS protein was induced 12 h after the injection. On the other hand, iNOS mRNA could be detected at 6 and 12 h but not at 24 h. iNOS immunoreactivity was observed in CD11b-immunopositive microglia in close proximity to the injection site, but the immunoreactivity was not colocalized with glial fibrillary acidic protein-immunopositive astrocytes. Although CD11b-immunopositive microglia were of the ramified type even after injection with vehicle after 24 h, injection with IFN-γ plus LPS caused numerous microglia to change to the ameboid type and to express major histocompatibility complex (MHC) class II antigens. In some of these ameboidal microglia, iNOS immunoreactivity was observed. These results suggest that intrahippocampal injection with IFN-γ plus LPS induced iNOS mRNA after 6 h and iNOS protein after 12 h in some of the ameboidal microglia that expressed MHC class II antigens in in vivo rat brain. © 1996 Wiley-Liss, Inc.  相似文献   

15.
Endotoxin induces nitric oxide (NO*) synthase and alters gastrointestinal functions. We explored the effect of lipopolysaccharide (LPS) on oesophageal motor function at 6, 12, 24, and 48 h. The effects of inhibiting inducible NO* synthase (iNOS) were studied 12 h after administration of LPS with/without aminoguanidine (AG). Oesophageal manometry was performed and tissue bath studies were performed with muscle strips from the oesophagus and lower oesophageal sphincter (LOS). Plasma nitrite/nitrate concentrations were determined. The amplitudes of peristaltic pressure waves, resting LOS pressure and the percentage LOS relaxations were diminished by LPS. AG attenuated the decrease in amplitude of oesophageal pressure waves, LOS pressure, and percentage relaxation of LOS brought about by LPS. LPS decreased electrical field stimulation (EFS)-induced relaxation of LOS muscle. AG attenuated this decrease in LOS relaxation. The off-response of transverse oesophageal muscle strips was decreased, and AG antagonized this effect. Plasma concentrations of nitrite/nitrate were increased. The increase in plasma nitrite/nitrate was attenuated by AG. These studies support the hypothesis that endotoxin modulates oesophageal motor function by increasing NO production and suggest that this results from the induction of iNOS.  相似文献   

16.
目的通过对抑郁症患者一氧化氮合酶(NOS)活性进行检测,从而研究和探讨一氧化氮合酶、一氧化氮(NO)与抑郁症之间的关系。方法采用分光光度法检测抑郁症患者治疗前后的一氧化氮合酶NOS及其亚型(结构型cNOS、诱导型iNOS)的活性,并与正常对照组比较。结果抑郁症组的NOS、cNOS活性显著低于正常对照组;治疗组的NOS、cNOS活性高于抑郁症(无显著性),但治疗后缓解组的NOS、cNOS活性均显著高于治疗前。各组iNOS的活性无显著差异。结论抑郁症病人的NOS活性下降,而且主要是结构型cNOS活性下降,经治疗缓解后有所提高。因此,NOS和NO很有可能在抑郁症的发病过程中起着重要作用。  相似文献   

17.
Hypothermia is neuroprotective, possibly through suppression of microglial activation. We investigated the effects of hypothermia on lipopolysaccharide (LPS) stimulated BV-2 cells. At 37 degrees C, LPS elicited strong increases in inducible nitric oxide synthase (iNOS), nitric oxide (NO), cyclooxygenase-2 (COX-2), tumour necrosis factor-alpha (TNF-alpha), and interleukin-6 (IL-6), accompanied by translocation of nuclear factor-kappaB (NF-kappaB) to the nucleus. Hypothermia (33 degrees C) caused complete suppression of iNOS and NO, a partial reduction of IL-6 but did not prevent TNF-alpha production or NF-kappaB translocation. In contrast, LPS induced cyclooxygenase-2 (COX-2) to higher levels under hypothermic conditions. These results show that hypothermia selectively suppresses iNOS in microglia.  相似文献   

18.
Proinflammatory mediators have been implicated in demyelinating disorders, including multiple sclerosis, whereas it has been proposed that the anti-inflammatory cytokines interleukin- (IL-) 4 and IL-10 participate in disease recovery. The present study analysed the effect of interferon-gamma (IFN-gamma) and bacterial endotoxin (lipopolysaccharide, LPS) on proliferation and survival of progenitors and differentiated oligodendrocytes. We also investigated the presence of receptors for IL-4 and IL-10 in oligodendroglial cells and explored a possible protective action of IL-4 and IL-10 in cultures following LPS/IFN-gamma. Finally, the role of endogenous nitric oxide (NO) on cell viability and the modulatory action of IL-4 and IL-10 on inducible nitric oxide synthase (iNOS) expression were also analysed. We report that LPS and/or IFN-gamma reduced proliferation and viability of oligodendroglial cells. Cell death, presumably by apoptosis as evidence by TUNEL and Annexin V binding, was observed following LPS/IFN-gamma, progenitors being more sensitive than differentiated cells. At both developmental stages, LPS/IFN-gamma-treated cultures expressed iNOS protein and released micromolar concentrations of NO. In progenitors, LPS/IFN-gamma-mediated cell damage was partially dependent on endogenous NO production, whereas NO was fundamental for cytotoxicity of differentiated oligodendrocytes. Both cell types expressed mRNA for IL-4 and IL-10 receptors and expression of IL-10 receptors at the protein level was also demonstrated. Treatment with either cytokine inhibited the expression of iNOS resulting from the proinflammatory stimulation. IL-10 was more effective than IL-4 in suppressing iNOS expression and, interestingly, IL-10 conferred protection against oligodendroglial death evoked by LPS/IFN-gamma. Our data raise the question of whether IL-10 may play a protective role in demyelinating diseases, not only downregulating the function of inflammatory cells but also promoting survival of progenitors and differentiated oligodendrocytes.  相似文献   

19.
Peripheral nitric oxide in carrageenan-induced inflammation   总被引:9,自引:0,他引:9  
Recent studies have suggested that nitric oxide (NO) peripherally produced by different nitric oxide synthase (NOS) isoforms contributes to edema formation and development of hyperalgesia. The present study was designed to examine the effects of NOS isoforms on NO release in carrageenan-induced inflammation at various time points. A microdialysis probe was implanted subcutaneously into the glabrous skin of hindpaws of Sprague-Dawley rats under pentobarbital anesthesia. After sample collection to obtain the basal level of the total amount of nitrite and nitrate (NO2-/NO3-), modified Ringer solution, a non-selective NOS inhibitor, NG monomethyl-L-arginine acetate (L-NMMA), or an iNOS inhibitor, aminoguanidine hemisulfate (AG) was perfused through the microdialysis probe. 2 mg of carrageenan was injected into the plantar surface of the probe-implanted hindpaw. Carrageenan was also injected in rats that had undergone sciatic nerve sectioning. Carrageenan significantly increased the dialysate concentrations of NO2-/NO3- for more than 8 h. L-NMMA suppressed the carrageenan-induced increase in NO2-/NO3- concentration. Although AG did not suppress the increase in NO2-/NO3- for the first 2 h after carrageenan injection, significant suppression of the increase in NO2-/NO3- was observed from 2.5 h after carrageenan injection. In the rats in which the sciatic nerves had been denervated, the increases in concentrations of NO2-/NO3- were completely suppressed up to 3 h and partially suppressed 4.5-8 h after carrageenan injection. The results of the current study show that carrageenan induces peripheral release of NO, the production of which is mediated by nNOS in the early phase and by both nNOS and iNOS in the late phase of carrageenan-induced inflammation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号