首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Intracortical mechanisms contributing to orientation and direction specificity were investigated with a method of local cortical inactivation. Single-unit activity was recorded in area 17 of the anaesthetized cat while a small volume of cortical tissue 400 - 2900 microm lateral to the recorded cell was inactivated by gamma-aminobutyric acid (GABA) microiontophoresis. Cells were stimulated with moving bars of variable orientation and changes of the response were monitored. Recording and inactivation sites were histologically verified. Statistically significant changes in orientation tuning during GABA-induced remote inactivation were observed in 80 of 145 cells (55%), and consisted in a reduced orientation specificity due to either increased (36%) or decreased (19%) responses. Increases of responses were more pronounced for the non-optimal orientations. This effect mainly occurred with GABA application at distances around 500 microm and is interpreted as loss of inhibition. Reduced orientation specificity as a result of decreasing response mainly to the optimal orientation was interpreted as loss of excitation. This effect most frequently occurred with inactivation at distances around 1000 microm. Loss of inhibition was also elicited from a distance of 1000 microm; such inhibition, however, affected only directionality, without inducing changes in orientation tuning. For several cells at distances >1000 microm from the inactivation site a temporal sequence consisting of a change in direction specificity followed by a reduction of orientation specificity, and finally by direct GABAergic inhibition of the cell under study, could be induced with gradually increasing ejecting currents. The results indicate that excitation and inhibition originating from populations of neurons at different horizontal distances differentially contribute to direction and orientation specificity of a given visual cortical cell.  相似文献   

5.

Background

Dysfunction of the primary motor cortex, participating in regulation of posture and gait, is implicated in freezing of gait (FOG) in Parkinson's disease (PD).

Objective

The aim was to reveal the mechanisms of “OFF-period” FOG (OFF-FOG) and “levodopa-unresponsive” FOG (ONOFF-FOG) in PD.

Methods

We measured the transcranial magnetic stimulation (TMS) indicators and gait parameters in 21 healthy controls (HCs), 15 PD patients with ONOFF-FOG, 15 PD patients with OFF-FOG, and 15 PD patients without FOG (Non-FOG) in “ON” and “OFF” medication conditions. Difference of TMS indicators in the four groups and two conditions and its correlations with gait parameters were explored. Additionally, we explored the effect of 10 Hz repetitive TMS on gait and TMS indicators in ONOFF-FOG patients.

Results

In “OFF” condition, short interval intracortical inhibition (SICI) exhibited remarkable attenuation in FOG patients (both ONOFF-FOG and OFF-FOG) compared to Non-FOG patients and HCs. The weakening of SICI correlated with impaired gait characteristics in FOG. However, in “ON” condition, SICI in ONOFF-FOG patients reduced compared to OFF-FOG patients. Pharmacological treatment significantly improved SICI and gait in OFF-FOG patients, and high-frequency repetitive TMS distinctly improved gait in ONOFF-FOG patients, accompanied by enhanced SICI.

Conclusions

Motor cortex disinhibition, represented by decreased SICI, is related to FOG in PD. Refractory freezing in ONOFF-FOG patients correlated with the their reduced SICI insensitive to dopaminergic medication. SICI can serve as an indicator of the severity of impaired gait characteristics in FOG and reflect treatments efficacy for FOG in PD patients. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.  相似文献   

6.
《Neuromodulation》2021,24(5):813-828
ObjectivesThe corticospinal volley produced by application of transcranial magnetic stimulation (TMS) over primary motor cortex consists of a number of waves generated by trans-synaptic input from interneuronal circuits. These indirect (I)-waves mediate the sensitivity of TMS to cortical plasticity and intracortical excitability and can be assessed by altering the direction of cortical current induced by TMS. While this methodological approach has been conventionally viewed as preferentially recruiting early or late I-wave inputs from a given populations of neurons, growing evidence suggests recruitment of different neuronal populations, and this would strongly influence interpretation and application of these measures. The aim of this review is therefore to consider the physiological, functional, and clinical evidence for the independence of the neuronal circuits activated by different current directions.Materials and MethodsTo provide the relevant context, we begin with an overview of TMS methodology, focusing on the different techniques used to quantify I-waves. We then comprehensively review the literature that has used variations in coil orientation to investigate the I-wave circuits, grouping studies based on the neurophysiological, functional, and clinical relevance of their outcomes.ResultsReview of the existing literature reveals significant evidence supporting the idea that varying current direction can recruit different neuronal populations having unique functionally and clinically relevant characteristics.ConclusionsFurther research providing greater characterization of the I-wave circuits activated with different current directions is required. This will facilitate the development of interventions that are able to modulate specific intracortical circuits, which will be an important application of TMS.  相似文献   

7.
《Brain stimulation》2014,7(3):468-475
BackgroundResponses to a number of different plasticity-inducing brain stimulation protocols are highly variable. However there is little data available on the variability of response to transcranial direct current stimulation (TDCS).ObjectiveWe tested the effects of TDCS over the motor cortex on corticospinal excitability. We also examined whether an individual's response could be predicted from measurements of onset latency of motor evoked potential (MEP) following stimulation with different orientations of monophasic transcranial magnetic stimulation (TMS).MethodsFifty-three healthy subjects participated in a crossover-design. Baseline latency measurements with different coil orientations and MEPs were recorded from the first dorsal interosseous muscle prior to the application of 10 min of 2 mA TDCS (0.057 mA/cm2). Thirty MEPs were measured every 5 min for up to half an hour after the intervention to assess after-effects on corticospinal excitability.ResultsAnodal TDCS at 2 mA facilitated MEPs whereas there was no significant effect of 2 mA cathodal TDCS. A two-step cluster analysis suggested that approximately 50% individuals had only a minor, or no response to TDCS whereas the remainder had a facilitatory effect to both forms of stimulation. There was a significant correlation between the latency difference of MEPs (anterior–posterior stimulation minus latero-medial stimulation) and the response to anodal, but not cathodal TDCS.ConclusionsThe large variability in response to these TDCS protocols is in line with similar studies using other forms of non-invasive brain stimulation. The effects highlight the need to develop more robust protocols, and understand the individual factors that determine responsiveness.  相似文献   

8.
9.
10.
《Neuromodulation》2021,24(5):854-862
ObjectivesThe ability of noninvasive brain stimulation to modulate corticospinal excitability and plasticity is influenced by genetic predilections such as the coding for brain-derived neurotrophic factor (BDNF). Otherwise healthy individuals presenting with BDNF Val66Met (Val/Met) polymorphism are less susceptible to changes in excitability in response to repetitive transcranial magnetic stimulation (TMS) and paired associative stimulation paradigms, reflecting reduced neuroplasticity, compared to Val homozygotes (Val/Val). In the current study, we investigated whether BDNF polymorphism influences “baseline” excitability under TMS conditions that are not repetitive or plasticity-inducing. Cross-sectional BDNF levels could predict TMS response more generally because of the ongoing plasticity processes.Materials and MethodsForty-five healthy individuals (23 females; age: 25.3 ± 7.0 years) participated in the study, comprising two groups. Motor evoked potentials (MEP) were collected using single-pulse TMS paradigms at fixed stimulation intensities at 110% of the resting motor threshold in one group, and individually-derived intensities based on MEP sizes of 1 mV in the second group. Functional variant Val66Met (rs6265) was genotyped from saliva samples by a technician blinded to the identity of DNA samples.ResultsTwenty-seven participants (60.0%) were identified with Val/Val, sixteen (35.5%) with Val/Met genotype, and two with Met/Met genotype. MEP amplitudes were significantly diminished in the Val/Met than Val/Val individuals. These results held independent of the single-pulse TMS paradigm of choice (p = 0.017110% group; p = 0.035 1 mV group), age, and scalp-to-coil distances.ConclusionsThe findings should be further substantiated in larger-scale studies. If validated, intrinsic differences by BDNF polymorphism status could index response to TMS prior to implementing plasticity-inducing protocols.  相似文献   

11.
12.
13.
ObjectivesThe aim of the present study was to investigate the analgesic effects of repetitive transcranial magnetic stimulation over the primary motor cortex (M1-rTMS) using different stimulation parameters to explore the optimal stimulus condition for treating neuropathic pain.Materials and MethodsWe conducted a randomized, blinded, crossover exploratory study. Four single sessions of M1-rTMS at different parameters were administered in random order. The tested stimulation conditions were as follows: 5-Hz with 500 pulses per session, 10-Hz with 500 pulses per session, 10-Hz with 2000 pulses per session, and sham stimulation. Analgesic effects were assessed by determining the visual analog scale (VAS) pain intensity score and Short-Form McGill Pain Questionnaire 2 (SF-MPQ2) score immediately before and immediately after intervention.ResultsWe enrolled 22 adults (age: 59.8 ± 12.1 years) with intractable neuropathic pain. Linear-effects models showed significant effects of the stimulation condition on changes in VAS pain intensity (p = 0.03) and SF-MPQ2 (p = 0.01). Tukey multiple comparison tests revealed that 10-Hz rTMS with 2000 pulses provided better pain relief than sham stimulation, with greater decreases in VAS pain intensity (p = 0.03) and SF-MPQ2 (p = 0.02).ConclusionsThe results of this study suggest that high-dose stimulation (specifically, 10-Hz rTMS at 2000 pulses) is more effective than lower-dose stimulation for treating neuropathic pain.  相似文献   

14.
Background and PurposeThe cerebral cortex has been the focus of investigations of the pathogenesis of migraine for a long time. Transcranial magnetic stimulation (TMS) is a safe and effective technique for evaluating cortex excitability. Previous studies of the duration of the cortical silent period (CSP)—a measure of intracortical inhibition—in migraine patients have yielded conflicting results. We aimed to characterize cortical excitability by applying TMS to female migraineurs during the preovulatory phase of the menstrual cycle, in order to eliminate the effects of variations in sex hormones.MethodsWe enrolled 70 female subjects: 20 migraine with aura (MA) patients, 20 migraine without aura (MO) patients, and 30 healthy controls. We measured the CSP, resting motor threshold (rMT), and motor evoked potential (MEP) induced by TMS to evaluate cortical excitability during the preovulatory phase of the menstrual cycle.ResultsThe CSP was shorter in MA patients (88.93±3.82 ms, mean±SEM) and MO patients (86.98±2.72 ms) than in the control group (109.06±2.85 ms) (both p=0.001), and did not differ significantly between the MA and MO groups (p=0.925). The rMT did not differ significantly among the groups (p=0.088). MEPmax was higher in MA patients than in healthy controls (p=0.014), while that in MO patients did not differ from those in MA patients and healthy controls (p=0.079 and p=0.068).ConclusionsWe detected a shorter CSP in both MA and MO patients. This finding may indicate the presence of motor cortex hyperexcitability, which is probably due to reduced GABAergic neuronal inhibition in migraine.  相似文献   

15.
An anatomical approach to possible areas in the cerebral cortex involved in somatic motor behavior is to analyze the cortical areas containing neurons that connect directly to the primary motor cortex (MI). To define the cortical areas related to orofacial movements, we examined the distribution of cortical neurons that send their axons to the orofacial region of the MI in the macaque monkey. Injections of retrograde tracers into the electrophysiologically identified orofacial region of the MI revealed that labeled neurons were distributed in the following cortical areas: the orbital cortex (area 12), insular cortex, frontoparietal operculum (including the deep part of the cortical masticatory area and the secondary somatosensory cortex), ventral division of the premotor cortex (especially in its lateral part), orofacial region of the supplementary motor area, rostral division of the cingulate motor area (CMA), and CMA on the ventral bank. A number of labeled neurons were also seen in the MI around the injection sites and in the parietal cortex (including the primary somatosensory cortex and area 7b). No labeled neurons were found in the dorsal division of the premotor cortex. Fluorescent retrograde double labeling further revealed virtually no overlap of distribution between cortical neurons projecting to the orofacial and forelimb regions of the MI. Based on the present results, we discuss the functional diversity of the cortical areas related to orofacial motor behavior and the somatotopical organization in the premotor areas of the frontal cortex. J. Comp. Neurol. 389:34–48, 1997.© 1997 Wiley-Liss, Inc.  相似文献   

16.
17.
18.

Objective

To examine the synergistic effects of both computer-assisted cognitive rehabilitation (CACR) and transcranial direct current stimulation (tDCS) on cognitive function in patients with stroke.

Methods

The current double-blind, sham-controlled study enrolled a total of 11 patients who were newly diagnosed with stroke. The patients of the tDCS group (n=6) completed sessions of the Korean computer-assisted cognitive rehabilitation program five times a week for 30 minutes a session during a mean period of 18.5 days concomitantly with the anodal tDCS over the bilateral prefrontal cortex combined with the CACR. The patients of the control group (n=5) also completed sessions of the sham stimulation during a mean period of 17.8 days. Anodal tDCS over bilateral prefrontal cortex (F3 and F4 in 10-20 EEG system) was delivered for 30 minutes at an intensity of 2 mA. Cathode electrodes were applied to the non-dominant arm. All the patients were evaluated using the Seoul Computerized Neuropsychological Test (SCNT) and the Korean Mini-Mental State Examination.

Results

Mann-Whitney U test revealed a significant difference between the two groups. The patients of the tDCS group achieved a significant improvement in the post/pre ratio of auditory continuous performance test and visual continuous performance test on the SCNT items.

Conclusion

Our results indicate that the concomitant use of the tDCS with CACR to the prefrontal cortex may provide additional beneficial effects in improving the cognitive dysfunction for patients with stroke.  相似文献   

19.
Morphologically, a GABAergic connection between the medial terminal nucleus of the accessory optic system and the nucleus of the optic tract, two primary visual nuclei involved in the optokinetic reflex, has been demonstrated. In this study it was investigated if the medial terminal nucleus forms an inhibitory input to movement direction selective units in the nucleus of the optic tract. Neurons in the nucleus of the optic tract were visually stimulated with moving large random square patterns in their preferred and non-preferred direction, and their activity was recorded extracellularly. Concomitantly, bipolar electrical stimulation was applied to the medial terminal nucleus and its effect was studied on the visual responses of units in the nucleus of the optic tract. Units in the nucleus of the optic tract were strongly inhibited during electrical stimulation of the medial terminal nucleus. The role of GABA in mediating this inhibition was investigated by applying bicuculline, a GABAA receptor antagonist, iontophoretically to the recorded units in the nucleus of the optic tract. However, although average spike rate levels of units in the nucleus of the optic tract increased with bicuculline, bicuculline did not reduce inhibition invoked by electrical stimulation of the medial terminal nucleus. A possible explanation for this observation is that this inhibition is GABAB receptor mediated.  相似文献   

20.
《Brain stimulation》2014,7(6):836-840
BackgroundThe motor cortex in the human brain can be modulated by the application of transcranial static magnetic field stimulation (tSMS) through the scalp. However, the effect of tSMS on the excitability of the primary somatosensory cortex (S1) in humans has never been examined.ObjectiveThis study was performed to investigate the possibility of non-invasive modulation of S1 excitability by the application of tSMS in healthy humans.MethodstSMS and sham stimulation over the sensorimotor cortex were applied to 10 subjects for periods of 10 and 15 min. Somatosensory evoked potentials (SEPs) following right median nerve stimulation were recorded before and immediately after, 5 min after, and 10 min after tSMS from sites C3′ and F3 of the international 10-20 system of electrode placement. In another session, SEPs were recorded from 6 of the 10 subjects every 3 min during 15 min of tSMS.ResultsAmplitudes of the N20 component of SEPs at C3′ significantly decreased immediately after 10 and 15 min of tSMS by up to 20%, returning to baseline by 10 min after intervention. tSMS applied while recording SEPs every 3 min and sham stimulation had no effect on SEP.ConclusionstSMS is able to modulate cortical somatosensory processing in humans, and thus might be a useful tool for inducing plasticity in cortical somatosensory processing. Lack of change in the amplitude of SEPs with tSMS implies that use of peripheral nerve stimulation to cause SEPs antagonizes alteration of the function of membrane ion channels during exposure to static magnetic fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号