首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
强化膨胀式椎弓根螺钉翻修作用的生物力学评价   总被引:4,自引:0,他引:4  
目的测试骨水泥强化膨胀式椎弓根螺钉(augmentation expansive pedicle screwfixa-tion with polymethyl methacrylate,AEPS),未强化的膨胀式椎弓根螺钉(expansive pedicle screw,EPS),CDH椎弓根螺钉翻修后的最大轴向拔出力,评价AEPS螺钉的翻修效应。方法24个新鲜小牛腰椎随机分成三组,AEPS组、EPS组、CDH组,每组8个椎体,三组椎体的椎弓根处均预先植入直径6.5mm CDH螺钉,拔出螺钉造成螺钉松动脱出的脊柱模型,然后分别植入AEPS、EPS、CDH螺钉,再次拔出螺钉,记录翻修后最大轴向拔出力。结果AEPS、EPS、CDH螺钉翻修后的最大拔出力分别为(2723.3±565.4)、(2216.3±475.6)和(1321.4±346.7)N,AEPS和EPS螺钉最大拔出力均显著高于CDH螺钉(P<0.05),AEPS轴向拔出力高于EPS螺钉,但差异无统计学意义(P>0.05)。结论AEPS与EPS螺钉具有相当的翻修作用。  相似文献   

2.
通用型脊柱内固定系统椎弓根螺钉翻修作用的生物力学研究   总被引:25,自引:0,他引:25  
目的测试自行设计的通用型脊柱内固定系统(generalspinesystem,GSS)椎弓根螺钉以及SOCON、TSRH和Diapason螺钉置入椎体的拔出力及旋入力矩,评价GSS螺钉的翻修作用。方法将36个正常成人腰椎椎体标本随机分为三组,每组12个椎体(24侧椎弓根)。各组标本每个椎体的每侧椎弓根均先拧入CCD螺钉(直径6.0mm,长45mm),行螺钉拔出试验,测试并记录螺钉的最大旋入力矩和最大轴向拔出力。然后各组标本每个椎体均随机选择一侧椎弓根经原钉道拧入GSS螺钉(直径6.5mm,长45mm);第一组另一侧拧入SOCON螺钉(直径7.0mm,长45mm),第二组另一侧拧入TSRH螺钉(直径7.0mm,长45mm),第三组另一侧拧入Diapason螺钉(直径6.7mm,长45mm)。分别测试螺钉最大旋入力矩及最大轴向拔出力。结果第一组GSS螺钉最大轴向拔出力为CCD螺钉的114%,SOCON螺钉为CCD螺钉的108%;GSS螺钉最大轴向拔出力大于SOCON螺钉,差异无显著性(P>0.05);GSS螺钉最大旋入力矩小于SOCON螺钉,差异无显著性(P>0.05)。第二组GSS螺钉最大轴向拔出力为CCD螺钉的127%,TSRH螺钉为CCD螺钉的64%;GSS螺钉最大轴向拔出力大于TSRH螺钉,差异有显著性(P<0.01);GSS螺钉最大旋入力矩大于TSRH螺钉,差异有显著性(P<0.01)。第三组GSS螺钉最大轴向拔出力为CCD螺钉的122%,Diapason螺钉为CCD螺钉的8  相似文献   

3.
膨胀式椎弓根螺钉抗旋出性能的生物力学测试   总被引:1,自引:0,他引:1  
目的:测试并比较自行设计的膨胀式椎弓根螺钉(Expansive Pedicle Screw,EPS)与USS,Tenor,CDH椎弓根螺钉植入椎体后的最大旋出力矩及旋出180°时能量吸收值,评价EPS螺钉脊柱固定稳定性.方法:30个新鲜小牛腰椎随机分成3组,每组10个椎体(20侧椎弓根),每组均随机在一侧拧入EPS螺钉,对侧分别拧入USS、Tenor,CDH螺钉,旋出螺钉,测试并记录最大旋出扭力矩及旋出180°时能量吸收值.结果:EPS,USS,Tenor,CDH螺钉的最大旋出力矩分别为(3.570±0.914)Nm,(1.607±0.300)Nm,(2.257±0.372)Nm,(2.371±0.348)Nm;能量吸收值分别为(8.277±2.108)J,(3.230±0.559)J,(4.475±0.602)J,(4.441±0.457)J.EPS螺钉的最大旋出力矩及能量吸收值显著大于其它三种螺钉(P值均小于0.01).结论:EPS螺钉较目前使用的USS,Tenor,CDH非膨胀椎弓根螺钉有更好的固定稳定性.  相似文献   

4.
目的评价新型设计的Y型椎弓根螺钉(Y type pedicle screw,YPS)在骨质疏松人工骨模块(简称"模块")中的生物力学稳定性。方法将模块随机分成3组(n=20),用手钻垂直钻入模块中,制备直径3.0 mm、深30.0 mm的钉道。分别将YPS、膨胀式椎弓根螺钉(expansive pedicle screw,EPS)、中空骨水泥椎弓根螺钉(bone cement-injectable cannulated pedicle screw,CICPS)打入已制备好钉道的各组模块中。12 h后行X线检查,并在E10000万能材料试验机上分别对YPS组、EPS组、CICPS组进行生物力学稳定测试,记录最大轴向拔出力、最大旋出力和周期抗屈最大载荷。结果 X线片观察示,YPS组主钉和中芯钉均被周围的聚氨酯材料包绕,中芯钉从主螺钉的中下1/3穿出后,与主钉形成15°夹角,插入的中芯钉最低点与主螺钉位于同水平线上;EPS组螺钉尖端明显膨胀,形成爪型结构;CICPS组骨水泥主要分布于螺钉前部,在骨小梁中弥散,形成稳固的"螺钉-骨水泥-骨小梁"复合体。生物力学检测示,YPS、EPS、CICPS组的最大轴向拔出力分别为(98.43±8.26)、(77.41±11.41)、(186.43±23.23)N,最大旋出力矩分别为(1.42±0.33)、(0.96±0.37)、(2.27±0.39)N/m,周期抗屈试验的最大载荷分别为(67.49±3.02)、(66.03±2.88)、(143.48±4.73)N。CICPS组各指标均明显高于YPS组和EPS组,差异有统计学意义(P0.05);YPS组最大轴向拔出力和最大旋出力矩显著高于EPS组,差异有统计学意义(P0.05),但YPS组和EPS组间比较最大载荷差异无统计学意义(P0.05)。结论相比于EPS,YPS能有效提升其在模块中的最大轴向拔出力和最大旋出力,为骨质疏松条件下的螺钉设计和不同固定方式选择提供了新思路。  相似文献   

5.
磷酸钙骨水泥强化椎弓根螺钉固定的生物力学研究   总被引:2,自引:1,他引:2  
目的:评价磷酸钙骨水泥(calciumphosphatecement,CPC)对椎弓根螺钉固定的强化作用。方法:在两组男性尸体椎骨的一侧直接置入椎弓根螺钉作为对照(对照侧),另一侧填入CPC后再置入螺钉作强化固定(强化侧),15min和12h后测定椎弓根螺钉的最大轴向拔出力(Fmax),然后用CPC重新固定12h后拔松的椎弓根螺钉并测得其Fmax。结果:强化侧Fmax和对照侧比较,15min后提高了55%,12h后提高了83%;重新固定后,两侧Fmax较固定前分别提高了54.2%和63.6%,差别有显著性意义(Wilcoxon's检验,P<0.01)。结论:磷酸钙骨水泥能强化椎弓根螺钉的固定。  相似文献   

6.
目的:评价自行设计的膨胀式脊柱同定系统(expansive spinal fixation system,ESFS)的椎弓根螺钉对椎弓根螺钉固定失败后的翻修作用。方法:将30个深低温冰冻的正常成人腰椎体标本随机分为A、B、C三组.每组10个椎体(20侧椎弓根)。各组标本每个椎体的两侧椎弓根均先拧入直径6.0mm、长45mm的CD-Ⅱ螺钉.行螺钉拔出试验,记录螺钉的最大旋入力矩和最大轴向拔出力。然后将CD-Ⅱ螺钉拔出,各组标本每一椎体随机经一侧椎弓根原钉道拧入直径7.0mm、长45mm的ESFS螺钉;A组另一侧椎弓根拧入直径7.0mm、长45mm的CD-Ⅱ螺钉,B组另一侧拧入直径7.0mm、长45mm的TSRH螺钉.C组另一侧拧入直径7.0mm、长45mm的GSS螺钉。分别测试螺钉最大旋入力矩和最大轴向拔出力。结果:A、B、C三组的ESFS螺钉最大轴向拔出力分别为6mm CD-Ⅱ螺钉的113%、110%和112%,而直径7.0mm、长45mm的CD-Ⅱ螺钉、TSRH螺钉和GSS螺钉的最大轴向拔出力分别只有6mm CD-Ⅱ螺钉的80%、82%和88%,各组ESFS螺钉最大轴向拔出力明显高于其它三种螺钉。差异有显著性(P〈0.01)。各组各螺钉最大旋入力矩之间差异无显著性(P〉0.05)。结论:ESFS螺钉具有很好的椎弓根锚固作用及翻修作用。  相似文献   

7.
目的:评价磷酸钙骨水泥(calcium phosphate cement,CPC)强化和修复椎弓根融合器的生物力学效果。方法:8具成人新鲜腰椎骨L1-L4共32个椎体,随机选取其中20个,分为3组(A,B,C),每组10个。A组(对照组):随机选择10个椎体双侧椎弓根放置直径为6.5 mm的椎弓根融合器,不穿透椎体前侧骨皮质。在材料实验机上进行椎弓根融合器最大轴向拔出力(Fmax)实验,拔出速率为5 mm/min。B组(修复组):对照组拔出椎弓根融合器后再向椎弓根融合器中空部分注入配制好CPC 3-5 ml,室温(28℃)1 h后再行前述最大轴向拔出力(Fmax)实验。C组(强化组):另选10个椎体直接向椎弓根融合器中空部分注入配制好CPC和拧入椎弓根融合器,再行拔出实验。沿椎弓根融合器方向锯开标本,观察CPC在椎体中分布范围。另外10个椎体作椎弓根融合器的递增负荷的周期抗屈实验。结果:正常对照组椎弓根融合器Fmax为(843.1±132.2)N,修复组为(1456.2±239.9)N,强化组为(1499.5±241.2)N;向椎弓根融合器中空部分注入CPC,未见CPC溢出椎弓根外或椎管内。周期抗屈实验中,添加CPC可使椎弓根融合器耐受更大的负荷或在同等负荷下仅产生较小的位移。CPC骨水泥强化和修复椎弓根融合器后轴向拔出力明显高于强化前,差异具有显著性意义(P<0.05)。结论:沿椎弓根融合器中空部分注入CPC可显著增加椎弓根螺钉的稳定性,并能减少CPC向椎弓根外或椎管内溢出。在活体中即使不添加CPC也有利于骨细胞长入椎弓根融合器侧孔,同样可以增加螺钉的稳定性。适用于螺钉松动和拔出的修复固定。  相似文献   

8.
可灌注骨水泥椎弓根螺钉的生物力学研究   总被引:2,自引:0,他引:2  
目的 探讨可灌注骨水泥椎弓根螺钉(novel perfusional pedicle screw,NPPS)在骨质疏松椎体内的生物力学稳定性.方法 选取平均年龄73岁的完整湿润脊柱标本(T11~L5)6具,共42个椎体,平均骨密度为(0.696±0.14)g/cm2.所有椎体均任取一侧椎弓根置入可灌注螺钉后,使用配套的骨水泥推杆和灌注筒向椎体内灌注骨水泥2ml,对侧椎弓根置入常规螺钉,作为对照组.随机选取3个椎体,剖开椎体观察骨水泥分布情况.余39个椎体随机分成3组,每组13个,分别行最大轴向拔出力、最大旋出力矩、周期抗屈试验.另取10个可灌注螺钉和10个对照组螺钉行三点弯曲实验.结果 所有椎体均没有观察到骨水泥渗漏.可灌注螺钉的最大轴向拔出力为(760±178)N,对照组为(355±87)N;可灌注螺钉的最大旋出力矩为(1.347±0.377)N·m,对照组为(0.488±0.205)N·m.4枚(4/13,占30.8%)可灌注螺钉发生松动,其平均载荷为(150±46)N;未松动的螺钉中,松动位移半均(0.661±0.289)mm,对照组中所有的螺钉在最大负荷介于50~200 N时开始松动(位移>2.000 mm),平均载荷(104±35)N.可灌注螺钉的平均极限弯曲载荷为(3082±144)N,对照组螺钉为(3357±263)N.结论 可灌注椎弓根螺钉,结合骨水泥推杆和灌注筒能有效控制骨水泥渗漏,明显增强椎弓根螺钉在骨质疏松椎体内的稳定性.  相似文献   

9.
通用型脊柱内固定系统椎弓根螺钉的生物力学测试   总被引:53,自引:0,他引:53  
目的测试自行设计的通用型脊柱内固定系统(generalspinesystem,GSS)椎弓根螺钉以及SOCON和CCD螺钉置入正常成人椎体标本的最大轴向拔出力及最大旋入力矩,评价GSS螺钉对椎弓根的锚固作用。方法将27个正常成人腰椎椎体标本随机分为3组,每组9个椎体(18侧椎弓根),分别置入GSS、SOCON和CCD椎弓根螺钉,行螺钉拔出试验,测试并记录螺钉的最大旋入力矩和最大轴向拔出力。结果三组螺钉的最大旋入力矩分别为(1.83±0.27)Nm、(2.09±0.51)Nm和(1.66±0.34)Nm,最大轴向拔出力分别为(1131.0±255.4)N、(1034.0±262.3)N和(886.1±152.9)N。GSS螺钉最大轴向拔出力最大,且与CCD螺钉相比差异有非常显著性意义(P<0.01)。结论GSS螺钉具有很强的椎弓根锚固作用。  相似文献   

10.
【摘要】 目的 分析直入式骨水泥注入椎体强化方法在体外提高螺钉稳定性的效果。方法采用新鲜尸体脊柱标本共24个椎体,一侧椎弓根采用直入式注入PMMA骨水泥强化椎弓根钉固定作(试验组),另一侧椎弓根采用常规椎弓根螺钉固定(对照组),两侧进行最大轴向拔出力试验、最大旋出力矩试验、周期抗屈试验生物力学测试,比较两组测试结果。结果〓骨水泥强化组中螺钉的稳定性均显著强于单纯常规椎弓根螺钉组(P < 0.05)。结论〓应用PMMA行椎体强化椎弓根钉固定有利于增强对椎弓根钉的把持力,可有效防止椎弓根钉的松动及脱落,具有良好的临床效果。  相似文献   

11.
Biomechanical evaluation of an expansive pedicle screw in calf vertebrae   总被引:4,自引:0,他引:4  
incetheintroductionofthetranspedicularscrewsystembyBoucher ,1theapplicationofthissysteminthetreatmentofdegenerativedisordersandunstablefractures ,tumorsofthespinehasbecomeverypopularinthelasttwodecades.2 Looseningandfailureofthescrewsareamongthemostcommoncomplicationsreported ,especiallyforosteoporosis .3Thesefailuresoftenleadtonon union ,sagittalcollapseoftheconstructandpainfulkyphosis .Revisionisoftennecessary .Increasingthediameterand/orlengthofthepediclescrewseemstobethebestsolution .Howe…  相似文献   

12.
Biomechanical evaluation of an expansive pedicle screw in calf vertebrae   总被引:4,自引:0,他引:4  
The main objective of the present study is to evaluate biomechanically a newly designed expansive pedicle screw (EPS) using fresh pedicles from calf lumber vertebrae in comparison with conventional pedicle screws, (CDH) CD Horizon, Universal Spine System pedicle screw (USS) and Tenor (Sofamor Denek). Pull-out and turning-back tests were performed on these pedicle screws to compare their holding strength. Additionally, revision tests were undertaken to evaluate the mechanical properties of EPS as a rescue revision screw. A fatigue simulation test using a perpendicular load up to 1,500,000 cycles was also carried out. The results showed that the turning back torque (Tmax) and pull-out force (Fmax) of EPS screws were significantly greater than those of USS, Tenor and CDH screws (6.5×40 mm). In revision tests, the Fmax of both types of EPS screws (6.5×40 mm; 7.0×40 mm) were significantly greater than that of CDH, USS, and Tenor screws (P<0.05). Furthermore, no screws were broken or bent at the end of fatigue tests. The findings from the current study suggest that expansive pedicle screws can significantly improve the bone purchase and the pull-out strength compared to USS, Tenor and CDH screws of similar dimensions before and after a failure simulation.  相似文献   

13.
钉道强化提高椎弓根螺钉固定强度的生物力学研究   总被引:1,自引:0,他引:1  
目的 评价椎弓根钉道局部强化技术及其结合膨胀式椎弓根螺钉提高椎弓根螺钉固定强度的效果.方法 通过自行设计及加工的钉道局部强化装置,向钉道周壁点状注入CaSO4骨水泥以强化椎弓根钉道.5具新鲜冻存人体脊柱标本,每具随机选取4个腰椎共20个腰椎标本,采用随机区组设计方法分为10个区组.设计四种固定方法:A组(普通椎弓根螺钉)、B组(普通椎弓根螺钉+钉道局部强化)、C组(膨胀式椎弓根螺钉+钉道局部强化)、D组(普通椎弓根螺钉+钉道内灌注CaSO4骨水泥),随机应用在每个区组的2个椎体共4个椎弓根钉道.分别测试每个椎弓根螺钉的最大轴向拔出力及能量吸收值.从剩余腰椎标本中任意取两个腰椎,应用钉道局部强化技术后利用Micro-CT观察钉道周壁微观结构变化.结果 C、D两组的最大轴向拔出力均值及能量吸收值均值高于A组(P<0.01)及B组(P<0.05),B组最大轴向拔出力均值及能量吸收值均值高于A组(P<0.01),C、D两组之间的差异无统计学意义(P>0.05).结论 钉道局部强化技术可显著提高椎弓根螺钉的固定强度,结合使用膨胀式椎弓根螺钉可进一步提高螺钉的固定强度.  相似文献   

14.
While the biomechanical properties of pedicle screws have proven to be superior in the lumbar spine, little is known concerning pullout strength of pedicle screws in comparison to hooks in the thoracic spine. In vitro biomechanical pullout testing was performed to evaluate the axial pullout strength of pedicle screws versus pedicle and laminar hooks in the thoracic spine with regard to surgical correction techniques in scoliosis. Nine human cadaveric thoracic spines were harvested and disarticulated. To simulate a typical posterior segmental scoliosis instrumentation, standard pedicle hooks were used between T4 and T8 and supralaminar hooks between T9 and T12 and tested against pedicle screws. The pedicle screws were loaded strictly longitudinal to their axis; the hooks were loaded perpendicular to the intended rod direction. In total, 90 pullout tests were performed. Average pullout strength of the pedicle screws was significantly higher than in the hook group (T4-T8: 531 N versus 321 N, T9-T12: 807 N versus 600 N, p < 0.05). Both screw diameter and the bone mineral density (BMD) had significant influence on the pullout strength in the screw group. For scoliosis correction, pedicle screws might be beneficial, especially for rigid thoracic curves, since they are significantly more resistant to axial pullout than both pedicle and laminar hooks.  相似文献   

15.

Background:

The objective of this cadaveric study was to analyze the effects of iatrogenic pedicle perforations from screw misplacement on the mean pullout strength of lower thoracic and lumbar pedicle screws. We also investigated the effect of bone mineral density (BMD), diameter of pedicle screws, and the region of spine on the pullout strength of pedicle screws.

Materials and Methods:

Sixty fresh human cadaveric vertebrae (D10–L2) were harvested. Dual-energy X-ray absorptiometry (DEXA) scan of vertebrae was done for BMD. Titanium pedicle screws of different diameters (5.2 and 6.2 mm) were inserted in the thoracic and lumbar segments after dividing the specimens into three groups: a) standard pedicle screw (no cortical perforation); b) screw with medial cortical perforation; and c) screw with lateral cortical perforation. Finally, pullout load of pedicle screws was recorded using INSTRON Universal Testing Machine.

Results:

Compared with standard placement, medially misplaced screws had 9.4% greater mean pullout strength and laterally misplaced screws had 47.3% lesser mean pullout strength. The pullout strength of the 6.2 mm pedicle screws was 33% greater than that of the 5.2 mm pedicle screws. The pullout load of pedicle screws in lumbar vertebra was 13.9% greater than that in the thoracic vertebra (P = 0.105), but it was not statistically significant. There was no significant difference between pullout loads of vertebra with different BMD (P = 0.901).

Conclusion:

The mean pullout strength was less with lateral misplaced pedicle screws while medial misplaced pedicle screw had more pullout strength. The pullout load of 6.2 mm screws was greater than that of 5.2 mm pedicle screws. No significant correlation was found between bone mineral densities and the pullout strength of vertebra. Similarly, the pullout load of screw placed in thoracic and lumbar vertebrae was not significantly different.  相似文献   

16.
A lot of new implant devices for spine surgery are coming onto the market, in which vertebral screws play a fundamental role. The new screws developed for surgery of spine deformities have to be compared to established systems. A biomechanical in vitro study was designed to assess the bone–screw interface fixation strength of seven different screws used for correction of scoliosis in spine surgery. The objectives of the current study were twofold: (1) to evaluate the initial strength at the bone–screw interface of newly developed vertebral screws (Universal Spine System II) compared to established systems (product comparison) and (2) to evaluate the influence of screw design, screw diameter, screw length and bone mineral density on pullout strength. Fifty-six calf vertebral bodies were instrumented with seven different screws (USS II anterior 8.0 mm, USS II posterior 6.2 mm, KASS 6.25 mm, USS II anterior 6.2 mm, USS II posterior 5.2 mm, USS 6.0 mm, USS 5.0 mm). Bone mineral density (BMD) was determined by quantitative computed tomography (QCT). Failure in axial pullout was tested using a displacement-controlled universal test machine. USS II anterior 8.0 mm showed higher pullout strength than all other screws. The difference constituted a tendency (P = 0.108) when compared to USS II posterior 6.2 mm (+19%) and was significant in comparison to the other screws (+30 to +55%, P < 0.002). USS II posterior 6.2 mm showed significantly higher pullout strength than USS 5.0 mm (+30%, P = 0.014). The other screws did not differ significantly in pullout strength. Pullout strength correlated significantly with BMD (P = 0.0015) and vertebral body width/screw length (P < 0.001). The newly developed screws for spine surgery (USS II) show higher pullout strength when compared to established systems. Screw design had no significant influence on pullout force in vertebral body screws, but outer diameter of the screw, screw length and BMD are good predictors of pullout resistance.  相似文献   

17.
BACKGROUND CONTEXT: Biomechanical studies show that bone-mineral density, pedicle morphology, and screw thread area affect pedicle screw pullout failure. The current literature is based on studies of cylindrical pedicle screw designs. Conical screws have been introduced that may provide better "fit and fill" of the dorsal pedicle as well as improved resistance to screw bending failure. However, there is concern about loss of fixation if conical screws must be backed out after insertion. PURPOSE: To determine that conical screws have comparable initial stiffness and fixation strength compared with standard, cylindrical screws, and to assess whether conical screw fixation deteriorates when screws are backed out from full insertion. STUDY DESIGN/SETTING: This biomechanical analysis compared pullout strength of cylindrical and conical pedicle screw designs, using porcine lumbar vertebrae in a paired testing format. METHODS: Porcine lumbar vertebrae were instrumented with conical and cylindrical pedicle screws with the same thread pitch, area and contour, and an equivalent diameter at the pedicle isthmus, 1.2 cm distal to the hub. Axial pullout was performed at 1.0 mm/minute displacement. Pullout loads, work and stiffness were recorded at 0.02-second intervals. Conical versus cylindrical screws were tested using three paired control configurations: fully inserted, backed out 180 degrees and backed out 360 degrees. Fully inserted values were compared with each set of back-out values to determine relative loss of fixation strength. Screw pullout data were analyzed using a Student's t test. RESULTS: Pullout loads in these porcine specimens were comparable to data from healthy human vertebrae. Conical screws provided a 17% increase in the pullout strength compared with cylindrical screws (P<.10) and a 50% increase in initial stiffness (P<.05) at full insertion. There was no loss in pullout strength, stiffness or work to failure when conical or cylindrical screws were backed out 180 or 360 degrees from full insertion. CONCLUSIONS: Conical screws offer improved initial fixation strength compared with cylindrical screws of the same size and thread design. Our results suggest that appropriately designed conical screws can be backed out 180 to 360 degrees for intraoperative adjustment without loss of pullout strength, stiffness or work to failure. Intraoperative adjustments of these specific conical screws less than 360 degrees should not affect initial fixation strength. These results may not hold true for screws with a smaller thread area or larger minor diameter.  相似文献   

18.
PURPOSE: Pedicle screw fixation of osteoporotic bone in the elderly is a challenge. Various augmentation methods have been studied by many authors. Although polymethylmethacrylate (PMMA) augmentation is believed to be a standard method, its usage is fraught with complications. Butyl-2-cyanoacrylate is an alternative to PMMA as it is bioresorbable, biocompatible, inexpensive, and noninfective. The objective of the current study was to determine the pullout strength of the pedicle screws when butyl-2-cyanoacrylate is used for augmentation. METHODS: Fresh calf lumbar vertebrae were obtained from male calves weighing 100-120 kg and implanted with pedicle screws. The screws were placed in native, unaugmented bone (group 1), butyl-2-cyanoacrylate-augmented bone (group 2), and PMMA-augmented bone (group 3). Axial pullout tests were done by an Instron 4411 universal testing machine. Statistical analysis was performed using the SPSS 9.0 for Windows program. Paired samples t test was used, and P < 0.05 was considered significant. RESULTS: The mean bone mineral density of the vertebrae was 1.6 +/- 0.1 g/cm2. The mean pullout strengths were 1.55 +/- 0.23 kN for group 1, 1.62 +/- 0.42 kN for group 2, and 2.55 +/- 0.22 kN for group 3. There was no statistically significant difference between groups 1 and 2. PMMA augmentation increased the pullout strength significantly when compared with butyl-2-cyanoacrylate augmentation and native bone (P = 0.002 and P = 0.001, respectively). CONCLUSIONS: The results of this study show that butyl-2-cyanoacrylate has no contribution to the augmentation of pedicle screw fixation in a calf model when compared with native bone or PMMA augmentation. Further studies are required to evaluate the effectiveness of butyl-2-cyanoacrylate in osteoporotic specimens and under cyclic loading in calf vertebra and animal and cadaver models before dispensing with its utility as an augmentation method in the clinical setting.  相似文献   

19.
AIM: Aim of the study was to compare pullout resistance of pedicle screws after conventional and fluoroscopic computer-assisted implantation in the cadaveric thoracic and lumbar spine. METHODS: Pedicle screws were inserted in a total of 10 vertebrae of different human specimens: 10 screws were placed using conventional technique (group 1) and 10 screws were inserted with fluoroscopic computer-assisted system contralaterally (group 2). Then pedicle screws were evaluated for biomechanical axial pullout resistance. RESULTS: Mean pullout force was 232 N (range 60-600 N) in group 1 and 353 N (range 112-625 N) in group 2. The difference was significant (p=0,0425). CONCLUSION: Fluoroscopic navigated implantation of pedicle screws increases the pullout strength in thoracic and lumbar cadaveric spines as compared with conventional methods.  相似文献   

20.
STUDY DESIGN: Comparative in vitro biomechanical study and finite element analysis. OBJECTIVES: To investigate the bending strength and pullout strength of conical pedicle screws, as compared with conventional cylindrical screws. SUMMARY OF BACKGROUND DATA: Transpedicle screw fixation, the gold standard of spinal fixation, is threatened by screw failure. Conical screws can resist screw breakage and loosening. However, biomechanical studies of bending strength have been lacking, and the results of pullout studies have varied widely. METHODS: Ten types of pedicle screws with different patterns of core tapering and core diameter were specially manufactured with good control of all other design factors. The stiffness, yielding strength, and fatigue life of the pedicle screws were assessed by cantilever bending tests using high-molecular-weight polyethylene. The pullout strength was assessed by pullout tests using polyurethane foam. Concurrently, 3-dimensional finite element models simulating these mechanical tests were created, and the results were correlated to those of the mechanical tests. RESULTS: In bending tests, conical screws had substantially higher stiffness, yielding strength, and fatigue life than cylindrical screws (P<0.01), especially when there was no step at the thread-shank junction. In pullout tests, pullout strength was higher in screws with a conical core and smaller core diameter and also in situations with higher foam density (P<0.01). In finite element analysis, the maximal deflection and maximal tensile stress were closely related to yielding strength (r=-0.91) and fatigue life (r=-0.95), respectively, in the bending analyses. The total reaction force was closely related to the pullout strength in pullout analyses (r=0.84 and 0.91 for different foam densities). CONCLUSIONS: Conical screws effectively increased the bending strength and pullout strength simultaneously. The finite element analyses reliably predicted the results of the mechanical tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号