首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. We have characterised the effects of piperine, a pungent alkaloid found in black pepper, on the human vanilloid receptor TRPV1 using whole-cell patch-clamp electrophysiology. 2. Piperine produced a clear agonist activity at the human TRPV1 receptor yielding rapidly activating whole-cell currents that were antagonised by the competitive TRPV1 antagonist capsazepine and the non-competitive TRPV1 blocker ruthenium red. 3. The current-voltage relationship of piperine-activated currents showed pronounced outward rectification (25+/-4-fold between -70 and +70 mV) and a reversal potential of 0.0+/-0.4 mV, which was indistinguishable from that of the prototypical TRPV1 agonist capsaicin. 4. Although piperine was a less potent agonist (EC50=37.9+/-1.9 microM) than capsaicin (EC50=0.29+/-0.05 microM), it demonstrated a much greater efficacy (approximately two-fold) at TRPV1. 5. This difference in efficacy did not appear to be related to the proton-mediated regulation of the receptor since a similar degree of potentiation was observed for responses evoked by piperine (230+/-20%, n=11) or capsaicin (284+/-32%, n=8) upon acidification to pH 6.5. 6. The effects of piperine upon receptor desensitisation were also unable to explain this effect since piperine resulted in more pronounced macroscopic desensitisation (t(1/2)=9.9+/-0.7 s) than capsaicin (t(1/2)>20 s) and also caused greater tachyphylaxis in response to repetitive agonist applications. 7. Overall, our data suggest that the effects of piperine at human TRPV1 are similar to those of capsaicin except for its propensity to induce greater receptor desensitisation and, rather remarkably, exhibit a greater efficacy than capsaicin itself. These results may provide insight into the TRPV1-mediated effects of piperine on gastrointestinal function.  相似文献   

2.
1 Noladin ether has recently been reported to be an endocannabinoid, with selectivity for the cannabinoid (CB) CB1 receptor. In the present study, we investigated the effects of noladin ether in the rat isolated mesenteric arterial bed, cultured dorsal root ganglia (DRG) cells and human vanilloid (TRPV1)-receptor-expressing HEK293 cells (TRPV1-HEK293 cells). 2 Electrical field stimulation of the mesenteric bed evoked frequency-dependent vasorelaxation due to the action of calcitonin gene-related peptide (CGRP) released from sensory nerves. Noladin ether (0.1-3 microm) attenuated sensory neurogenic relaxation in a concentration-dependent manner. Noladin ether (1 microm) reduced vasorelaxation at a submaximal frequency (8 Hz), from 57.3+/-6.8 to 23.3+/-3.8% (P<0.05, n=4). 3 The inhibitory effects of noladin ether were unaffected by the CB1 antagonists SR141716A and LY320135, and the CB2 antagonist SR144528 (1 microm). 4 Noladin ether had no effect on vasorelaxation elicited by exogenous CGRP or capsaicin. These data suggest that noladin ether is acting at a prejunctional site and no interaction with TRPV1 is involved. 5 In mesenteric beds from pertussis toxin (PTX)-pretreated rats, the inhibitory actions of noladin ether on sensory neurotransmission were abolished, indicating the involvement of G(i/o) protein-coupled receptors. 6 Noladin ether evoked a concentration-dependent increase in intracellular Ca2+ concentration in TRPV1-HEK293 cells at 10 microm (36.5+/-3.2% of maximal capsaicin-induced response), but it was a less potent agonist than both capsaicin and anandamide and at 1 microm it was essentially inactive. Noladin ether (1 microm) had no effect on capsaicin-evoked Ca2+ responses in DRG cells, and produced no response alone, indicating it neither modulates nor acts directly on TRPV1 receptors. 7 These data demonstrate that noladin ether attenuates sensory neurotransmission in rat mesenteric arteries via a non-CB1 non-CB2 PTX-sensitive prejunctional site, independently of TRPV1 receptors.  相似文献   

3.
Migraine pathophysiology is believed to involve the release of neuropeptides via the activation of trigeminal afferents that innervate the cranial vasculature. Anandamide, the endogenous ligand to the cannabinoid receptor, is able to inhibit neurogenic dural vasodilatation, calcitonin gene-related peptide (CGRP)-induced and nitric oxide-induced dural vessel dilation in the intravital microscopy model. In an in vitro setting anandamide is also able to activate the vanilloid type 1 (TRPV1) receptor and cause vasodilation, via the release of CGRP. In this study we used intravital microscopy to study whether anandamide behaves as a TRPV1 receptor agonist in the trigeminovascular system. We examined if anandamide-induced dural vasodilation involves CGRP release that can be reversed by the CGRP receptor antagonist, CGRP(8-37), and whether like capsaicin the anandamide effect could be reversed by the TRPV1 receptor antagonist, capsazepine. Anandamide 1 (19+/-9%, n=12), 3 (29+/-5%, n=37), 5 (74+/-7%, n=13) and 10 mg kg(-1) (89+/-18%, n=6) was able to cause a dose-dependent increase in dural vessel diameter. Capsazepine (3 mg kg(-1), t(5)=6.2, P<0.05) and CGRP(8-37) (300 micrograms kg(-1), t(6)=11.1, P<0.05) attenuated the anandamide-induced dural vessel dilation when compared to control (Student's paired t-test). AM251 (3 mg kg(-1)), a cannabinoid type 1 (CB(1)) receptor antagonist, was unable to reverse this anandamide-induced dilation. The study demonstrates that anandamide acts as a TRPV1 receptor agonist in the trigeminovascular system, activating TRPV1 receptors that promote CGRP release and cause vasodilation independent of any action at the CB(1) receptor. Anandamide has been shown previously to inhibit trigeminovascular neurons and prevent vasodilation, through an action at CB(1) receptors.  相似文献   

4.
In this study we have characterized the role of sensory fibers and of the sensory peptides, neurokinin A (NKA) and calcitonin gene-related peptide (CGRP), on the contractile responses evoked by single pulse electrical field stimulation (EFS) in the hamster urinary bladder. EFS of the hamster isolated urinary bladder produced twitch contractions which were unaffected by atropine but abolished by tetrodotoxin. The P2 purinoreceptor antagonist PPADS (30 microM) inhibited twitches by 66+/-4% on its own and by 78+/-3% in the presence of atropine. The selective tachykinin NK2 receptor antagonist nepadutant produced a slight but consistent reduction of twitch amplitude (-21+/-3%) at 1 microM. Addition of nepadutant to atropine and PPADS did not further increase their inhibitory effect. The application of hCGRP (10-300 nM) produced a concentration-dependent inhibition of twitches (Emax -38+/-3%, EC50=12 nM) and a small reduction of tone (0.5+/-0.09 mN). Similar effects were obtained with capsaicin (0.1-10 microM) which inhibited EFS-evoked contractions with an EC50 of 100.0 nM and a maximal effect of 34+/-4% inhibition at 1 microM. Under submaximal parameters of stimulation NKA (10 nM) increased the amplitude of twitches by 45+/-6% and produced a concentration-dependent tonic contraction (EC50=55.9 nM). The CGRP1 receptor subtype antagonist, hCGRP(8-37), increased by 29+/-8% the EFS-evoked contractions and significantly reduced the response to 0.1 microM CGRP. Capsaicin (10 microM) increased both CGRP-LI and NKA-LI release from superfused slices of hamster urinary bladder by about sixfold and by about 70%, over baseline, respectively. A second application of capsaicin was ineffective, indicating a complete desensitization of sensory nerve efferent function. In the hamster urinary bladder the sensory neuropeptides NKA and CGRP are co-released by sensory fibers after stimulation either by EFS or capsaicin. However, the role of CGRP appears functionally predominant.  相似文献   

5.
Previously, we reported that the injection of capsaicin into the lateral cerebroventricle (i.c.v.) stimulated gastric acid secretion via vanilloid VR1 receptors and the vagal cholinergic pathways in anesthetized rats. In the present study, we investigated the involvement of receptor systems for neurokinin A, calcitonin gene-related peptide (CGRP) and glutamate in the vanilloid VR1 receptor-mediated response. The i.c.v. injection of neurokinin A (30 nmol) stimulated gastric acid secretion in the presence of cis-2-(diphenylmethyl)-N-[(2-iodophenyl)methyl]-1-azabicyclo[2.2.2]octan-3-amine oxalate (L-703606, a tachykinin NK1 receptor antagonist, 30 nmol) and the effect was inhibited by cyclo[Gln-Trp-Phe-Gly-Leu-Met] (L-659877, a tachykinin NK2 receptor antagonist, 30 nmol); the values were 145.9 +/- 32.3 and 21.1 +/- 16.6 microEq HCl per 120 min, respectively. The value in the control group was 14.3 +/- 3.8 microEq HCl. The tachykinin NK2 receptor-mediated secretion was inhibited by i.c.v. injections of antagonists of the CGRP1 receptor (human CGRP fragment 8-37, 15 nmol) and non-N-methyl-D-aspartate (non-NMDA)-type glutamate receptor (6-cyano-7-nitroquinoxaline-2,3-dione, 10.9 nmol); the values were 30.8+/-29.8 and 5.7+/-16.9 microEq HCl, respectively. Gastric acid secretion induced by the i.c.v. injection of 30 nmol capsaicin (178.4 +/- 34.0 microEq HCl) was inhibited by antagonists of tachykinin NK2 (23.7 +/- 6.2) and CGRP1 (21.2 +/- 8.5), but not tachykinin NK1 (181.4 +/- 37.0), receptors. The gastric acid secretion induced by capsaicin was decreased by the i.c.v. pre-injection of low doses of neurokinin A or CGRP, which alone had no effect on the secretion. These findings suggest the involvement of tachykinin NK2, CGRP and non-NMDA receptor systems in the vanilloid VR1 receptor-mediated regulation of gastric acid secretion in the rat brain regions close to the lateral cerebroventricle.  相似文献   

6.
In functional experiments, we have investigated the effect exerted by neurotransmitters released from capsaicin-sensitive primary afferent nerve terminals in the isolated guinea-pig common bile duct. In resting preparations, capsaicin (0.1 microM) produced a quick contraction (45.1+/-4% of KCl 80mM) which was abolished by either atropine (1 microM) or tetrodotoxin (0.5 microM). The tachykinin receptor-selective antagonists GR 82334 (NK1 receptor-selective; 3 microM), MEN 11420 (NK2 receptor-selective; 1 microM) and SR 142801 (NK3 receptor-selective; 0.1 microM) administered separately failed to reduce the capsaicin-evoked contraction, whereas any combination of the three antagonists was effective: GR 82334 plus MEN 11420, 36+/-7% reduction; GR 82334 plus SR 142801, 48+/-4% reduction; MEN 11420 plus SR 142801, 55+/-3% reduction; GR 82334 plus MEN 11420 plus SR 142801, 57+/-5% reduction. Neither the CGRP1 receptor antagonist h-CGRP (8-37) (1.5 microM) nor the P2X purinoceptor antagonist PPADS (50 microM) affected the contractile response to capsaicin. The effect of capsaicin (0.1 microM) was abolished by pretreatment with capsaicin itself (10 microM for 15 min). Human calcitonin gene-related peptide (h-CGRP; 0.1 microM) mimicked the effect of capsaicin on resting preparations (contractile response =28% of KCl 80 mM). In preparations precontracted with a submaximal concentration of KCl (24 mM), and in the presence of atropine (1 microM), GR 82334 (3 microM) and MEN 11420 (3 microM), capsaicin (1 microM) produced a tetrodotoxin-insensitive long-lasting relaxation (45+/-3% reduction of tone, at 4min from administration), which was unaffected by the nitric oxide (NO) synthase inhibitor, L-NOARG (100 microM). h-CGRP (10-50 nM) produced a similar sustained relaxation of precontracted preparations (59+/-4% reduction of tone). h-CGRP (8-37) (1.5 microM) almost completely reversed the relaxations produced by both capsaicin and h-CGRP. Application of electrical field stimulation (EFS: trains of stimuli of 10Hz; 0.25ms pulse width; supramaximal voltage; for 60s) to precontracted preparations produced a sustained, tetrodotoxin (1 microM)-sensitive relaxation (32+/-4% reduction of tone). L-NOARG (100 microM) greatly reduced (69+/-5% inhibition) the EFS-elicited relaxation. A complete reversal of the relaxant response to EFS into a contraction was obtained by administering L-NOARG to preparations in which a functional blockade of capsaicin-sensitive primary afferent neurons had been achieved by incubating the tissue with capsaicin (10 microM) for 15 min. At immunohistochemistry, tachykinin- and CGRP-immunoreactivities (TK-IR/CGRP-IR) were detected in varicose nerve fibers throughout the common bile duct, while TK-IR cell bodies were observed in the terminal portion (ampulla) only. In vivo pretreatment with capsaicin (50 mg/kg; 6-7 days before) decreased the number of CGRP-IR nerves, whereas the TK-IR neural network was apparently unchanged. In conclusion, our data provide functional evidence for the presence of capsaicin-sensitive primary afferent nerve endings in the guinea-pig terminal biliary tract, whose stimulation by capsaicin or EFS produces the release of tachykinins and CGRP. In addition, morphological evidence is provided that the bulk of TK-IR material in the biliary tract is contained in intrinsic neuronal elements, while CGRP in this tissue is of extrinsic origin only. Tachykinins, probably released in small amounts by capsaicin, act by activating receptors of the NK1, NK2 and NK3 type, most probably located on intrinsic cholinergic neurons, which in turn release ACh to produce the final excitatory motor response. The contractile response to capsaicin obtained in the presence of the three tachykinin receptor antagonists could be due to the co-released CGRP and/or to other unknown neurotransmitters. CGRP produces either indirect excitatory or direct inhibitory responses by stimulation of CGRP2 and CGRP1 receptors, respectively.  相似文献   

7.
A capsaicin-like endogenous ligand of vanilloid (VR1) receptors, N-arachidonoyl-dopamine, was recently identified in bovine and rat nervous tissue, and found to be almost as potent as capsaicin, and 5-10-fold more potent than anandamide, on these receptors, both in isolated cells and in vivo. Here we have investigated if N-arachidonoyl-dopamine also exerts other capsaicin-like effects at VR1 receptors in some isolated organ preparations. N-arachidonoyl-dopamine exerted a potent contractile response of guinea pig isolated bronchi (EC50=12.6 +/- 1.7 microM, Emax=69.2 +/- 2.4% of carbachol Emax), which was blocked by pre-treatment with capsaicin or with the VR1 antagonist capsazepine, as well as by a combination of tachykinin NK1 and NK2 receptor antagonists. In this assay, N-arachidonoyl-dopamine was less and more potent and/or efficacious than capsaicin (EC50=40.0 nM; Emax=93.5%) and anandamide (EC50=15.2 microM, Emax=38.0%), respectively. Unlike capsaicin and anandamide, forskolin or ethanol did not enhance N-arachidonoyl-dopamine effect in this preparation, whereas epithelial denudation resulted in a 2.5-fold increase in potency without affecting the efficacy. N-arachidonoyl-dopamine also contracted the isolated guinea pig urinary bladder, although in this preparation, as well as in the isolated rat urinary bladder, the potency (EC50=3.7 +/- 0.3 and 19.9 +/- 0.1 microM) and/or efficacy (Emax=12.0 +/- 0.1% and 20.7 +/- 0.7% of carbachol Emax) of the compound were significantly lower than those of both capsaicin and anandamide. These data suggest that the extent to which exogenous N-arachidonoyl-dopamine activates VR1 receptor in isolated organs is largely dependent on pharmacodynamics and bioavailability.  相似文献   

8.
The aims of this study were to develop a technique to measure blood flow in the mouse ear and to investigate the nature of the vasodilator mediator(s) involved in the response to capsaicin. The response to capsaicin, applied topically, was investigated in anaesthetized CD1 or Sv129+C57BL/6 wild-type (+/+) or NK(1) receptor knockout mice (-/-). Blood flow was assessed by laser Doppler flowmetry and oedema formation by (125)I-albumin accumulation. Capsaicin induced significant increases in blood flow (0.2 - 200 microg in 20 microl) and oedema (2 - 200 microg in 20 microl). The oedema response was absent in NK(1)-/- mice and NK(1)+/+mice treated with the selective NK(1) receptor antagonist SR140333 (480 nmol kg(-1)) as expected. Furthermore, the capsaicin-evoked increase in blood flow was significantly potentiated in the knockout mice (203% of wild-type response, P<0.05) and wild-type mice treated with SR140333 (201%, P<0.05). The CGRP receptor antagonist CGRP(8 - 37) (400 nmol kg(-1)) had no effect on capsaicin-induced blood flow in NK(1)+/+mice but abolished the increased blood flow to capsaicin in NK(1)-/-, and NK(1)+/+wild-type mice pre-treated with SR140333. The results indicate that neurogenic vasodilatation can be measured in the mouse ear. The capsaicin-induced increased blood flow involves activation of, and possible interactions between, both NK(1) and CGRP(1) receptors.  相似文献   

9.
Calcitonin gene-related peptide (CGRP) is extensively distributed in primary afferent sensory nerves, including those innervating the genitourinary tract. Capsaicin can stimulate the release of CGRP from intracellular stores of these nerves, but this phenomenon has not been investigated in-depth in isolated preparations. The present study sets out to study and characterize the capsaicin as well as CGRP-induced responses in isolated mouse vas deferens. The effects of capsaicin and CGRP family of peptides were studied on electrically-induced twitch responses in the absence or presence of transient receptor potential cation channel vanilloid subfamily member 1 (TRPV1) antagonist and CGRP receptor antagonists. Twitch responses were attenuated by capsaicin (1nM-30nM) and CGRP family of peptides. The potency order was CGRP>intermedin-long (IMDL)~[Cys(Et)(2,7)]αCGRP~adrenomedullin (AM)>[Cys(ACM)(2,7)]αCGRP>amylin (AMY). These responses were disinhibited by the CGRP receptor antagonists and TRPV1 antagonists. The addition of CGRP receptor antagonists caused a transient potentiation of the twitch response and this potentiation was blocked by pretreatment with capsaicin and enhanced by incubation with exogenous CGRP. During the second consecutive cumulative concentration-response curve with capsaicin, the first phase of concentration-response curve disappeared and this was partially restored when the mouse vas deferens was preincubated with CGRP, suggesting the uptake of exogenous CGRP by nerves. Besides showing capsaicin-induced CGRP releases this study shows that exogenous CGRP can be taken up in vas deferens and can be re-released. CGRP uptake will add another dimension in understanding the homeostasis of this neuropeptide.  相似文献   

10.
1. Intracellular recording was used to investigate the electrophysiological effects of activating peptidergic primary afferent axons with capsaicin in the smooth muscle of rat mesenteric arteries in vitro. In addition, continuous amperometry was used to monitor the effects of capsaicin on noradrenaline release from the sympathetic nerves. 2. Capsaicin (1 microm) produced a hyperpolarization (-11+/-2 mV) and a reduction in the time constant of decay of excitatory junction potentials (e.j.p.'s) evoked by electrical stimulation of the perivascular sympathetic nerves. These effects of capsaicin were mimicked by calcitonin gene-related peptide (CGRP; 1 and 10 nm) but not by substance P (50 nm), which produced a small hyperpolarization (maximum -3+/-1 mV) but did not change excitatory junction potential (e.j.p.) time course. 3. The hyperpolarization produced by capsaicin and CGRP was blocked by glibenclamide (10 microm) but was not changed by the CGRP antagonist, CGRP8-37 (0.5 microm). Mechanical denudation of the endothelium also did not reduce the effect of capsaicin on membrane potential. 4. Capsaicin (1 microm) increased the amplitude of e.j.p.'s. This effect was not mimicked by CGRP or substance P nor blocked by glibenclamide or CGRP8-37. 5. All effects of capsaicin desensitized. 6. Capsaicin (1 microm) had no effect on noradrenaline-induced oxidation currents evoked by electrical stimulation, indicating that noradrenaline release was unchanged. 7. These results suggest that CGRP released from primary afferent axons hyperpolarizes vascular smooth muscle by activating glibenclamide-sensitive K+ channels. The findings also indicate that an unknown factor released by the primary afferent axons increases e.j.p. amplitude.  相似文献   

11.
The prototypical aminoalkylindole cannabinoid WIN 55,212-2 (WIN-2) has been shown to produce antihyperalgesia through a peripheral mechanism of action. However, it is not known whether WIN-2 exerts this action directly via cannabinoid receptors located on primary afferents or if other, perhaps indirect or noncannabinoid, mechanisms are involved. To address this question, we have examined the specific actions of WIN-2 on trigeminal ganglion (TG) neurons in vitro by quantifying its ability to modulate the evoked secretion of the proinflammatory neuropeptide CGRP as well as the inflammatory mediator-induced generation of cAMP. WIN-2 evoked CGRP release from TG neurons in vitro (EC(50)=26 microm) in a concentration- and calcium-dependent manner, which was mimicked by the cannabinoid receptor-inactive enantiomer WIN 55,212-3 (WIN-3). Moreover, WIN-2-evoked CGRP release was attenuated by the nonselective cation channel blocker ruthenium red but not by the vanilloid receptor type 1 (TRPV1) antagonist capsazepine, suggesting that, unlike certain endogenous and synthetic cannabinoids, WIN-2 is not a TRPV1 agonist but rather acts at an as yet unidentified cation channel. The inhibitory effects of WIN-2 on TG neurons were also examined. WIN-2 neither inhibited capsaicin-evoked CGRP release nor did it inhibit forskolin-, isoproteranol- or prostaglandin E(2)-stimulated cAMP accumulation. On the other hand, WIN-2 significantly inhibited (EC(50)=1.7 microm) 50 mm K(+)-evoked CGRP release by approximately 70%. WIN-2 inhibition of 50 mm K(+)-evoked CGRP release was not reversed by antagonists of cannabinoid type 1 (CB1) receptor, but was mimicked in magnitude and potency (EC(50)=2.7 microm) by its cannabinoid-inactive enantiomer WIN-3. These findings indicate that WIN-2 exerts both excitatory and inhibitory effects on TG neurons, neither of which appear to be mediated by CB1, CB2 or TRPV1 receptors, but by a novel calcium-dependent mechanism. The ramifications of these results are discussed in relation to our current understanding of cannabinoid/vanilloid interactions with primary sensory neurons.  相似文献   

12.
The purpose of this work was to study 'in vivo' the vascular responses of retinal vessels of New Zealand white rabbits to substance P (SP), neurokinin A (NKA), neurokinin B (NKB), senktide, capsaicin (CAPS), and calcitonin gene related peptide (CGRP) before and after selective antagonist administration. We examined the effects of these neuropeptides on the normal circulation in the optic nerve head of the rabbit. Drugs were injected via pars plana through a micropipette system. Ten minutes before perivascular injection of 10 nmol/l sumatriptan (to contract the vessel), a selective antagonist or its solvent was administered. Then, cumulative injection of the agonist was performed. The other eye was used as control. Direct measurement of retinal arteriole diameters was performed using digital angiography. The quantification of the relaxing effect is expressed as percentage related to the precontracted vascular diameter. Microinjection of SP (NK1 receptor agonist) up to 10 nmol/l induced a dose-dependent arteriolar dilating effect [E(max) (mean +/- SEM) 21.3 +/- 2.3%]. After the perivascular preinjection of 1 nmol/l L-668,169 or 1 nmol/l L-733,060 (NK1 receptor antagonists), the SP dose-response curve was shifted to the right. The same results were obtained with NKA (NK2 receptor agonist) which induced the most potent effect of all neuropeptides (E(max) 53.3+/-2.5%). The NK2 receptor antagonists L-659,877 and GR 159897 (1 nmol/l) strongly inhibited this arteriolar vasodilation. As for CGRP, doses up to 10 nmol/l induced a marked vasodilation (E(max) 41.1+/-0.4%) which decreased after microinjection of the selective antagonist CGRP8-37. The NK3 receptor agonists (senktide and NKB) showed a minor vasodilating effect (E(max) 5.1+/-1.2 and 8.0+/-0.9%, respectively). On the contrary, CAPS showed a marked dose-dependent vasodilating effect (E(max) 43.2+/-2.9%), antagonized by the tachykinin receptor antagonists and CGRP8-37. These results suggest, for the first time, the presence of NK1, NK2, and CGRP receptors on the retinal arteriolar wall of the rabbit.  相似文献   

13.
Capsaicin-induced increase of intestinal cefazolin absorption in rats   总被引:1,自引:0,他引:1  
The effect of capsaicin on intestinal cefazolin absorption was examined by means of an in situ closed loop method in rats to clarify whether the vanilloid receptor (TRPV1) is involved in drug absorption driven by passive diffusion. In control experiments with 1 mg/mL cefazolin, the amount of cefazolin absorbed from the closed loop was 15.3+/-1.5 microg/cm in the rat jejunum. The absorption amount was increased to 22.8+/-0.9 and 23.4+/-2.4 microg/cm when capsaicin was applied with cefazolin at concentrations of 10 and 400 microM, respectively. The enhancing effect of capsaicin on cefazolin absorption was suppressed when ruthenium red, a non-selective inhibitor of transient receptor potential (TRP) cation channels, was intravenously infused into the rat during the experiment. Cefazolin accumulation in the intestinal tissue was not altered in the presence of capsaicin. Collectively, the mechanism accounting for the capsaicin-induced increase in the intestinal cefazolin absorption is probably that capsaicin associating with TRPV1 increases the intrinsic permeability of cefazolin in intestine.  相似文献   

14.
Vanilloids including capsaicin and resiniferatoxin (RTX) have been identified as potential novel anti-inflammatory and analgesic compounds. We have previously shown that systemic capsaicin administration to neonatal rats evokes profound long-term alterations in transient receptor potential vanilloid 1 (TRPV1)- and neurokinin 1 (NK(1)) receptor-mediated respiratory responses in the commissural nucleus of the solitary tract (cNTS). Whether this effect of capsaicin is unique to developmentally immature animals is unknown. Therefore, in the present study, we investigated the effects of systemic capsaicin administration to adult rats on NK(1) receptor binding sites, TRPV1 and NK(1) immunoreactivity and function in the cNTS. Microinjection of capsaicin (1 nmol) or RTX (75 pmol) into the cNTS of vehicle-pretreated rats produced a profound bradypnoea (maximum change: -45 breaths·min(-1)) and a small increase in tidal volume (VT). Similarly, microinjection of the selective NK(1) receptor agonists [Sar(9), Met(O(2))(11)]substance P (SP; 66 pmol) and septide (20 pmol) decreased respiratory frequency and increased VT. Thirteen to 18 days after systemic administration of capsaicin (125 mg·kg(-1) s.c.), the bradypnoeic responses to both capsaicin and RTX were absent (p < 0.05), indicative of sensory neuron ablation/desensitisation. Systemic capsaicin pretreatment significantly (p < 0.05) reduced the density of both [(125)I]Bolton-Hunter SP binding sites (NK(1) receptors) and NK(1) receptor immunoreactivity in the cNTS, but did not alter the respiratory responses evoked by microinjection of [Sar(9), Met(O(2))(11)]SP and septide into this region. These studies show that systemic capsaicin administration reduces NK(1) receptor density in the cNTS without adversely affecting NK(1) receptor function at this site. We speculate that adult rats may be more resistant than neonatal rats to the neuroplastic effects of systemic capsaicin administration.  相似文献   

15.
The endogenous cannabinoid anandamide was identified as an agonist for the recombinant human VR1 (hVR1) by screening a large array of bioactive substances using a FLIPR-based calcium assay. Further electrophysiological studies showed that anandamide (10 or 100 microM) and capsaicin (1 microM) produced similar inward currents in hVR1 transfected, but not in parental, HEK293 cells. These currents were abolished by capsazepine (1 microM). In the FLIPR anandamide and capsaicin were full agonists at hVR1, with pEC(50) values of 5. 94+/-0.06 (n=5) and 7.13+/-0.11 (n=8) respectively. The response to anandamide was inhibited by capsazepine (pK(B) of 7.40+/-0.02, n=6), but not by the cannabinoid receptor antagonists AM630 or AM281. Furthermore, pretreatment with capsaicin desensitized the anandamide-induced calcium response and vice versa. In conclusion, this study has demonstrated for the first time that anandamide acts as a full agonist at the human VR1.  相似文献   

16.
1 The effect of short-term exposure to cupric ions (Cu2+) on electric field-stimulated (EFS) or agonist-induced contractions of guinea-pig isolated ileum was studied. 2 EFS elicited tetrodotoxin- and atropine-sensitive contractions that were concentration dependently inhibited by Cu2+ (IC50 = 14.7 +/- 4.2 microm). Maximal inhibition (90.4 +/- 3.1% of baseline contractions) was attained with 30 microm Cu2+. 3 Carbachol induced concentration-dependent contractions (EC50 = 0.021 +/- 0.004 microm) that were inhibited by 0.3 microm atropine to a non-competitive manner (decreased maximal response, EC50 value = 0.26 +/- 0.04 microm, K(e) = 0.026 microm). Cu2+ (15 microm) potentiated contractions induced by carbachol, such that the maximum response was increased by 30.3 +/- 10.4%. 4 Histamine induced concentration-dependent contractions of the longitudinal muscle (EC50 = 0.11 +/- 0.03 microm). Dyphenhydramine (0.1 microm) decreased the maximum response to histamine and shifted the curve to the right (EC50 value = 4.71 +/- 0.35 microm, K(e) = 0.0024 microm). Cu2+ (15 microm) caused a rightward shift of the histamine concentration-response curve (EC50 = 0.61 +/- 0.1 microm) without changing the maximum response. Serotonin induced concentration-dependent contractions at concentrations higher than 10 nM (EC50 value of 0.34 +/- 0.12 microm) were not significantly affected by 15 microm Cu2+. 5 Our results suggest that in ileal longitudinal muscle, Cu2+ inhibits cholinergic neurotransmission but also facilitates postsynaptic muscarinic receptor responses.  相似文献   

17.
1. This study used intravital microscopy to investigate the receptors stimulated by amylin which shares around 50% sequence homology with the vasodilator calcitonin gene-related peptide (CGRP) in the hamster cheek pouch microvasculature in vivo. 2. Receptor agonists dilated arterioles (diameters 20-40 microm). The -log of the concentrations (+/- s.e.mean; n = 8) causing 50% increase in arteriole diameter were: human betaCGRP (10.8 +/- 0.3), human alphaCGRP (10.8 +/- 0.4), rat alphaCGRP (10.4 +/- 0.3). Rat amylin and the CGRP2 receptor selective agonist [Cys(ACM2,7]-human alphaCGRP were 100 fold less potent (estimates were 8.5 +/- 0.4 and 8.2 +/- 0.3 respectively). 3. The GCRP1 receptor antagonist, CGRP8-37 (300 nmol kg(-1); i.v.) reversibly inhibited the increase in diameter evoked by human alphaCGRP (0.3 nM) from 178 +/- 22% to 59 +/- 12% (n = 8; P < 0.05) and by rat amylin (100 nM) from 138 +/- 23% to 68 +/- 24% (n = 6; P < 0.05). CGRP8-37 did not inhibit vasodilation evoked by substance P (10 nM; n = 4: P > 0.05). 4. The amylin receptor antagonist, amylin8-37 (300 nmol kg(-1); i.v.) did not significantly inhibit the increase in diameter evoked by human alphaCGRP (0.3 nM) which was 112 +/- 26% in the absence, and 90 +/- 29% in the presence of antagonist (n = 4; P < 0.05); nor that evoked by rat amylin (100 nM) which was 146 +/- 23% in the absence and 144 +/- 32% in the presence of antagonist (n = 4; P > 0.05). 5. The agonist profile for vasodilatation and the inhibition of this dilatation by CGRP8-37, although not the amylin8-37 indicates that amylin causes vasodilatation through interaction with CGRP1 receptors in the hamster cheek pouch.  相似文献   

18.
In the rat isolated urinary bladder, NaHS (30 microm-3 mm) and capsaicin (10 nm-3 microm) produced concentration-dependent contractile responses (pEC(50)=3.5+/-0.02 and 7.1+/-0.02, respectively) undergoing dramatic tachyphylaxis. In preparations in which sensory nerves were rendered desensitized (defunctionalized) by high-capsaicin (10 microm for 15 min) pretreatment, neither capsaicin itself nor NaHS produced any motor effect. NaHS-induced contractile effects were totally prevented by the simultaneous incubation with tachykinin NK(1) (GR 82334; 10 microm) and NK(2) (nepadutant; 0.3 microm) receptor-selective antagonists. Tetrodotoxin (1 microm) only partially reduced the response to NaHS. These results provide pharmacological evidence that H(2)S stimulates capsaicin-sensitive primary afferent nerve terminals, from which tachykinins are released to produce the observed contraction by activating NK(1) and NK(2) receptors. While the molecular site of action of H(2)S remains to be investigated, our discovery may have important physiological significance since H(2)S concentrations capable of stimulating sensory nerves overlap those occurring in mammalian tissues under normal conditions.  相似文献   

19.
1. Oedema formation induced by intradermal capsaicin has been studied in rabbit skin. The effect of the anti-inflammatory steroid dexamethasone and also of a range of known inhibitors of oedema formation have been investigated in order to elucidate mechanisms involved in capsaicin-induced oedema formation. 2. Oedema formation, in response to intradermally-injected test agents, was measured by the local extravascular accumulation of intravenously injected 125I-labelled albumin. In separate experiments skin blood flow was assessed by the clearance of intradermally-injected 133xenon. 3. Oedema formation induced by intradermal histamine (3 nmol) and bradykinin (1 nmol), when in the presence of vasodilator doses of calcitonin gene-related peptide (CGRP) (3 pmol) or prostaglandin E1, (PGE1) (10 pmol), was significantly inhibited (P < 0.01) in rabbits pretreated with intravenous dexamethasone (3 mg kg-1, -4 h). In contrast dexamethasone had no effect on capsaicin (3 mumol)-induced oedema formation or, on capsaicin (30-100 nmol)-induced blood flow. 4. Oedema formation observed in response to intradermal capsaicin (3 mumol) was significantly inhibited (P < 0.01) when the selective capsaicin antagonist, ruthenium red (3 nmol) was co-injected. This suggests that the mechanism of capsaicin-induced oedema involves activation of sensory nerves. However, oedema was not inhibited when capsaicin was co-injected with the neurokinin NK1 receptor antagonist, RP67580 (10 nmol), the NK2 antagonist SR48960 (10 nmol) or the CGRP antagonist CGRP8-37 (300 pmol).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
In the present study, the vasodilator actions of methanandamide and capsaicin in the rat isolated mesenteric arterial bed and small mesenteric arterial segments were investigated. Methanandamide elicited concentration-dependent relaxations of preconstricted mesenteric arterial beds (pEC(50)=6.0+/-0.1, E(max)=87+/-3%) and arterial segments (pEC(50)=6.4+/-0.1, E(max)=93+/-3%). In arterial beds, in vitro capsaicin pre-treatment blocked vasorelaxation to 1 and 3 microM methanandamide, and reduced to 12+/-7% vasorelaxation to 10 microM methanandamide. Methanandamide failed to relax arterial segments pre-treated in vitro with capsaicin. In arterial beds from rats treated as neonates with capsaicin to cause destruction of primary afferent nerves, methanandamide at 1 and 3 microM did not evoke vasorelaxation, and relaxation at 10 microM methanandamide was reduced to 26+/-4%. Ruthenium red (0.1 microM), an inhibitor of vanilloid responses, attenuated vasorelaxation to methanandamide in arterial beds (pEC(50)=5.6+/-0.1, E(max)=89+/-1%). Ruthenium red at 1 microM abolished the response to 1 microM methanandamide, and greatly attenuated relaxation at 3 and 10 microM methanandamide in arterial beds. In arterial segments, ruthenium red (0.15 microM) blocked vasorelaxation to methanandamide, but not to CGRP. In arterial segments, the vanilloid receptor antagonist capsazepine (1 microM) inhibited, and the calcitonin gene-related peptide (CGRP) receptor antagonist CGRP(8 - 37) (3 microM) abolished, methanandamide-induced relaxations. CGRP(8 - 37), but not capsazepine, attenuated significantly relaxation to exogenous CGRP. These data show that capsaicin and ruthenium red attenuate vasorelaxation to methanandamide in the rat isolated mesenteric arterial bed and small mesenteric arterial segments. In addition, CGRP(8 - 37) and capsazepine antagonize responses to methanandamide in mesenteric arterial segments. In conclusion, vanilloid receptors on capsaicin-sensitive sensory nerves play an important role in the vasorelaxant action of methanandamide in the rat isolated mesenteric arterial bed and small mesenteric arterial segments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号