首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Background: The aim of our study was to assess the effect of periodic hyperinflations (sighs) during pressure support ventilation (PSV) on lung volume, gas exchange, and respiratory pattern in patients with early acute respiratory distress syndrome (ARDS).

Methods: Thirteen patients undergoing PSV were enrolled. The study comprised 3 steps: baseline 1, sigh, and baseline 2, of 1 h each. During baseline 1 and baseline 2, patients underwent PSV. Sighs were administered once per minute by adding to baseline PSV a 3- to 5-s continuous positive airway pressure (CPAP) period, set at a level 20% higher than the peak airway pressure of the PSV breaths or at least 35 cm H2O. Mean airway pressure was kept constant by reducing the positive end-expiratory pressure (PEEP) during the sigh period as required. At the end of each study period, arterial blood gas tensions, air flow and pressures traces, end-expiratory lung volume (EELV), compliance of respiratory system (Crs), and ventilatory parameters were recorded.

Results: Pao2 improved (P < 0.001) from baseline 1 (91.4 +/- 27.4 mmHg) to sigh (133 +/- 42.5 mmHg), without changes of Paco2. EELV increased (P < 0.01) from baseline 1 (1,242 +/- 507 ml) to sigh (1,377 +/- 484 ml). Crs improved (P < 0.01) from baseline 1 (40.2 +/- 12.5 ml/cm H2O) to sigh (45.1 +/- 15.3 ml/cm H2O). Tidal volume of pressure-supported breaths and the airway occlusion pressure (P0.1) decreased (P < 0.01) during the sigh period. There were no significant differences between baselines 1 and 2 for all parameters.  相似文献   


2.
The effects of inverse ratio ventilation (IRV) and PEEP on dynamic hyperinflation and auto-PEEP were studied in sedated, paralysed patients with adult respiratory distress syndrome (ARDS) (n = 9) and in 10 postoperative patients after coronary artery by-pass (CABG). During volume-controlled mechanical ventilation with constant tidal volume (VT 12 ml-kg-1) and respiratory rate (12-min-1), two consecutive experiments were carried out: (1) with constant I:E ratio PEEP was increased in steps of 2 cmH20 (0.2 kPa) from 0 to 12 craH2O (0 to 1.2 kPa) and (2) with no PEEP I: E ratio was changed stepwise from 1: 4 to 4: 1. Flow, V-T peak airway pressure (Pmax) and static end-expiratory pressure (PEEPtot) were registered. PEEPtot was measured while occluding the airway in the end-expiration. The changes in the end-expiratory lung volume (EELV) were measured with respiratory inductive plethysmograph. We found that: (1) increasing PEEP and IRV caused a similar increase in EELV and PEEPtot in ARDS, but in CABG the increase in EELV was greater with PEEP; (2) at the same PEEPtot the increase in EELV was similar with PEEP and IRV in both groups; and (3) the reduction in Pmax was marginal during IRV. We conclude that the effect of reduced expiratory time on end-expiratory lung volume and pressure during volume controlled IRV is similar to the use of PEEP.  相似文献   

3.
Background: The authors studied the effects of the beach chair (BC) position, 10 cm H2O positive end-expiratory pressure (PEEP), and pneumoperitoneum on respiratory function in morbidly obese patients undergoing laparoscopic gastric banding.

Methods: The authors studied 20 patients (body mass index 42 +/- 5 kg/m2) during the supine and BC positions, before and after pneumoperitoneum was instituted (13.6 +/- 1.2 mmHg). PEEP was applied during each combination of position and pneumoperitoneum. The authors measured elastance (E,rs) of the respiratory system, end-expiratory lung volume (helium technique), and arterial oxygen tension. Pressure-volume curves were also taken (occlusion technique). Patients were paralyzed during total intravenous anesthesia. Tidal volume (10.5 +/- 1 ml/kg ideal body weight) and respiratory rate (11 +/- 1 breaths/min) were kept constant throughout.

Results: In the supine position, respiratory function was abnormal: E,rs was 21.71 +/- 5.26 cm H2O/l, and end-expiratory lung volume was 0.46 +/- 0.1 l. Both the BC position and PEEP improved E,rs (P < 0.01). End-expiratory lung volume almost doubled (0.83 +/- 0.3 and 0.85 +/- 0.3 l, BC and PEEP, respectively; P < 0.01 vs. supine zero end-expiratory pressure), with no evidence of lung recruitment (0.04 +/- 0.1 l in the supine and 0.07 +/- 0.2 in the BC position). PEEP was associated with higher airway pressures than the BC position (22.1 +/- 2.01 vs. 13.8 +/- 1.8 cm H2O; P < 0.01). Pneumoperitoneum further worsened E,rs (31.59 +/- 6.73; P < 0.01) and end-expiratory lung volume (0.35 +/- 0.1 l; P < 0.01). Changes of lung volume correlated with changes of oxygenation (linear regression, R2 = 0.524, P < 0.001) so that during pneumoperitoneum, only the combination of the BC position and PEEP improved oxygenation.  相似文献   


4.
Continuous positive airway pressure (CPAP) and pressure support ventilation (PSV) improve gas exchange in adults, but there are little published data regarding children. We compared the efficacy of PSV with CPAP in anesthetized children managed with the ProSeal laryngeal mask airway. Patients were randomized into two equal-sized crossover groups and data were collected before surgery. In Group 1, patients underwent CPAP, PSV, and CPAP in sequence. In Group 2, patients underwent PSV, CPAP, and PSV in sequence. PSV comprised positive end-expiratory pressure set at 3 cm H(2)O and inspiratory pressure support set at 10 cm H(2)O above positive end-expiratory pressure. CPAP was set at 3 cm H(2)O. Each ventilatory mode was maintained for 5 min. The following data were recorded at each ventilatory mode: ETco(2), Spo(2), expired tidal volume, peak airway pressure, work of breathing patient (WOB), delta esophageal pressure, pressure time product, respiratory drive, inspiratory time fraction, respiratory rate, noninvasive mean arterial blood pressure, and heart rate. In Group 1, measurements for CPAP were similar before and after PSV. In Group 2, measurements for PSV were similar before and after CPAP. When compared with CPAP, PSV had lower ETco(2) (46 +/- 6 versus 52 +/- 7 mm Hg; P < 0.001), slower respiratory rate (24 +/- 6 versus 30 +/- 6 min(-1); P < 0.001), lower WOB (0.54 +/- 0.54 versus 0.95 +/- 0.72 JL(-1); P < 0.05), lower pressure time product (94 +/- 88 versus 150 +/- 90 cm H(2)O s(-1)min(-1); P < 0.001), lower delta esophageal pressure (10.6 +/- 7.4 versus 14.1 +/- 8.9 cm H(2)O; P < 0.05), lower inspiratory time fraction (29% +/- 3% versus 34% +/- 5%; P < 0.001), and higher expired tidal volume (179 +/- 50 versus 129 +/- 44 mL; P < 0.001). There were no differences in Spo(2), respiratory drive, mean arterial blood pressure, and heart rate. We conclude that PSV improves gas exchange and reduces WOB during ProSeal laryngeal mask airway anesthesia compared with CPAP in ASA physical status I children aged 1-7 yr.  相似文献   

5.
Background: A lung-protective ventilatory strategy with low tidal volume (VT) has been proposed for use in acute respiratory distress syndrome (ARDS). Alveolar derecruitment may occur during the use of a lung-protective ventilatory strategy and may be prevented by recruiting maneuvers. This study examined the hypothesis that the effectiveness of a recruiting maneuver to improve oxygenation in patients with ARDS would be influenced by the elastic properties of the lung and chest wall.

Methods: Twenty-two patients with ARDS were studied during use of the ARDSNet lung-protective ventilatory strategy: VT was set at 6 ml/kg predicted body weight and positive end-expiratory pressure (PEEP) and inspiratory oxygen fraction (Fio2) were set to obtain an arterial oxygen saturation of 90-95% and/or an arterial oxygen partial pressure (Pao2) of 60- 80 mmHg (baseline). Measurements of Pao2/Fio2, static volume-pressure curve, recruited volume (vertical shift of the volume-pressure curve), and chest wall and lung elastance (EstW and EstL: esophageal pressure) were obtained on zero end-expiratory pressure, at baseline, and at 2 and 20 min after application of a recruiting maneuver (40 cm H2O of continuous positive airway pressure for 40 s). Cardiac output (transesophageal Doppler) and mean arterial pressure were measured immediately before, during, and immediately after the recruiting maneuver. Patients were classified a priori as responders and nonresponders on the basis of the occurrence or nonoccurrence of a 50% increase in Pao2/Fio2 after the recruiting maneuver.

Results: Recruiting maneuvers increased Pao2/Fio2 by 20 +/- 3% in nonresponders (n = 11) and by 175 +/- 23% (n = 11; mean +/- standard deviation) in responders. On zero end-expiratory pressure, EstL (28.4 +/- 2.2 vs. 24.2 +/- 2.9 cm H2O/l) and EstW (10.4 +/- 1.8 vs. 5.6 +/- 0.8 cm H2O/l) were higher in nonresponders than in responders (P < 0.01). Nonresponders had been ventilated for a longer period of time than responders (7 +/- 1 vs. 1 +/- 0.3 days;P < 0.001). Cardiac output and mean arterial pressure decreased by 31 +/- 2 and 19 +/- 3% in nonresponders and by 2 +/- 1 and 2 +/- 1% in responders (P < 0.01).  相似文献   


6.
BACKGROUND: The authors studied the effects of the beach chair (BC) position, 10 cm H2O positive end-expiratory pressure (PEEP), and pneumoperitoneum on respiratory function in morbidly obese patients undergoing laparoscopic gastric banding. METHODS: The authors studied 20 patients (body mass index 42 +/- 5 kg/m2) during the supine and BC positions, before and after pneumoperitoneum was instituted (13.6 +/- 1.2 mmHg). PEEP was applied during each combination of position and pneumoperitoneum. The authors measured elastance (E,rs) of the respiratory system, end-expiratory lung volume (helium technique), and arterial oxygen tension. Pressure-volume curves were also taken (occlusion technique). Patients were paralyzed during total intravenous anesthesia. Tidal volume (10.5 +/- 1 ml/kg ideal body weight) and respiratory rate (11 +/- 1 breaths/min) were kept constant throughout. RESULTS: In the supine position, respiratory function was abnormal: E,rs was 21.71 +/- 5.26 cm H2O/l, and end-expiratory lung volume was 0.46 +/- 0.1 l. Both the BC position and PEEP improved E,rs (P < 0.01). End-expiratory lung volume almost doubled (0.83 +/- 0.3 and 0.85 +/- 0.3 l, BC and PEEP, respectively; P < 0.01 vs. supine zero end-expiratory pressure), with no evidence of lung recruitment (0.04 +/- 0.1 l in the supine and 0.07 +/- 0.2 in the BC position). PEEP was associated with higher airway pressures than the BC position (22.1 +/- 2.01 vs. 13.8 +/- 1.8 cm H2O; P < 0.01). Pneumoperitoneum further worsened E,rs (31.59 +/- 6.73; P < 0.01) and end-expiratory lung volume (0.35 +/- 0.1 l; P < 0.01). Changes of lung volume correlated with changes of oxygenation (linear regression, R2 = 0.524, P < 0.001) so that during pneumoperitoneum, only the combination of the BC position and PEEP improved oxygenation. CONCLUSIONS: The BC position and PEEP counteracted the major derangements of respiratory function produced by anesthesia and paralysis. During pneumoperitoneum, only the combination of the two maneuvers improved oxygenation.  相似文献   

7.
BACKGROUND: A lung-protective ventilatory strategy with low tidal volume (VT) has been proposed for use in acute respiratory distress syndrome (ARDS). Alveolar derecruitment may occur during the use of a lung-protective ventilatory strategy and may be prevented by recruiting maneuvers. This study examined the hypothesis that the effectiveness of a recruiting maneuver to improve oxygenation in patients with ARDS would be influenced by the elastic properties of the lung and chest wall. METHODS: Twenty-two patients with ARDS were studied during use of the ARDSNet lung-protective ventilatory strategy: VT was set at 6 ml/kg predicted body weight and positive end-expiratory pressure (PEEP) and inspiratory oxygen fraction (Fio2) were set to obtain an arterial oxygen saturation of 90-95% and/or an arterial oxygen partial pressure (Pao2) of 60- 80 mmHg (baseline). Measurements of Pao2/Fio2, static volume-pressure curve, recruited volume (vertical shift of the volume-pressure curve), and chest wall and lung elastance (EstW and EstL: esophageal pressure) were obtained on zero end-expiratory pressure, at baseline, and at 2 and 20 min after application of a recruiting maneuver (40 cm H2O of continuous positive airway pressure for 40 s). Cardiac output (transesophageal Doppler) and mean arterial pressure were measured immediately before, during, and immediately after the recruiting maneuver. Patients were classified a priori as responders and nonresponders on the basis of the occurrence or nonoccurrence of a 50% increase in Pao2/Fio2 after the recruiting maneuver. RESULTS: Recruiting maneuvers increased Pao2/Fio2 by 20 +/- 3% in nonresponders (n = 11) and by 175 +/- 23% (n = 11; mean +/- standard deviation) in responders. On zero end-expiratory pressure, EstL (28.4 +/- 2.2 vs. 24.2 +/- 2.9 cm H2O/l) and EstW (10.4 +/- 1.8 vs. 5.6 +/- 0.8 cm H2O/l) were higher in nonresponders than in responders (P < 0.01). Nonresponders had been ventilated for a longer period of time than responders (7 +/- 1 vs. 1 +/- 0.3 days; P < 0.001). Cardiac output and mean arterial pressure decreased by 31 +/- 2 and 19 +/- 3% in nonresponders and by 2 +/- 1 and 2 +/- 1% in responders (P < 0.01). CONCLUSIONS: Application of recruiting maneuvers improves oxygenation only in patients with early ARDS who do not have impairment of chest wall mechanics and with a large potential for recruitment, as indicated by low values of EstL.  相似文献   

8.
BACKGROUND: Patients ventilated after cardiac surgery commonly have impaired oxygenation, mainly due to lung collapse. We have previously found that PaO2 and end-expiratory lung volume (EELV) were increased by a lung recruitment maneuver (LRM) followed by positive end-expiratory pressure (PEEP). The aim of this study was to evaluate whether only PEEP or only a LRM could give similar effects. METHODS: Thirty circulatory stable patients (aged 55-79 years) mechanically ventilated after cardiac surgery were randomized to receive LRM (four 10-s insufflations to an airway pressure of 45 cmH2O) and zero end-expiratory pressure (LRM-group), PEEP 12 cmH2O (PEEP-group) or LRM in combination with PEEP 12 cmH2O (LRM + PEEP-group). The set end-expiratory pressure was kept for 75 min. Before, during and after the intervention, EELV (SF6 washout technique) and blood gases were measured. RESULTS: Initial EELV and PaO2 were similar in all groups. In the LRM-group, PaO2 and EELV increased transiently (P < 0.0001), but returned at 5 min to the initial values. In the PEEP-group, PaO2 did not change but EELV increased to 155 +/- 27% of the initial value (P < 0.0001). In the LRM+PEEP-group, PaO2 and EELV increased to 212 +/- 66% and 178 +/- 31% of the initial values (P < 0.0001), respectively, and were maintained during PEEP application. CONCLUSION: In patients ventilated after cardiac surgery: (1) PEEP increased lung volume but not PaO2, (2) a lung recruitment maneuver without subsequent PEEP had no sustained effect, and (3) both a lung recruitment maneuver and PEEP were needed to increase and maintain the increased lung volume and PaO2.  相似文献   

9.
BACKGROUND: Spontaneous breaths during airway pressure release ventilation (APRV) have to overcome the resistance of the artificial airway. Automatic tube compensation provides ventilatory assistance by increasing airway pressure during inspiration and lowering airway pressure during expiration, thereby compensating for resistance of the artificial airway. The authors studied if APRV with automatic tube compensation reduces the inspiratory effort without compromising cardiovascular function, end-expiratory lung volume, and gas exchange in patients with acute lung injury. METHODS: Fourteen patients with acute lung injury were breathing spontaneously during APRV with or without automatic tube compensation in random order. Airway pressure, esophageal and abdominal pressure, and gas flow were continuously measured, and tracheal pressure was estimated. Transdiaphragmatic pressure time product was calculated. End-expiratory lung volume was determined by nitrogen washout. The validity of the tracheal pressure calculation was investigated in seven healthy ventilated pigs. RESULTS: Automatic tube compensation during APRV increased airway pressure amplitude from 7.7+/-1.9 to 11.3+/-3.1 cm H2O (mean +/- SD; P < 0.05) while decreasing trans-diaphragmatic pressure time product from 45+/-27 to 27+/-15 cm H2O x s(-1) x min(-1) (P < 0.05), whereas tracheal pressure amplitude remained essentially unchanged (10.3+/-3.5 vs. 10.1+/-3.5 cm H2O). Minute ventilation increased from 10.4+/-1.6 to 11.4+/-1.5 l/min (P < 0.001), decreasing arterial carbon dioxide tension from 52+/-9 to 47+/-6 mmHg (P < 0.05) without affecting arterial blood oxygenation or cardiovascular function. End-expiratory lung volume increased from 2,806+/-991 to 3,009+/-994 ml (P < 0.05). Analysis of tracheal pressure-time curves indicated nonideal regulation of the dynamic pressure support during automatic tube compensation as provided by a standard ventilator. CONCLUSION: In the studied patients with acute lung injury, automatic tube compensation markedly unloaded the inspiratory muscles and increased alveolar ventilation without compromising cardiorespiratory function and end-expiratory lung volume.  相似文献   

10.
Background: Spontaneous breaths during airway pressure release ventilation (APRV) have to overcome the resistance of the artificial airway. Automatic tube compensation provides ventilatory assistance by increasing airway pressure during inspiration and lowering airway pressure during expiration, thereby compensating for resistance of the artificial airway. The authors studied if APRV with automatic tube compensation reduces the inspiratory effort without compromising cardiovascular function, end-expiratory lung volume, and gas exchange in patients with acute lung injury.

Methods: Fourteen patients with acute lung injury were breathing spontaneously during APRV with or without automatic tube compensation in random order. Airway pressure, esophageal and abdominal pressure, and gas flow were continuously measured, and tracheal pressure was estimated. Trans-diaphragmatic pressure time product was calculated. End-expiratory lung volume was determined by nitrogen washout. The validity of the tracheal pressure calculation was investigated in seven healthy ventilated pigs.

Results: Automatic tube compensation during APRV increased airway pressure amplitude from 7.7 +/- 1.9 to 11.3 +/- 3.1 cm H2O (mean +/- SD;P < 0.05) while decreasing trans-diaphragmatic pressure time product from 45 +/- 27 to 27 +/- 15 cm H2O [middle dot] s-1 [middle dot] min-1 (P < 0.05), whereas tracheal pressure am-plitude remained essentially unchanged (10.3 +/- 3.5 vs. 10.1 +/- 3.5 cm H2O). Minute ventilation increased from 10.4 +/- 1.6 to 11.4 +/- 1.5 l/min (P < 0.001), decreasing arterial carbon dioxide tension from 52 +/- 9 to 47 +/- 6 mmHg (P < 0.05) without affecting arterial blood oxygenation or cardiovascular function. End-expiratory lung volume increased from 2,806 +/- 991 to 3,009 +/- 994 ml (P < 0.05). Analysis of tracheal pressure-time curves indicated nonideal regulation of the dynamic pressure support during automatic tube compensation as provided by a standard ventilator.  相似文献   


11.
We studied 10 consecutive, sedated and paralyzed patients with Acute Respiratory Distress Syndrome (ARDS). The entire study lasted 4 hours, divided in 3 periods: 2 hours of recommended ventilation [lung protective strategy, LPS, i.e., ventilation with low tidal volume (< 8 mL/kg), limiting the plateau at 35 cm H2O, together with high positive end-expiratory pressure (PEEP)], 1 hour of sigh (LPS with 3 consecutive sighs/min at 45 cm H2O plateau pressure), and 1 hour of LPS. Total minute ventilation, PEEP, FiO2 and mean airway pressure were kept constant. The introduction of sighs induced a consistent recruitment and PaO2 improvement, and a decrease in venous admixture and PaCO2. Interrupting sighs and resuming LPS led to a progressive derecruitment, and all the physiological variables returned to baseline. Derecruitment was higher in patients with higher PaCO2 and lower VA/Q ratio. We conclude that: 1) LPS alone does not provide full lung recruitment and best oxygenation in ARDS; 2) application of sigh may provide pressure enough to recruit and volume enough to prevent reabsorption atelectasis.  相似文献   

12.
Static compliance of the respiratory system (Crs) was measured by the interrupter technique in 18 anesthetized children to compare the effects of ketamine on Crs with those of halothane. Crs was the slope of the pressure-volume (P-V) curve obtained by repeated brief airway occlusions throughout relaxed expiration, and the intercept of the P-V curve on the pressure axis was the intrinsic positive end-expiratory airway pressure (PEEPi). Expiratory time (Te) was measured during a period of quiet breathing, and the passive expiratory time constant (tau) was measured during the relaxed expiration after an end-inspiratory occlusion. Nine children were anesthetized with a continuous infusion of ketamine and a matching group of nine children inhaled halothane in oxygen. Crs was significantly greater in the ketamine group (22.8 +/- 6.2 ml/cm H2O) than in the halothane group (15.7 +/- 5.5 ml/cm H2O). The tau value was also significantly greater in the ketamine group. Mean PEEPi in the ketamine group was 2.3 +/- 1.8 cm H2O and in the halothane group was 0.4 +/- 0.8 cm H2O. PEEPi correlated inversely with Te/tau according to a logarithmic function. It was concluded that, in children anesthetized with ketamine, Crs is significantly greater than that in children anesthetized with halothane, and the resultant prolongation of tau and decreased Te/tau with ketamine anesthesia lead to increased PEEPi.  相似文献   

13.
BACKGROUND: Lung protective ventilation using low end-inspiratory pressures and tidal volumes (VT) has been shown to impair alveolar recruitment and to promote derecruitment in acute lung injury. The aim of the present study was to compare the effects of two different end-inspiratory pressure levels on alveolar recruitment, alveolar derecruitment and potential overdistention at incremental levels of positive end-expiratory pressure. METHODS: Sixteen adult sheep were randomized to be ventilated with a peak inspiratory pressure of either 35 cm H2O (P35, low VT) or 45 cm H2O (P45, high VT) after saline washout-induced lung injury. Positive end-expiratory pressure (PEEP) was increased in a stepwise manner from zero (ZEEP) to 7, 14 and 21 cm of H2O in hourly intervals. Tidal volume, initially set to 12 ml kg(-1), was reduced according to the pressure limits. Computed tomographic scans during end-expiratory and end-inspiratory hold were performed along with hemodynamic and respiratory measurements at each level of PEEP. RESULTS: Tidal volumes for the two groups (P35/P45) were: 7.7 +/- 0.9/11.2 +/- 1.3 ml kg(-1) (ZEEP), 7.9 +/- 2.1/11.3 +/- 1.3 ml kg(-1) (PEEP 7 cm H2O), 8.3 +/- 2.5/11.6 +/- 1.4 ml kg(-1) (PEEP 14 cm H2O) and 6.5 +/- 1.7/11.0 +/- 1.6 ml kg(-1) (PEEP 21 cm H2O); P < 0.001 for differences between the two groups. Absolute nonaerated lung volumes during end-expiration and end-inspiration showed no difference between the two groups for given levels of PEEP, while tidal-induced changes in nonaerated lung volume (termed cyclic alveolar instability, CAI) were larger in the P45 group at low levels of PEEP. The decrease in nonaerated lung volume was significant for PEEP 14 and 21 cm H2O in both groups compared with ZEEP (P < 0.005). Over-inflated lung volumes, although small, were significantly higher in the P45 group. Significant respiratory acidosis was noted in the P35 group despite increases in the respiratory rate. CONCLUSION: Limiting peak inspiratory pressure and VT does not impair alveolar recruitment or promote derecruitment when using sufficient levels of PEEP.  相似文献   

14.
Background: Pressure control ventilation (PCV), high-frequency oscillation (HFO), and intratracheal pulmonary ventilation (ITPV) may all be used to provide lung protective ventilation in acute respiratory distress syndrome, but the specific approach that is optimal remains controversial.

Methods: Saline lavage was used to produce acute respiratory distress syndrome in 21 sheep randomly assigned to receive PCV, HFO, or ITPV as follows: positive end-expiratory pressure (PCV and ITPV) and mean airway pressure (HFO) were set in a pressure-decreasing manner after lung recruitment that achieved a ratio of Pao2/Fio2 > 400 mmHg. Respiratory rates were 30 breaths/min, 120 breaths/min, and 8 Hz, respectively, for PCV, ITPV, and HFO. Eucapnia was targeted with peak carinal pressure of no more than 35 cm H2O. Animals were then ventilated for 4 h.

Results: There were no differences among groups in gas exchange, lung mechanics, or hemodynamics. Tidal volume (PCV, 8.9 +/- 2.1 ml/kg; ITPV, 2.7 +/- 0.8 ml/kg; HFO, approximately 2.0 ml/kg) and peak carinal pressure (PCV, 30.6 +/- 2.6 cm H2O; ITPV, 22.3 +/- 4.8 cm H2O; HFO, approximately 24.3 cm H2O) were higher in PCV. Pilot histologic data showed greater interstitial hemorrhage and alveolar septal expansion in PCV than in HFO or ITPV.  相似文献   


15.
Background: Recent data indicate that assisted modes of mechanical ventilation improve pulmonary gas exchange in patients with acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Proportional assist ventilation (PAV) is a new mode of support that amplifies the ventilatory output of the patient effort and improves patient-ventilator synchrony. It is not known whether this mode may be used in patients with ALI/ARDS. The aim of this study was to compare the effects of PAV and pressure-support ventilation on breathing pattern, hemodynamics, and gas exchange in a homogenous group of patients with ALI/ARDS due to sepsis.

Methods: Twelve mechanically ventilated patients with ALI/ARDS (mean ratio of partial pressure of arterial oxygen to fractional concentration of oxygen 190 +/- 49 mmHg) were prospectively studied. Patients received pressure-support ventilation and PAV in random order for 30 min while maintaining mean airway pressure constant. With both modes, the level of applied positive end-expiratory pressure (7.1 +/- 2.1 cm H2O) was kept unchanged throughout. At the end of each study period, cardiorespiratory data were obtained, and dead space to tidal volume ratio was measured.

Results: With both modes, none of the patients exhibited clinical signs of distress. With PAV, breathing frequency and cardiac index were slightly but significantly higher than the corresponding values with pressure-support ventilation (24.5 +/- 6.9 vs. 21.4 +/- 6.9 breaths/min and 4.4 +/- 1.6 vs. 4.1 +/- 1.3 l [middle dot] min-1 [middle dot] m-2, respectively). None of the other parameters differ significantly between modes.  相似文献   


16.
Background: A step decrease in positive end-expiratory airway pressure (PEEP) is not followed by an instantaneous loss of the PEEP-induced increase in end-expiratory lung volume (EELV). Rather, the reduction of EELV is delayed, while adverse PEEP effects on hemodynamics are immediately attenuated upon the drop in airway pressure. Step PEEP increments were applied to the lungs of patients with acute lung injury. It was investigated retrospectively whether enlargement of end-expiratory lung volume and changes in lung mechanics persist 45 min after removal of the PEEP increment.
Methods: In 14 patients with acute lung injury (LIS score 2.7) EELV and volume-dependent dynamic compliance of the respiratory system (Cdyn,rs) were determined 45 min after removal of an additional PEEP increment (0.64 kPa added to baseline PEEP of 1.0 kPa).
Results: Nine patients kept an EELV gain of 13% (SD 7) and showed improved Cdyn,rs. In 5 patients, EELV was reduced (by 9% (SD 6)) and Cdyn,rs unchanged after removal of the PEEP increment compared to baseline.
Conclusion: A subgroup of patients with acute lung injury, the characteristics of which remain to be defined, benefit from prolonged recruitment effects up to 45 min after removal of a PEEP increment, while sequelae of continuously increased airway pressures are minimised.  相似文献   

17.
BACKGROUND: Pressure control ventilation (PCV), high-frequency oscillation (HFO), and intratracheal pulmonary ventilation (ITPV) may all be used to provide lung protective ventilation in acute respiratory distress syndrome, but the specific approach that is optimal remains controversial. METHODS: Saline lavage was used to produce acute respiratory distress syndrome in 21 sheep randomly assigned to receive PCV, HFO, or ITPV as follows: positive end-expiratory pressure (PCV and ITPV) and mean airway pressure (HFO) were set in a pressure-decreasing manner after lung recruitment that achieved a ratio of Pao2/Fio2 > 400 mmHg. Respiratory rates were 30 breaths/min, 120 breaths/min, and 8 Hz, respectively, for PCV, ITPV, and HFO. Eucapnia was targeted with peak carinal pressure of no more than 35 cm H2O. Animals were then ventilated for 4 h. RESULTS: There were no differences among groups in gas exchange, lung mechanics, or hemodynamics. Tidal volume (PCV, 8.9 +/- 2.1 ml/kg; ITPV, 2.7 +/- 0.8 ml/kg; HFO, approximately 2.0 ml/kg) and peak carinal pressure (PCV, 30.6 +/- 2.6 cm H2O; ITPV, 22.3 +/- 4.8 cm H2O; HFO, approximately 24.3 cm H2O) were higher in PCV. Pilot histologic data showed greater interstitial hemorrhage and alveolar septal expansion in PCV than in HFO or ITPV. CONCLUSION: These data indicate that HFO, ITPV, and PCV when applied with an open-lung protective ventilatory strategy results in the same gas exchange, lung mechanics, and hemodynamic response, but pilot data indicate that lung injury may be greater with PCV.  相似文献   

18.
Background: No methods are superior when setting positive end-expiratory pressure (PEEP) in acute lung injury (ALI). In ALI, the vertical distance (hysteresis) between the inspiratory and expiratory limbs of a static pressure–volume (PV) loop mainly indicates lung recruitment. We hypothesized that PEEP set at the pressure where hysteresis is 90% of its maximum (90%MH) would give similar oxygenation, but less cardiovascular depression than PEEP set at the pressure at lower inflection point (LIP) on the inspiratory limb or at the point of maximal curvature (PMC) on the expiratory limb in ALI.
Methods: In 12 mechanically ventilated pigs, ALI was induced in a randomized fashion by lung lavage, lung lavage plus injurious ventilation, or by oleic acid. From a static PV loop obtained by an interrupted low-flow method, the pressures at LIP [25 (25, 25) cmH2O, mean and 25, 75 percentiles], at PMC [24 (20, 24) cmH2O], and at 90% MH [19 (18, 19) cmH2O] were determined and used for the PEEP-settings. We measured lung inflation (by computed tomography), end-expiratory lung volume (EELV), airway pressures, compliance of the respiratory system (Crs), blood gases, cardiac output and arterial blood pressure.
Results: There were no differences between the PEEP settings in EELV or oxygenation, but the 90%MH setting gave lower end-inspiratory pause pressure ( P <0.025), higher Crs ( P <0.025), less hyper-aeration ( P <0.025) and better maintained hemodynamics.
Conclusion: In this porcine lung injury model, PEEP set at 90% MH gave better lung mechanics and hemodynamics, than PEEP set at PMC or LIP.  相似文献   

19.
Pressure support ventilation (PSV) is a newer mode of ventilatory support that augments the patient's spontaneous inspirations to a preselected peak inspiratory pressure. We studied the effects of adding low levels of PSV (5 to 10 cm H2O) in conjunction with intermittent mandatory ventilation (IMV) on 15 patients who required mechanical ventilation for flail chest and pulmonary contusion. Patients were selected for the study if, during weaning from IMV, the following criteria were met: (1) a PaCO2 level greater than 45 mm Hg, (2) a spontaneous respiratory rate (RR) greater than 30 breaths per minute, (3) a minute ventilation (VE) greater than 9.0 L/min, and (4) spontaneous tidal volumes (VT) of less than 2 mL/kg. The PSV was added to the IMV at a level that augmented spontaneous VT to greater than 4 mL/kg. An average of 9 +/- 3 cm H2O of pressure support resulted in a fall in the level of PaCO2 (50 +/- 4 to 43 +/- 5 mm Hg), spontaneous RR (36 +/- 5 to 16 +/- 3 breaths per minute), VE (12 +/- 2 to 8.4 +/- 1.5 L/min), and dead space-tidal volume ratio from (0.68 +/- 0.1 to 0.47 +/- 0.05). Mean airway pressure and PaO2 both increased, but these changes were not statistically significant. Oxygen consumption was also unchanged. These results suggest that in patients who are difficult to wean due to respiratory muscle fatigue (characterized by increasing RR and decreasing VT), PSV normalizes lung volumes, improves ventilation, and may expedite the weaning process.  相似文献   

20.
BACKGROUND: It is unclear whether positive end-expiratory pressure (PEEP) is needed to maintain the improved oxygenation and lung volume achieved after a lung recruitment maneuver in patients ventilated after cardiac surgery performed in the cardiopulmonary bypass (CPB). METHODS: A prospective, randomized, controlled study in a university hospital intensive care unit. Sixteen patients who had undergone cardiac surgery in CPB were studied during the recovery phase while still being mechanically ventilated with an inspired fraction of oxygen (FiO2) 1.0. Eight patients were randomized to lung recruitment (two 20-s inflations to 45 cmH2O), after which PEEP was set and kept for 2.5 h at 1 cmH2O above the pressure at the lower inflexion point (14+/-3 cmH2O, mean +/-SD) obtained from a static pressure-volume (PV) curve (PEEP group). The remaining eight patients were randomized to a recruitment maneuver only (ZEEP group). End-expiratory lung volume (EELV), series dead space, ventilation homogeneity, hemodynamics and PaO2 (oxygenation) were measured every 30 min during a 3-h period. PV curves were obtained at baseline, after 2.5 h, and in the PEEP group at 3 h. RESULTS: In the ZEEP group all measures were unchanged. In the PEEP group the EELV increased with 1220+/-254 ml (P<0.001) and PaO2 with 16+/-16 kPa (P<0.05) after lung recruitment. When PEEP was discontinued EELV decreased but PaO2 was maintained. The PV curve at 2.5 h coincided with the curve obtained at 3 h, and both curves were both steeper than and located above the baseline curve. CONCLUSIONS: Positive end-expiratory pressure is required after a lung recruitment maneuver in patients ventilated with high FiO2 after cardiac surgery to maintain lung volumes and the improved oxygenation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号