首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autosomal dominant polycystic kidney disease (ADPKD) is a very common inherited disease caused by mutations in PKD1 or PKD2 genes characterized by progressive enlargement of fluid-filled cysts and loss of renal function [1]. Previous studies proposed a role for human polycystin-1 in renal morphogenesis acting as a matrix receptor in focal adhesions and for polycystin-2 as a putative calcium channel [2, 3]. The genome of Caenorhabditis elegans contains 2 new members of the polycystin family: lov-1, the homolog for PKD1; and pkd-2, the homolog for PKD2 [4; this paper]. Mutation analysis in C. elegans showed similarly compromised male mating behaviors in all single and double lov-1 and pkd-2 mutants, indicating their participation in a single genetic pathway. Expression analysis localized LOV-1 and PKD-2 to the ends of sensory neurons in male tails and to the tips of CEM neurons in the head, consistent with functions as chemo- or mechanosensors. Human and C. elegans PKD1 and PKD2 homologs, transfected into mammalian renal epithelial cells, co-localized with paxillin in focal adhesions suggesting function in a single biological pathway. Based on the role of polycystins in C. elegans sensory neuron function and the conservation of PKD pathways we suggest that polycystins act as sensors of the extracellular environment, initiating, via focal adhesion assembly, intracellular transduction events in neuronal or morphogenetic processes.  相似文献   

2.
Autosomal-dominant polycystic kidney disease (ADPKD) is caused by mutations in either PKD1 or PKD2 and is characterized by the development of multiple bilateral renal cysts that replace normal kidney tissue. Here, we used Pkd1 mutant mouse models to demonstrate that the nicotinamide adenine dinucleotide–dependent (NAD-dependent) protein deacetylase sirtuin 1 (SIRT1) is involved in the pathophysiology of ADPKD. SIRT1 was upregulated through c-MYC in embryonic and postnatal Pkd1-mutant mouse renal epithelial cells and tissues and could be induced by TNF-α, which is present in cyst fluid during cyst development. Double conditional knockouts of Pkd1 and Sirt1 demonstrated delayed renal cyst formation in postnatal mouse kidneys compared with mice with single conditional knockout of Pkd1. Furthermore, treatment with a pan-sirtuin inhibitor (nicotinamide) or a SIRT1-specific inhibitor (EX-527) delayed cyst growth in Pkd1 knockout mouse embryonic kidneys, Pkd1 conditional knockout postnatal kidneys, and Pkd1 hypomorphic kidneys. Increased SIRT1 expression in Pkd1 mutant renal epithelial cells regulated cystic epithelial cell proliferation through deacetylation and phosphorylation of Rb and regulated cystic epithelial cell death through deacetylation of p53. This newly identified role of SIRT1 signaling in cystic renal epithelial cells provides the opportunity to develop unique therapeutic strategies for ADPKD.  相似文献   

3.
Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disorder affecting 1 in 1,000 people in the general population and accounts for up to 10% of all patients on renal replacement therapy. Numerous fluid-filled epithelial cysts arise from different nephron segments as spherical dilatations or small out-pouchings, enlarge progressively and eventually become disconnected from the rest of the renal tubule. The development of cysts is accompanied by destruction of the renal parenchyma, interstitial fibrosis, cellular infiltration and loss of functional nephrons. ADPKD is not only a kidney disease but also a systemic disorder associated with intracranial arterial aneurysms, cardiac valvular defects, colonic diverticulosis and cyst formation in other organs such as the liver, spleen and pancreas. The identification of PKD1 and PKD2 together with the drive to elucidate the functions of their encoded proteins, polycystin-1 (PC1) and polycystin-2 (PC2), has led to an explosion of clinical and scientific interest in this common disorder. The aim of this review is to highlight recent advances in our understanding of ADPKD pathogenesis which are leading to exciting new treatment strategies.  相似文献   

4.
Autosomal dominant polycystic kidney disease (ADPKD) is a common human genetic disease characterized by cyst formation in kidney tubules and other ductular epithelia. Cells lining the cysts have abnormalities in cell proliferation and cell polarity. The majority of ADPKD cases are caused by mutations in the PKD1 gene, which codes for polycystin-1, a large integral membrane protein of unknown function that is expressed on the plasma membrane of renal tubular epithelial cells in fetal kidneys. Because signaling from cell-cell and cell-matrix adhesion complexes regulates cell proliferation and polarity, we speculated that polycystin-1 might interact with these complexes. We show here that polycystin-1 colocalized with the cell adhesion molecules E-cadherin and alpha-, beta-, and gamma-catenin. Polycystin-1 coprecipitated with these proteins and comigrated with them on sucrose density gradients, but it did not colocalize, coprecipitate, or comigrate with focal adhesion kinase, a component of the focal adhesion. We conclude that polycystin-1 is in a complex containing E-cadherin and alpha-, beta-, and gamma-catenin. These observations raise the question of whether the defects in cell proliferation and cell polarity observed in ADPKD are mediated by E-cadherin or the catenins.  相似文献   

5.
Autosomal dominant polycystic kidney disease (ADPKD) is a common inherited disorder that is caused by mutations at two loci, polycystin 1 (PKD1) and polycystin 2 (PKD2). It is characterized by the formation of multiple cysts in the kidneys that can lead to chronic renal failure. Previous studies have suggested a role for hyperactivation of mammalian target of rapamycin (mTOR) in cystogenesis, but the etiology of mTOR hyperactivation has not been fully elucidated. In this report we have shown that mTOR is hyperactivated in Pkd1-null mouse cells due to failure of the HGF receptor c-Met to be properly ubiquitinated and subsequently degraded after stimulation by HGF. In Pkd1-null cells, Casitas B-lineage lymphoma (c-Cbl), an E3-ubiquitin ligase for c-Met, was sequestered in the Golgi apparatus with α3β1 integrin, resulting in the inability to ubiquitinate c-Met. Treatment of mouse Pkd1-null cystic kidneys in organ culture with a c-Met pharmacological inhibitor resulted in inhibition of mTOR activity and blocked cystogenesis in this mouse model of ADPKD. We therefore suggest that blockade of c-Met is a potential novel therapeutic approach to the treatment of ADPKD.  相似文献   

6.
The most severe form of autosomal dominant polycystic kidney disease occurs in patients with mutations in the gene (PKD1) encoding polycystin-1 (PC1). PC1 is a complex polytopic membrane protein expressed in cilia that undergoes autoproteolytic cleavage at a G protein–coupled receptor proteolytic site (GPS). A quarter of PKD1 mutations are missense variants, though it is not clear how these mutations promote disease. Here, we established a cell-based system to evaluate these mutations and determined that GPS cleavage is required for PC1 trafficking to cilia. A common feature among a subset of pathogenic missense mutations is a resulting failure of PC1 to traffic to cilia regardless of GPS cleavage. The application of our system also identified a missense mutation in the gene encoding polycystin-2 (PC2) that prevented this protein from properly trafficking to cilia. Using a Pkd1-BAC recombineering approach, we developed murine models to study the effects of these mutations and confirmed that only the cleaved form of PC1 exits the ER and can rescue the embryonically lethal Pkd1-null mutation. Additionally, steady-state expression levels of the intramembranous COOH-terminal fragment of cleaved PC1 required an intact interaction with PC2. The results of this study demonstrate that PC1 trafficking and expression require GPS cleavage and PC2 interaction, respectively, and provide a framework for functional assays to categorize the effects of missense mutations in polycystins.  相似文献   

7.
Autosomal dominant polycystic kidney disease (ADPKD) is the most common human monogenic genetic disorder and is characterized by progressive bilateral renal cysts and the development of renal insufficiency. The cystogenesis of ADPKD is believed to be a monoclonal proliferation of PKD-deficient (PKD(-/-)) renal tubular epithelial cells. To define the function of Pkd1, we generated chimeric mice by aggregation of Pkd1(-/-) ES cells and Pkd1(+/+) morulae from ROSA26 mice. As occurs in humans with ADPKD, these mice developed cysts in the kidney, liver, and pancreas. Surprisingly, the cyst epithelia of the kidney were composed of both Pkd1(-/-) and Pkd1(+/+) renal tubular epithelial cells in the early stages of cystogenesis. Pkd1(-/-) cyst epithelial cells changed in shape from cuboidal to flat and replaced Pkd1(+/+) cyst epithelial cells lost by JNK-mediated apoptosis in intermediate stages. In late-stage cysts, Pkd1(-/-) cells continued immortalized proliferation with downregulation of p53. These results provide a novel understanding of the cystogenesis of ADPKD patients. Furthermore, immortalized proliferation without induction of p53 was frequently observed in 3T3-type culture of mouse embryonic fibroblasts from Pkd1(-/-) mice. Thus, Pkd1 plays a role in preventing immortalized proliferation of renal tubular epithelial cells through the induction of p53 and activation of JNK.  相似文献   

8.
Arterial morphogenesis is an important and poorly understood process. In particular, the signaling events controlling arterial formation have not been established. We evaluated whether alterations in the balance between ERK1/2 and PI3K signaling pathways could stimulate arterial formation in the setting of defective arterial morphogenesis in mice and zebrafish. Increased ERK1/2 activity in mouse ECs with reduced VEGF responsiveness was achieved in vitro and in vivo by downregulating PI3K activity, suppressing Akt1 but not Akt2 expression, or introducing a constitutively active ERK1/2 construct. Such restoration of ERK1/2 activation was sufficient to restore impaired arterial development and branching morphogenesis in synectin-deficient mice and synectin-knockdown zebrafish. The same approach effectively stimulated arterial growth in adult mice, restoring arteriogenesis in mice lacking synectin and in atherosclerotic mice lacking both LDL-R and ApoB48. We therefore conclude that PI3K-ERK1/2 crosstalk plays a key role in the regulation of arterial growth and that the augmentation of ERK signaling via suppression of the PI3K signaling pathway can effectively stimulate arteriogenesis.  相似文献   

9.
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations to PKD1 or PKD2, triggering progressive cystogenesis and typically leading to end-stage renal disease in midlife. The phenotypic spectrum, however, ranges from in utero onset to adequate renal function at old age. Recent patient data suggest that the disease is dosage dependent, where incompletely penetrant alleles influence disease severity. Here, we have developed a knockin mouse model matching a likely disease variant, PKD1 p.R3277C (RC), and have proved that its functionally hypomorphic nature modifies the ADPKD phenotype. While Pkd1+/null mice are normal, Pkd1RC/null mice have rapidly progressive disease, and Pkd1RC/RC animals develop gradual cystogenesis. These models effectively mimic the pathophysiological features of in utero–onset and typical ADPKD, respectively, correlating the level of functional Pkd1 product with disease severity, highlighting the dosage dependence of cystogenesis. Additionally, molecular analyses identified p.R3277C as a temperature-sensitive folding/trafficking mutant, and length defects in collecting duct primary cilia, the organelle central to PKD pathogenesis, were clearly detected for the first time to our knowledge in PKD1. Altogether, this study highlights the role that in trans variants at the disease locus can play in phenotypic modification of dominant diseases and provides a truly orthologous PKD1 model, optimal for therapeutic testing.  相似文献   

10.
Renal tubule solute and water transport is subject to regulation by numerous factors. To characterize direct effects of the recently discovered peptide endothelin (ET) on renal tubule transport, we determined signaling mechanisms for ET effects on vasopressin (AVP)-stimulated water permeability (PF) in rat terminal inner medullary collecting duct (IMCD) perfused in vitro. ET caused a rapid, dose-dependent, and reversible fall in AVP- but not cyclic AMP-stimulated PF, suggesting that its effect on PF is by inhibition of cyclic AMP accumulation. Indomethacin did not block ET actions, ruling out a role for prostaglandins in its effect. The protein kinase C (PKC) inhibitor calphostin, or pretreatment of perfused tubules with pertussis toxin, blocked ET-mediated inhibition of AVP-stimulated PF. ET caused a transient increase in intracellular calcium ([Ca2+]i) in perfused tubules, an effect unchanged in zero calcium bath or by PT pretreatment. ET effects on PF and [Ca2+]i desensitized rapidly. Inhibition of PF was transient and largely abolished by 20 min ET preexposure, and repeat exposure to ET did not alter [Ca2+]i. In contrast, PGE2-mediated inhibition of AVP-stimulated PF and increase of [Ca2+]i were sustained and unaltered by prior exposure of IMCD to ET. Thus desensitization to ET is homologous. We conclude that ET is a potent inhibitor of AVP-stimulated water permeability in rat terminal IMCD. Signaling pathways for its effects involve both an inhibitory guanine nucleotide-binding protein and phospholipase-mediated activation of PKC. Since ET is synthesized by IMCD cells, this peptide may be an important autocrine modulator of renal epithelial transport.  相似文献   

11.
12.
13.
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by renal cyst formation, inflammation, and fibrosis. Macrophages infiltrate cystic kidneys, but the role of these and other inflammatory factors in disease progression are poorly understood. Here, we identified macrophage migration inhibitory factor (MIF) as an important regulator of cyst growth in ADPKD. MIF was upregulated in cyst-lining epithelial cells in polycystin-1–deficient murine kidneys and accumulated in cyst fluid of human ADPKD kidneys. MIF promoted cystic epithelial cell proliferation by activating ERK, mTOR, and Rb/E2F pathways and by increasing glucose uptake and ATP production, which inhibited AMP-activated protein kinase signaling. MIF also regulated cystic renal epithelial cell apoptosis through p53-dependent signaling. In polycystin-1–deficient mice, MIF was required for recruitment and retention of renal macrophages, which promoted cyst expansion, and Mif deletion or pharmacologic inhibition delayed cyst growth in multiple murine ADPKD models. MIF-dependent macrophage recruitment was associated with upregulation of monocyte chemotactic protein 1 (MCP-1) and inflammatory cytokine TNF-α. TNF-α induced MIF expression, and MIF subsequently exacerbated TNF-α expression in renal epithelial cells, suggesting a positive feedback loop between TNF-α and MIF during cyst development. Our study indicates MIF is a central and upstream regulator of ADPKD pathogenesis and provides a rationale for further exploration of MIF as a therapeutic target for ADPKD.  相似文献   

14.
Protein kinase Cs (PKCs) are activated by antigen receptors in lymphocytes, but little is known about proximal targets for PKCs in antigen receptor-mediated responses. In this report, we define a role for diacylglycerol-regulated PKC isoforms in controlling the activity of the serine/threonine kinase protein kinase D (PKD; also known as PKC mu) in T cells, B cells, and mast cells. Antigen receptor activation of PKD is a rapid and sustained response that can be seen in T cells activated via the T cell antigen receptor, B cells activated via the B cell antigen receptor, and in mast cells triggered via the high-affinity receptor for IgE (FcepsilonR1). Herein, we show that antigen receptor activation of PKD requires the activity of classical/novel PKCs. Moreover, PKC activity is sufficient to bypass the requirement for antigen receptor signals in the induction of PKD activity. These biochemical and genetic studies establish a role for antigen receptor-regulated PKC enzymes in the control of PKD activity. Regulation of PKD activity through upstream PKCs reveals a signaling network that exists between different members of the PKC superfamily of kinases that can operate to amplify and disseminate antigen receptor signals generated at the plasma membrane.  相似文献   

15.
Parathyroid hormone (PTH), via activation of PKC and/or protein kinase A, inhibits renal proximal tubular phosphate reabsorption by facilitating the internalization of the major sodium-dependent phosphate transporter, Npt2a. Herein, we explore the hypothesis that the effect of PTH is mediated by phosphorylation of serine 77 (S77) of the first PDZ domain of the Npt2a-binding protein sodium-hydrogen exchanger regulatory factor-1 (NHERF-1). Using recombinant polypeptides representing PDZ I, S77 of NHERF-1 is phosphorylated by PKC but not PKA. When expressed in primate kidney epithelial cells (BSC-1 cells), however, activation of either protein kinase phosphorylates S77, suggesting that the phosphorylation of PDZ I by PKC and PKA proceeds by different biochemical pathways. PTH and other activators of PKC and PKA dissociate NHERF-1/Npt2a complexes, as assayed using quantitative coimmunoprecipitation, confocal microscopy, and sucrose density gradient ultracentrifugation in mice. Murine NHERF-1-/- renal proximal tubule cells infected with adenovirus-GFP-NHERF-1 containing an S77A mutation showed significantly increased phosphate transport compared with a phosphomimetic S77D mutation and were resistant to the inhibitory effect of PTH compared with cells infected with wild-type NHERF-1. These results indicate that PTH-mediated inhibition of renal phosphate transport involves phosphorylation of S77 of the NHERF-1 PDZ I domain and the dissociation of NHERF-1/Npt2a complexes.  相似文献   

16.
Molecular genetics of autosomal dominant polycystic kidney disease   总被引:1,自引:0,他引:1  
Autosomal dominant polycystic kidney disease (ADPKD) is a common Mendelian disorder, occurring in approximately 1 in 1000 births and accounting for 8% to 10% of cases of end-stage renal disease (ESRD). Mutations of 2 genes, PKD1 and PKD2, account for the disease in approximately 80% to 85% and 10% to 15% of families respectively. The gene products (polycystin 1 and 2) of PKD1 and PKD2 are plasma membrane proteins and components of a novel signalling pathway that regulates epithelial cell growth and differentiation. Significant inter- and intrafamilial renal disease variability in ADPKD has been well documented and is influenced by both germline and somatic genetic events. Specifically, genetic locus heterogeneity and 2 rare Mendelian syndromes have been shown to strongly influence the variability of interfamilial renal disease, and as-yet-unknown genetic and environmental factors likely modify both inter- and intrafamilial renal disease severity. Furthermore, individual cyst formation in ADPKD represents an aberration of monoclonal growth triggered by somatic PKD1 or PKD2 mutations within individual epithelial cells. Current studies are in progress to identify major genetic and environmental modifiers of renal disease variability. A thorough knowledge of these determinants will allow better patient risk assessment and development of mechanism-based therapy in ADPKD.  相似文献   

17.
Increased cardiovascular mortality is an unresolved problem in patients with chronic renal failure. Cardiac hypertrophy is observed in the majority of patients with chronic renal failure undergoing haemodialysis. However, the mechanisms, including signal transduction pathways, responsible for cardiac hypertrophy in renal failure remain unknown. We examined the subcellular localization of protein kinase C (PKC) isoforms and phosphorylation activities of 3 mitogen-activated protein (MAP) kinase families in hypertrophied hearts of progressive renal injury rat model by subtotal nephrectomy (SNx). We also examined the effects of a novel angiotensin II type-1 receptor antagonist, CS-866, on the PKC translocation, MAP kinase activity and cardiac hypertrophy in SNx rats. The left ventricle/body weight ratios were significantly larger in SNx rats than in sham rats at 1, 2, and 4 weeks after surgery. The translocation of PKCalpha and epsilon isoforms to membranous fraction was observed in SNx rat hearts at 1, 2, and 4 weeks after surgery. Activation of extracellular signal regulated kinase (ERK) 1/2, but not p38 MAP kinase and c-Jun N-terminal kinase (JNK), was observed at 1 and 2 weeks after surgery. Angiotensin II receptor blockade with CS-866 (1 mg kg-1 day-1) prevented cardiac hypertrophy, PKC translocation and ERK1/2 activation in SNx rats without significant changes in blood pressure. These data suggest that PKC and ERK1/2 are activated by an angiotensin II receptor-mediated pathway and might play an important role in the progression of cardiac hypertrophy in renal failure.  相似文献   

18.
We investigated proteinase-activated receptor-2 (PAR(2))-triggered signal transduction pathways causing increased prostaglandin E(2) (PGE(2)) formation in human lung-derived A549 epithelial cells. The PAR(2) agonist, SLIGRL-NH(2) (Ser-Leu-Ile-Gly-Arg-Leu-amide), evoked immediate cytosolic Ca(2+) mobilization and delayed (0.5-3 h) PGE(2) formation. The PAR(2)-triggered PGE(2) formation was attenuated by inhibition of the following signal pathway enzymes: cyclooxygenases 1 and 2 (COX-1 and COX-2, respectively), cytosolic Ca(2+)-dependent phospholipase A(2) (cPLA(2)), the mitogen-activated protein kinases (MAPKs), mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK)-extracellular signal-regulated kinase (ERK) and p38 MAPK, Src family tyrosine kinase, epidermal growth factor (EGF) receptor tyrosine kinase (EGFRK), and protein kinase C (PKC), but not by inhibition of matrix metalloproteinases. SLIGRL-NH(2) caused prompt (5 min) and transient ERK phosphorylation, blocked in part by inhibitors of PKC and tyrosine kinases but not by an EGFRK inhibitor. SLIGRL-NH(2) also evoked a relatively delayed (15 min) and persistent (30 min) phosphorylation of p38 MAPK, blocked by inhibitors of Src and EGFRK but not by inhibitors of COX-1 or COX-2. SLIGRL-NH(2) elicited a Src inhibitor-blocked prompt (5 min) and transient phosphorylation of the EGFRK. SLIGRL-NH(2) up-regulated COX-2 protein and/or mRNA levels that were blocked by inhibition of p38 MAPK, EGFRK, Src, and COX-2 but not MEK-ERK. SLIGRL-NH(2) also caused COX-1-dependent up-regulation of microsomal PGE synthase-1 (mPGES-1). We conclude that PAR(2)-triggered PGE(2) formation in A549 cells involves a coordinated up-regulation of COX-2 and mPGES-1 involving cPLA(2), increased cytosolic Ca(2+), PKC, Src, MEK-ERK, p38 MAPK, Src-mediated EGF receptor trans-activation, and also metabolic products of both COX-1 and COX-2.  相似文献   

19.
目的 用杂交瘤技术制备抗多囊蛋白-1 LRR-WSC区单克隆抗体,检测多囊蛋白-1在肾组织和肾细胞株中的分布和定位。方法 用多囊蛋白-1 LRR-WSC区融合蛋白PCI-e免疫BALB/c小鼠,将其脾细胞与骨髓瘤细胞株SP2/0进行细胞融合,间接酶联免疫吸附试验(ELISA)筛选出阳性克隆,有限稀释法将杂交瘤细胞株单克隆化,间接ELISA法和免疫印迹法(WB)鉴定抗体的特异性。用制备的抗多囊蛋白-1 LRR-WSC区单克隆抗体,免疫组织化学和免疫细胞化学法检测多囊蛋白-1在不同肾组织和肾细胞株中的分布。结果 细胞融合后经筛选和克隆得到的杂交瘤细胞株经WB分析表明,该细胞株分泌的单克隆抗体能特异地与多囊蛋白-1 LRR-WSC区结合。免疫组织化学显示,多囊蛋白-1主要分布于正常肾组织的远端肾小管和集合管,在胎肾囊肿组织中表达于近端肾小管,在人常染色体显性多囊肾病(ADPKD)肾囊肿组织中,表达于囊肿衬里上皮细胞,同时在ADPKD肾囊肿衬里上皮细胞系和猪近端肾小管细胞株(LLC-PK1)中也发现了多囊蛋白-1的表达。结论 本实验成功制备了抗多囊蛋白-1 LRR-WSC区的单克隆抗体,该抗体对深入研究ADPKD的发病机制具有重要意义。多囊蛋白-1在肾组织中的表达模式对肾小管的形态发生、维持肾小管结构的完整性非常重要。  相似文献   

20.
We have used human erythroleukemia (HEL) cells to investigate distal signaling mechanisms of neuropeptide-Y (NPY) receptors. NPY did not activate phospholipase D, determined as a phosphatidylethanol formation, or protein kinase C (PKC) determined enzymatically as a translocation to the plasma membrane. However, NPY caused a rapid (already maximal after 30 s) and concentration-dependent (maximum at 10-100 nM) activation of extracellular signal-regulated kinase (ERK) as assessed by immunoblotting with epitope-specific, antiphosphotyrosine antibodies and in some cases enzymatically. ERK activation by 100 nM NPY was abolished by the Y(1) NPY receptor antagonist BIBP 3226 (1 microM), pertussis toxin treatment (100 ng ml(-1) overnight), the mitogen-activated protein kinase (MAPK) kinase inhibitor PD 98059 (100 microM), and the phosphatidylinositol-3-kinase inhibitor wortmannin (100 nM). Whereas the PKC inhibitor staurosporine (3 microM) inhibited ERK activation by NPY, the chemically distinct PKC inhibitors calphostin C (3 microM), G? 6976 (3 microM), and bisindolylmaleimide I (3 microM) did not. NPY did not activate other MAPK such as jun N-terminal kinase or p38 MAPK. We conclude that NPY does not activate phospholipase D, PKC, jun N-terminal kinase, or p38 MAPK in HEL cells. However, NPY activates ERK by a pathway involving Y(1) receptors, pertussis toxin-sensitive G proteins, and phosphatidylinositol-3-kinase, whereas PKC may not be involved. Staurosporine may have PKC-independent effects on ERK activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号