首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Prussian blue analogs (PBAs) formed with hexacyanide linkers have been studied for decades. The framework crystal structure of PBAs mainly benefits from the six-fold coordinated cyano functional groups. In this study, in-plane tetracyanonickelate was utilized to engineer an organic linker and design a family of four-fold coordinated PBAs (FF-PBAs; Fe2+Ni(CN)4, MnNi(CN)4, Fe3+Ni(CN)4, CuNi(CN)4, CoNi(CN)4, ZnNi(CN)4, and NiNi(CN)4), which showed an interesting two-dimensional (2D) crystal structure. It was found that these FF-PBAs could be utilized as cathode materials of Li-ion batteries, and the Ni/Fe2+ system exhibited superior electrochemical properties compared to the others with a capacity of 137.9 mA h g−1 at a current density of 100 mA g−1. Furthermore, after a 5000-cycle long-term repeated charge/discharge measurement, the Ni/Fe2+ system displayed a capacity of 60.3 mA h g−1 with a coulombic efficiency of 98.8% at a current density of 1000 mA g−1. In addition, the capacity of 86.1% was preserved at 1000 mA g−1 as compared with that at 100 mA g−1, implying a good rate capability. These potential capacities can be ascribed to an in situ reduction of Li+ in the interlayer of Ni/Fe2+ instead of the formation of other compounds with the host material according to ex situ XRD characterization. These specially designed FF-PBAs are expected to inspire new concepts in electrochemistry and other applications requiring 2D materials.

Prussian blue analogs (PBAs) with tetracyanide linkers have been studied as electrode materials for Li-ion storage.  相似文献   

2.
ZnMnO3 has attracted enormous attention as a novel anode material for rechargeable lithium-ion batteries due to its high theoretical capacity. However, it suffers from capacity fading because of the large volumetric change during cycling. Here, porous ZnMnO3 yolk–shell microspheres are developed through a facile and scalable synthesis approach. This ZnMnO3 can effectively accommodate the large volume change upon cycling, leading to an excellent cycling stability. When applying this ZnMnO3 as the anode in lithium-ion batteries, it shows a remarkable reversible capacity (400 mA h g−1 at a current density of 400 mA g−1 and 200 mA h g−1 at 6400 mA g−1) and excellent cycling performance (540 mA h g−1 after 300 cycles at 400 mA g−1) due to its unique structure. Furthermore, a novel conversion reaction mechanism of the ZnMnO3 is revealed: ZnMnO3 is first converted into intermediate phases of ZnO and MnO, after which MnO is further reduced to metallic Mn while ZnO remains stable, avoiding the serious pulverization of the electrode brought about by lithiation of ZnO.

ZnMnO3 has attracted enormous attention as a novel anode material for rechargeable lithium-ion batteries due to its high theoretical capacity.  相似文献   

3.
The current aluminum batteries with selenium positive electrodes have been suffering from dramatic capacity loss owing to the dissolution of Se2Cl2 products on the Se positive electrodes in the ionic liquid electrolyte. For addressing this critical issue and achieving better electrochemical performances of rechargeable aluminum–selenium batteries, here a gel-polymer electrolyte which has a stable and strongly integrated electrode/electrolyte interface was adopted. Quite intriguingly, such a gel-polymer electrolyte enables the solid-state aluminum–selenium battery to present a lower self-discharge and obvious discharging platforms. Meanwhile, the discharge capacity of the aluminum–selenium battery with a gel-polymer electrolyte is initially 386 mA h g−1 (267 mA h g−1 in ionic liquid electrolyte), which attenuates to 79 mA h g−1 (32 mA h g−1 in ionic liquid electrolyte) after 100 cycles at a current density of 200 mA g−1. The results suggest that the employment of a gel-polymer electrolyte can provide an effective route to improve the performance of aluminum–selenium batteries in the first few cycles.

A quasi-solid-state aluminum–selenium battery has been established using gel-polymer electrolyte between the Se positive electrode and Al negative electrode which increasing the utilization of the active materials.  相似文献   

4.
In modern society, flexible rechargeable batteries have become a burgeoning apodictic choice for wearable devices. Conventional lithium–sulfur batteries lack sufficient flexibility because their electrode materials are too rigid to bend. Along with the inherent high theoretical capacity of sulfur, lithium–sulfur batteries have some issues, such as dissolution and shuttle effect of polysulfides, which restricts their efficiency and practicability. Here, a flexible and “dead-weight”-free lithium–sulfur battery substrate with a three-dimensional structure was prepared by a simple strategy. With the cooperative assistance of carbon nanotubes and graphene attached to cotton fibers, the lithium–sulfur battery with 2.0 mg cm−2 sulfur provided a high initial discharge capacity of 1098.7 mA h g−1 at 1C, and the decay rate after 300 cycles was only 0.046% per cycle. The initial discharge capacity at 2C was 872.4 mA h g−1 and the capacity was maintained 734.4 mA h g−1 after 200 cycles with only a 0.079% per cycle decay rate.

A flexible, “dead weight”-free lithium–sulfur battery substrate was prepared, and batteries using these substrates showed great electrochemical performance.  相似文献   

5.
NaV3O8 nanobelts were successfully synthesized for Li/Na-ion batteries and rechargeable aqueous zinc-ion batteries (ZIBs) by a facile hydrothermal reaction and subsequent thermal transformation. Compared to the electrochemical performance of LIBs and NIBs, NaV3O8 nanobelt cathode materials in ZIBs have shown excellent electrochemical performance, including high specific capacity of 421 mA h g−1 at 100 mA g−1 and good cycle stability with a capacity retention of 94% over 500 cycles at 5 A g−1. The good diffusion coefficients and high surface capacity of NaV3O8 nanobelts in ZIBs were in favor of fast Zn2+ intercalation and long-term cycle stability.

Compared to the electrochemical performance for LIBs and NIBs, NaV3O8 nanobelts electrode for ZIBs shows excellent electrochemical performance, including high specific capacity of 421 mA h g−1 at 100 mA g−1, good rate performance and cycle performance.  相似文献   

6.
As advanced electrode materials for sodium ion batteries, Prussian blue and its derivatives have attracted considerable attention due to their low cost, structural stability and facile synthesis process. However, the application of commercially available Prussian blue is limited by its poor electronic conductivity as well as the structural defect induced by crystalline/interstitial water molecules. Herein, to address these drawbacks, an etching-agent free method is developed to synthesize Prussian blue with a hollow structure, and the synthesis mechanism is revealed. Owing to the stability of divalent iron ions, the shorter electron/ion diffusion pathway and fewer defect sites of the hollow structure, the obtained Prussian blue exhibits excellent electrochemical performance (specific capacity of 133.6 mA h g−1 at 1C, 1C = 170 mA g−1), which can put forward a new avenue to engineer advanced electrode materials for sodium ion batteries.

By using Fe3[Co(CN)6]2 as a precursor, hollow structured Prussian blue can be synthesized via anion exchange methods without any other additive.  相似文献   

7.
With a high specific capacity (4200 mA h g−1), silicon based materials have become the most promising anode materials in lithium-ions batteries. However, the large volume expansion makes the capacity reduce rapidly. In this work, a periodic silicon/carbon (Si/C) multilayer thin film was synthesized by magnetron sputtering method on copper foil. The titanium (Ti) film (about 20 nm) as the transition layer was deposited on the copper foil prior to the deposition of the multilayer film. Superior electrochemical lithium storage performance was obtained by the multilayer thin film. The initial discharge and charge specific capacity of the Si (15 nm)/C (5 nm) multilayer film anode are 2640 mA h g−1 and 2560 mA h g−1 with an initial coulombic efficiency of ∼97%. The retention specific capacity is about 2300 mA h g−1 and there is ∼87% capacity retention after 200 cycles.

With a high specific capacity (4200 mA h g−1), silicon based materials have become the most promising anode materials in lithium-ions batteries.  相似文献   

8.
Flexible Zn–MnO2 batteries as wearable electronic power source have attracted much attention in recent years due to their low cost and high safety. To promote the practical application of flexible Zn–MnO2 batteries, it is imperative to develop flexible, mechanically robust and high performance solid state electrolyte. Herein, we construct a rechargeable quasi-solid-state zinc ion battery using kappa-carrageenan bio-polymer electrolyte. The kappa-carrageenan electrolyte is eco-friendly, low cost, and highly conductive (3.32 × 10−2 S cm−1 at room temperature). The mechanical robustness of kappa-carrageenan electrolyte is further reinforced by using a rice paper as scaffold. Benefiting from high ionic conductivity of the bio-polymer electrolyte, our zinc ion battery delivers a significant high energy density and power density (400 W h kg−1 and 7.9 kW kg−1, respectively), high specific capacity (291.5 mA h g−1 at 0.15 A g−1), fast charging and discharging capability (120.0 mA h g−1 at 6.0 A g−1). The zinc ion battery with bio-polymer electrolyte also shows excellent cycling stability and high bending durability. This work brings new research opportunities in developing low-cost flexible solid-state zinc ion batteries using green natural polymer.

The zinc ion batteries with KCR electrolyte show a high specific capacity and fast charging and discharging capability.  相似文献   

9.
Lithium–sulfur (Li–S) batteries are promising candidates for next generation rechargeable batteries because of their high energy density of 2600 W h kg−1. However, the insulating nature of sulfur and Li2S, the “shuttle effect” of lithium polysulfides (LiPSs), and the volumetric change of sulfur electrodes limit the practical application of Li–S batteries. Here, lychee-like TiO2@TiN hollow spheres (LTTHS) have been developed that combine the advantages of high adsorption TiO2 and high conductivity TiN to achieve smooth adsorption/spread/conversion of LiPSs and use them as a sulfur host material in Li–S batteries for the first time. The cathode exhibits an initial specific capacity of 1254 mA h g−1 and a reversible capacity of 533 mA h g−1 after 500 cycles at 0.2C, which corresponds to an average coulombic efficiency up to 99%. The cell with the LTTHS@S cathode achieved an extended lifespan of over 1000 cycles. Such good performance can be assigned to the good adsorption and catalysis of the dual-function TiO2@TiN composite. This work proved that the TiO2@TiN composite can be an attractive matrix for sulfur cathodes.

Lithium–sulfur (Li–S) batteries are promising candidates for next generation rechargeable batteries because of their high energy density of 2600 W h kg−1.  相似文献   

10.
Anode material Li2TiO3–coke was prepared and tested for lithium-ion batteries. The as-prepared material exhibits excellent cycling stability and outstanding rate performance. Charge/discharge capacities of 266 mA h g−1 at 0.100 A g−1 and 200 mA h g−1 at 1.000 A g−1 are reached for Li2TiO3–coke. A cycling life-time test shows that Li2TiO3–coke gives a specific capacity of 264 mA h g−1 at 0.300 A g−1 and a capacity retention of 92% after 1000 cycles of charge/discharge.

Anode material Li2TiO3–coke was prepared and tested for lithium-ion batteries. The as-prepared material exhibits excellent cycling stability and outstanding rate performance.  相似文献   

11.
The electrochemical properties of ZrV2O7 (ZVO) and ZVO@C were investigated in lithium ion batteries. The first charge (or discharge) specific capacity of ZVO and ZVO@C are 279 mA h g−1, 392 mA h g−1, 208 mA h g−1 and 180 mA h g−1 for 0%, 3%, 5% and 9% of carbon, respectively. The capacity retention rates (with 0% 3%, 5% and 9% carbon content) are 33.0%, 52.5%, 56.4% and 76.1% after ten cycles, respectively. The low inner resistance relates to the good contact of the electrode rather than the high content of carbon, and the specific capacity retention rate increases with the increase of the carbon content.

The carbon content in the electrode is not the only factor that determines the internal resistance. The high capacity of lithium ion batteries is related to high conductivity. The lattice is stable (expect for shrinkage) when Li ions insert into ZVO.  相似文献   

12.
Aluminum-ion batteries are currently regarded as the most promising energy storage batteries. The recent development of aluminum-ion batteries has been greatly promoted based on the use of graphitic carbon materials as a positive electrode. However, it remains unclear whether all carbonaceous materials can achieve excellent electrochemical behaviour similar to graphite. In this study, the correlation between the graphitization degree and capacity of a graphite electrode is systematically investigated for aluminum-ion batteries. The results show that the higher the graphitization degree, the larger the charge/discharge capacity and the better the cycling stability. Moreover, graphite nanoflakes with the highest graphitization degree deliver an initial discharge capacity of 66.5 mA h g−1 at a current density of 100 mA g−1, eventually retaining 66.3 mA h g−1 after 100 cycles with a coulombic efficiency of 96.1% and capacity retention of 99.7%, exhibiting an ultra-stable cycling performance. More importantly, it can be concluded that the discharge capacity of different kinds of graphite materials can be predicted by determining the graphitization degree.

The discharge capacity of graphitic carbon from non-graphitizable carbon strongly depends on the graphitization degree when used for aluminum-ion batteries.  相似文献   

13.
High-performance lithium ion batteries are ideal energy storage devices for both grid-scale and large-scale applications. Germanium, possessing a high theoretical capacity, is a promising anode material for lithium ion batteries, but still faces poor cyclability due to huge volume changes during the lithium alloying/dealloying process. Herein, we synthesized an amorphous germanium and zinc chalcogenide (GZC) with a hierarchically porous structure via a solvothermal reaction. As an anode material in a lithium ion battery, the GZC electrode exhibits a high reversible capacity of 747 mA h g−1 after 350 cycles at a current density of 100 mA g−1 and a stable capacity of 370 mA h g−1 after 500 cycles at a current density of 1000 mA g−1 along with 92% capacity retention. All of these outstanding electrochemical properties are attributed to the hierarchically porous structure of the electrode that has a large surface area, fast ion conductivity and superior structural stability, which buffers the volumetric variation during charge/discharge processes and also makes it easier for the electrolyte to soak in, affording more electrochemically active sites.

High-performance lithium ion batteries are ideal energy storage devices for both grid-scale and large-scale applications.  相似文献   

14.
A ZnSe-reduced graphene oxide (ZnSe-rGO) nanocomposite with ZnSe dispersed in rGO is prepared via a one-step hydrothermal method and applied as the anode materials for both lithium and sodium ion batteries (LIBs/SIBs). The as-prepared composite exhibits greatly enhanced reversible capacity, excellent cycling stability and rate capability (530 mA h g−1 after 100 cycles at 500 mA g−1 in LIBs, 259.5 mA h g−1 after 50 cycles at the current density of 100 mA g−1 in SIBs) compared with bare ZnSe in both lithium and sodium storage. The rGO plays an influential role in enhancing the conductivity of the nanocomposites, buffering the volume change and preventing the aggregation of ZnSe particles during the cycling process, thus securing the high structure stability and reversibility of the electrode.

ZnSe-rGO nanocomposite with ZnSe dispersed in reduced graphene oxides is studied as an anode for lithium and sodium ion batteries (LIBs/SIBs).  相似文献   

15.
A solvent-free, low-cost, high-yield and scalable single-step ball milling process is developed to construct 2D MoS2/graphene hybrid electrodes for lithium-ion batteries. Electron microscopy investigation reveals that the obtained hybrid electrodes consist of numerous nanosheets of MoS2 and graphene which are randomly distributed. The MoS2/graphene hybrid anodes exhibit excellent cycling stability with high reversible capacities (442 mA h g−1 for MoS2/graphene (40 h); 553 mA h g−1 for MoS2/graphene (20 h); 342 mA h g−1 for MoS2/graphene (10 h)) at a high current rate of 250 mA g−1 after 100 cycles, whereas the pristine MoS2 electrode shows huge capacity fading with a retention of 37 mA h g−1 at 250 mA g−1 current after 100 cycles. The incorporation of graphene into MoS2 has an extraordinary effect on its electrochemical performance. This work emphasises the importance of the construction of the 2D MoS2/graphene hybrid structure to prevent capacity fading issues with the MoS2 anode in lithium-ion batteries.

A solvent-free, low-cost, high-yield and scalable single-step ball milling process is developed to construct 2D MoS2/graphene hybrid electrodes for lithium-ion batteries.  相似文献   

16.
Tris(pentafluorophenyl) borane (C18BF15) was first adopted as a boron source, which clearly demonstrated its modification effects. XPS and EDX mapping proved that boron can be successfully doped into a carbon layer. The high number of defects in the carbon induced by boron was demonstrated via Raman spectroscopy and thus, the electric conductivity of LiFePO4 was greatly enhanced. The boron-doped composite possessed a higher specific discharge capacity and rate capability than the undoped sample. For instance, the reversible specific capacity for the boron-doped cathode reached 165.8 mA h g−1 at 0.5C, which was almost close to its theoretical capacity (166 mA h g−1). Even at a high rate of 5C, it still possessed a high specific capacity of 124.8 mA h g−1. This provides for the possibility that boron-doped carbon-coated LiFePO4 cathodes may deliver high energy and power density for rechargeable lithium-ion batteries.

C18BF15 was first adopted as a boron source and has demonstrated its clear modification effects, as shown by the high rate capability.  相似文献   

17.
Herein, we present a simple and rapid method to synthesize porous silicon/carbon microtube composites (PoSi/CMTs) by adopting a unique configuration of acid etching solution. The CMTs can act as both conductive agent and buffer for Si volume change during the charge and discharge process. The highly reversible capacity and excellent rate capability can be ascribed to the structure, where porous silicon powders are wrapped by a network of interwoven carbon microtubes. The composites show specific capacities of more than 1712 mA h g−1 at a current density of 100 mA g−1, 1566 mA h g−1 at 200 mA g−1, 1407 mA h g−1 at 400 mA g−1, 1177 mA h g−1 at 800 mA g−1, 1107 mA h g−1 at 1000 mA g−1, 798 mA hg−1 at 2000 mA g−1, and 581 mA h g−1 at 3000 mA g−1 and maintain a value of 1127 mA h g−1 after 100 cycles at a current density of 200 mA g−1. Electrochemical impedance spectroscopy (EIS) measurements prove that charge transfer resistance of PoSi/CMT composites is smaller than that of pure PoSi. In this study, we propose a quick, economical and feasible method to prepare silicon-based anode materials for lithium-ion batteries.

We added additives to the acid etching solution and prepared the silicon/carbon microtubes composites using a simple and fast method.  相似文献   

18.
Although lithium–sulfur (Li–S) batteries are a promising secondary power source, it still faces many technical challenges, such as rapid capacity decay and low sulfur utilization. The loading of sulfur and the weight percentage of sulfur in the cathode usually have a significant influence on the energy density. Herein, we report an easy synthesis of a self-supporting sulfur@graphene oxide-few-wall carbon nanotube (S@GO–FWCNT) composite cathode film, wherein an aluminum foil current collector is replaced by FWCNTs and sulfur particles are uniformly wrapped by graphene oxide along with FWCNTs. The 10 wt% FWCNT matrix through ultrasonication not only provided self-supporting properties without the aid of metallic foil, but also increased the electrical conductivity. The resulting S@GO–FWCNT composite electrode showed high rate performance and cycle stability up to ∼385.7 mA h gelectrode−1 after 500 cycles and close to ∼0.04% specific capacity degradation per cycle, which was better than a S@GO composite electrode (353.1 mA h gelectrode−1). This S@GO–FWCNT composite self-supporting film is a promising cathode material for high energy density rechargeable Li–S batteries.

We report a synthesis of a self-supporting composite cathode film, wherein aluminum foil current collector is replaced by FWCNTs and sulfur particles are uniformly wrapped by graphene oxide along with FWCNTs.  相似文献   

19.
The control of structure and morphology in an electrode design for the development of large-power lithium ion batteries is crucial to create efficient transport pathways for ions and electrons. Herein, we report a powerful combinational strategy to build omnibearing conductive networks composed of titanium niobium oxide nanorods and carbon nanofibers (TNO/CNFs) via an electrostatic spinning method and a hydrothermal method into free-standing arrays with a three-dimensional heterostructure core/shell structure. TNO/CNF electrode exhibits significantly superior electrochemical performance and high-rate capability (241 mA h g−1 at 10C, and 208 mA h g−1 at 20C). The capacity of the TNO/CNF electrode is 257 mA h g−1 after 2000 cycles at 20C, which is much higher than that of the TNO electrode. In particular, the TNO/CNF electrode delivers a reversible capacity of 153.6 mA h g−1 with a capacity retention of 95% after 5000 cycles at ultrahigh current density. Superior electrochemical performances of the TNO/CNF electrode are attributed to the unique composite structure.

The control of structure and morphology in an electrode design for the development of large-power lithium ion batteries is crucial to create efficient transport pathways for ions and electrons.  相似文献   

20.
Reversible aqueous zinc-ion batteries (ZIBs) have great potential for large-scale energy storage owing to their low cost and safety. However, the lack of long-lifetime positive materials severely restricts the development of ZIBs. Herein, we report NaV6O15 microflowers as a cathode material for ZIBs with excellent electrochemical performance, including a high specific capacity of ∼300 mA h g−1 at 100 mA g−1 and 141 mA h g−1 maintained after 2000 cycles at 5 A g−1 with a capacity retention of ∼107%. The high diffusion coefficient and stable tunneled structure of NaV6O15 facilitate Zn2+ intercalation/extraction and long-term cycle stability.

NaV6O15 microflowers were synthesized as a stable cathode material for aqueous zinc ion batteries, which show a high specific capacity and excellent long-term cycling performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号