首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Noble metal-based catalysts have been proven to be active for catalytic organic reactions. The selectivity and conversion can be improved by integration with proper carrier materials, and further modulated by tuning the composition as well as the electronic structure of the active noble metals. Compared with unsupported monometallic catalysts, the synergistic interactions between neighboring metals and the combined effects between the carrier materials and the active components often give rise to positive influences on the enhancement of the catalytic efficiency and selectivity. In this work, we report a facile process for the fabrication of nitrogen-doped carbon black (NCB) supported PdAu bimetallic nanoparticles (NPs) with a uniform dispersion and narrow size distribution. The PdAu/NCB catalyst with a Pd/Au mole ratio of 1/1 shows the highest activity towards both Ullmann coupling reactions of aryl halides and the hydrogenation reaction of nitrophenols. Moreover, this bimetallic catalyst also exhibits a superior recycling durability to that of monometallic Pd/NCB and Au/NCB catalysts. The enhanced catalytic performance of the bimetallic catalyst is mainly due to the large BET specific surface area (125.45 m2 g−1) and the synergy between the individual components of the catalyst.

The PdAu/NCB catalyst with a Pd/Au mole ratio of 1/1 shows the highest activity towards both Ullmann coupling reactions of aryl halides and the hydrogenation reaction of nitrophenols.  相似文献   

2.
Metal organic frameworks (MOFs) with many unique advantages have drawn wide attention in the field of catalysis. However, the poor structural stability of MOFs limits its application. Heat treatment for MOFs can enhance its electrical conductivity and structural stability, which helps to improve the catalytic performance. Ni nanoparticles supported on MIL-53(Al) were synthesized through different heat treatment temperature. Catalysts with uniform distribution of active nickel and rich mesoporous structure were obtained by adjusting the heat treatment temperature to 500 °C. The results show this catalyst has the best hydrogenation activity and stability. Under the reaction conditions of 60 °C and 2 h, the conversion rate of DCPD is 100%, and the selectivity of endo-THDCPD is higher than 95%. After five cycles, the catalyst also show excellent stability and high activity, the conversion rate of DCPD is still 100%.

Supported Ni catalyst with rich mesoporous structure and uniform distribution of Ni shows high catalytic activity performance toward the hydrogenation of DCPD.  相似文献   

3.
The present work reported is a simple and selective method for the colorimetrical detection of l-cysteine in Lens culinaris (or lentils) using Au–Ag core–shell (Au core Ag shell) composite nanoparticles as a chemical probe. The phenomenon is based on the color change of composite nanoparticles from yellowish brown to light blue, followed by a shift of the localized surface plasmon resonance (LSPR) absorption band in the UV-visible region (i.e., 200–800 nm) with the addition of l-cysteine into the solution of bimetallic nanoparticles. The mechanism for the detection of l-cysteine is based on the electrostatic interaction of the metal ion with the thiol group of the amino acid, which causes the red shift of the LSPR band at 685 nm. The size distribution, morphology, composition and optical properties of the Au–Ag core–shell composite nanoparticles were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), energy dispersive X-ray diffraction (EDX), UV-visible spectrophotometer and Fourier transform infrared spectroscopy (FTIR) techniques. An excellent linearity range for the present method was observed in the range of 20–140 μg mL−1 with a limit of detection at 1.95 μg mL−1 and correlation coefficient (R2) of 0.986. A good% recovery of 4.0% showed the selectivity of the method for l-cysteine determination from sample matrices. The advantageous features of the present method are being simple, rapid, low cost and selectivity towards the determination of l-cysteine in lentils.

The present work reported is a simple and selective method for the colorimetrical detection of l-cysteine in Lens culinaris (or lentils) using Au–Ag core–shell (Au core Ag shell) composite nanoparticles as a chemical probe.  相似文献   

4.
A metal–organic framework, MIL-101(Cr), was used to adsorb sulfamethoxazole (SMZ) in water and activated persulfate (PS) oxidation was investigated to regenerate SMZ-saturated MIL-101(Cr). Adsorption and oxidation were combined in this study. MIL-101(Cr) was characterized by SEM, BET, XPS and FT-IR analyses. Effects of various operating parameters on adsorption efficiency were studied. The dosages of persulfate for SMZ desorption and oxidation were investigated. The results showed that the recommended pH was 6–8 for SMZ adsorption and optimum MIL-101(Cr) dosage was 0.1 g L−1. SMZ adsorption by MIL-101(Cr) was a spontaneous process and nearly exothermic. Saturation adsorption capacity was achieved in 180 s and the adsorption followed the pseudo-second-order model. The maximum adsorption amount of MIL-101(Cr) to SMZ was 181.82 mg g−1 (Langmuir). MIL-101(Cr) also showed good adsorption capacities for sulfachloropyridazine (SCP), sulfamonomethoxine (SMM), and sulfadimethoxine (SDM). Persulfate was helpful for SMZ desorption from the surface of saturated MIL-101(Cr) and sufficient persulfate could simultaneously oxidize the SMZ. XPS analysis showed that the structure of MIL-101(Cr) was stable after the persulfate oxidation process. Regenerated MIL-101(Cr) had the same level of adsorption capacity as fresh MIL-101(Cr). An adsorption–oxidation combined process may be set up based on the results. This study provides basic data for the deep treatment of organic micropollutants in urban water bodies.

A metal–organic framework, MIL-101(Cr), was used to adsorb sulfamethoxazole (SMZ) in water and activated persulfate (PS) oxidation was investigated to regenerate SMZ-saturated MIL-101(Cr).  相似文献   

5.
Recently, research interest in the application of lignin is growing, especially as adsorbent material. However, single lignin shows unsatisfactory adsorption performance, and thus, construction of lignin-based nanocomposites is worth considering. Herein, we introduced graphene oxide (GO) into lignin to form lignin/GO (LGNs) composite nanospheres by a self-assembly method. FTIR and 1H NMR spectroscopy illustrated that lignin and GO are tightly connected by hydrogen bonds. The LGNs as an environmental friendly material, also exhibit excellent performance for Cr(vi) removal. The maximum sorption capacity of LGNs is 368.78 mg g−1, and the sorption efficiency is 1.5 times than that of lignin nanospheres (LNs). The removal process of Cr(vi) via LGNs mainly relies on electrostatic interaction, and it also involves the reduction of Cr(vi) to Cr(iii). Moreover, LGNs still have high adsorption performance after repeating five times with the sorption capacity of 150.4 mg g−1 in 200 mg g−1 Cr(vi) solution. Therefore, the prepared lignin–GO composite nanospheres have enormous potential as a low-cost, high-absorbent and recyclable adsorbent, and can be used in wastewater treatment.

Lignin/GO (LGNs) composite nanospheres were prepared by self-assembly method, which showed excellent adsorption performance for Cr(vi) removal.  相似文献   

6.
Nanoreactors are material structures with engineered internal cavities which create exclusive confined nanoscale surroundings for chemical reactions. The cavities of mesoporous silica SBA-15 can be used as nanoreactors for incorporating catalytic species such as metal nanoparticles, complexes etc. Since SBA-15 silica has a neutral framework, organic functional groups and heteroatoms have been embedded by direct or post-synthesis approaches in order to modify their functionality. Palladium is the most used transition metal for C–C bond formations. Because of the great importance of C–C coupling reactions, this review article aims at providing a deep insight into the state of art in the field of the synthesis and the application of mesoporous SBA-15 silica-supported Pd catalysts in C–C coupling transformations. In most cases, synthesis and modification of the catalyst, time and yield of reactions, recyclability and leaching of the Pd species from the SBA-15 support are discussed to reveal the role of SBA-15 in C–C coupling reactions.

Mesoporous silica SBA-15 can act as a nanoreactor for incorporating Pd nanoparticles and be used as a superior catalytic system in C–C coupling reactions with high stability and reusability.  相似文献   

7.
Well-dispersed ruthenium nanoparticles (Ru NPs) are immobilized within the pores of amine-functionalized MIL-53 via an in situ impregnation-reduction method. The resulting Ru/MIL-53(Al)-NH2 catalyst exhibits superior catalytic performance for the dehydrogenation of ammonia borane (AB) at ambient temperature relative to the Ru/MIL-53(Al) catalyst; it has a turnover frequency (TOF) of 287 mol H2 min−1 (mol Ru)−1 and an activation energy (Ea) of 30.5 kJ mol−1. The amine groups present in the MIL-53(Al)-NH2 framework facilitate the formation and stabilization of ultra-small Ru NPs by preventing their aggregation. Additionally, the Ru/MIL-53(Al)-NH2 catalyst exhibits satisfactory durability and reusability: 72.4% and 86.3% of the initial catalytic activity was maintained after the fifth successive cycle of the hydrolytic dehydrogenation of AB in the two respective tests.

The performance of Ru-based catalyst for hydrolysis of AB can be significantly enhanced through amine-functionalization of the MOF material.  相似文献   

8.
In this study, a novel and high-performance catalyst was prepared and used as the heterogeneous catalyst to activate persulfate for bisphenol A (BPA) degradation. Ferrocene was anchored to NH2-MIL-101(Fe) post-synthetically by the condensation of amine group from NH2-MIL-101(Fe) with the carbonyl group of ferrocenecarboxaldehyde. The synthesized ferrocene tethered MIL-101(Fe)–ferrocene was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photo-electron spectra, cyclic voltammetry and electrochemical impedance spectroscopy. The ferrocene acts as a redox mediator, which makes the ferrocene functionalized NH2-MIL-101(Fe) highly active in the degradation of BPA by accelerating the rate of the charge-transfer processes in aqueous solution. MIL-101(Fe)–Fc was proved to be the most effective catalyst, removing more than 99.9% of BPA. In addition, the catalyst can be reused without significant loss in activity.

In this study, a novel and high-performance catalyst ferrocene-MIL-101(Fe) was prepared and used as the heterogeneous catalyst to activate persulfate for bisphenol A degradation.  相似文献   

9.
Herein, three-dimensional (3D) nitrogen-doped graphene with large surface areas and abundant porous structures was prepared by a hydrothermal synthesis method, which served as a novel support to enhance the catalytic properties of noble metal catalysts for the solvent-free selective oxidation of benzyl alcohol. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, and Brunauer–Emmett–Teller (BET) method. The results clearly showed that the introduced N-containing group prevented the aggregation of graphene sheets and provided more structural defects to maximize the number of exposed active sites. The three-dimensional structure can provide a unique porous structure and large specific surface area. Moreover, the three-dimensional structure makes the recycling and reuse of the catalyst easier. The combination of these properties results in the reduction of the average particle size of metal palladium to 3.2 nm; this significantly increases the catalytic activity of the catalyst. The three-dimensional N-doped graphene aerogel-supported Pd nanoparticle (3D Pd/NRGO) composites exhibit excellent catalytic activity for the solvent-free selective oxidation of benzyl alcohol to benzaldehyde by molecular oxygen at 90 °C for 3 hours under atmospheric pressure, resulting in a 72.2% conversion of benzyl alcohol with 94.5% selectivity for benzaldehyde. In addition, the catalytic efficiency shows no obvious loss even after six repeated cycles. Thus, 3D Pd/NRGO can be used as an efficient, easily separable, recyclable, and stable catalyst for the solvent-free selective oxidation of benzyl alcohol under relatively mild conditions.

3D Pd/NRGO with large surface areas and abundant porous structures was prepared, which served as a novel support to enhance the catalytic properties of noble metal catalysts for the solvent-free selective oxidation of benzyl alcohol.  相似文献   

10.
In this study, for the first time, a novel magnetically recyclable MIL-101(Cr)/CoFe2O4 nanocomposite was prepared via a facile solvothermal method. The morphology, structural, magnetic and optical properties of the nanocomposite were characterized via field emission scanning electron microscopy (FE-SEM), transmission electron microscope (TEM), energy dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), UV-visible spectroscopy (UV-visible) and BET surface area analysis. Furthermore, the sonocatalytic activity of the MIL-101(Cr)-based magnetic nanocomposite was explored for the degradation of organic dye pollutants such as Rhodamine B (RhB) and methyl orange (MO) under ultrasound irradiation in the presence of H2O2. Under optimized conditions, the degradation efficiency reached 96% for RhB and 88% for MO. The sonocatalytic activity of MIL-101(Cr)/CoFe2O4 was almost 12 and 4 times higher than that of the raw MIL-101(Cr) and pure CoFe2O4, respectively. The improved sonocatalytic performance of the as-prepared binary nanocomposite can be attributed to the relatively high specific surface area of MIL-101(Cr) and magnetic property of CoFe2O4, as well as the fast generation and separation of charge carriers (electrons and holes) in MIL-101(Cr) and CoFe2O4. In addition, the trapping tests demonstrated that ·OH radicals are the main active species in the dye degradation process. Moreover, the most influencing factors on the sonocatalytic activity such as the H2O2 amount, initial dye concentration and catalyst dosage were investigated. Finally, the nanocomposite was magnetically separated and reused without any observable change in its structure and performance even after four consecutive runs.

A magnetically separable MIL-101(Cr)/CoFe2O4 binary nanocomposite was prepared via a hydrothermal route and applied as a sonocatalyst for the efficient degradation of organic dyes.  相似文献   

11.
A series of Ag–K/MnO2 nanorods with various molar ratios of K/Ag were synthesized by a conventional wetness incipient impregnation method. The as-prepared catalysts were used for the catalytic oxidation of HCHO. The Ag–K/MnO2 nanorods with an optimal K/Ag molar ratio of 0.9 demonstrated excellent HCHO conversion efficiency of 100% at a low temperature of 60 °C. The structures of the samples were investigated by BET, TEM, SEM, XRD, H2-TPR, O2-TPD and XPS. The results showed that Ag–0.9K/MnO2-r exhibited more facile reducibility and greatly abundant surface active oxygen species, endowing it with the best catalytic activity of the studied catalysts. This work provides new insights into the development of low-cost and highly efficient catalysts for the removal of HCHO.

Ag–K/MnO2 nanorods with appropriate K/Ag ratio demonstrated excellent catalytic activity for complete oxidation of formaldehyde.  相似文献   

12.
Successful monometallic and bimetallic metal–organic frameworks with different Co/Mn ratios have been synthesized under solvothermal conditions. The as-synthesized MOFs followed by deposition of Pd nanoparticles with 0.5 to 7 wt%. The XRD, BET, SEM, TEM, EDAX and FT-IR characterization results reveal that bimetallic MOFs and Pd nanoparticles were finely dispersed on the prepared MOFs surfaces. XRD results confirm the formation of the desire MOFs and show the high degree of dispersion of Pd nanoparticles. TEM images show that Pd nanoparticles are nano-sized with almost uniform shape. EDAX shows that Pd nanoparticles successfully loaded on Co0.5–Mn0.5-MOF-74 catalyst. CO oxidation as a model reaction was then used to assess the catalytic performance of the prepared catalysts. The catalytic activity results show enhancement in the catalytic activities of monometallic MOFs after introducing another metal in the same framework and show an excellent improvement in CO conversion after loading with Pd nanoparticles. Furthermore, the samples that contain Pd nanoparticles exhibits higher catalytic activities which raised with increasing the content of Pd nanoparticles.

Pd nanoparticles were loaded on Cox–Mn(1−x)-MOF-74. 5 wt% Pd@Co0.5–Mn0.5-MOF-74 was the most effective catalyst for CO oxidation. The prepared catalysts displayed excellent stability during CO oxidation without significant decrease in catalytic performance.  相似文献   

13.
Laura Fisher 《RSC advances》2021,11(52):32905
Retraction of ‘Monodispersed palladium–cobalt alloy nanoparticles assembled on poly(N-vinyl-pyrrolidone) (PVP) as a highly effective catalyst for dimethylamine borane (DMAB) dehydrocoupling’ by Betül Çelik et al., RSC Adv., 2016, 6, 24097–24102, DOI: 10.1039/c6ra00536e.

The Royal Society of Chemistry hereby wholly retracts this RSC Advances article due to concerns with the reliability of the data in the published article.The low angle portions of the three XRD spectra in Fig. 2, representing three different materials: Pd@PVP, Co@PVP and Pd–Co@PVP NPs, are the same. The blue spectrum representing Co@PVP also has repeating fragments at higher angles. An expert reviewed the authors’ responses but concluded that they did not satisfactorily address the concerns, and that the replacement data provided by the authors did not fully support the conclusions. Given the significance of the concerns about the validity of the data, the findings presented in this paper are no longer reliable.Fatih Sen, Betül Çelik and Hakan Sert oppose this retraction. Esma Erken, Yunus Yıldız and Yagmur Koskun were contacted but did not respond.Signed: Laura Fisher, Executive Editor, RSC AdvancesDate: 23rd September 2021  相似文献   

14.
The fabrication of bimetallic nanoparticles (BNPs) using plant extracts is applauded since it is an environmentally and biologically safe method. In this research, Manilkara zapota leaf extract was utilized to bioreduce metal ions for the production of therapeutically important core–shell Au–Ag and hybrid (Au–ZnO and Ag–ZnO) BNPs. The phytochemical profiling of the leaf extract in terms of total phenolic and flavonoid content is attributed to its high free radical scavenging activity. FTIR data also supported the involvement of these phytochemicals (polyphenols, flavonoids, aromatic compounds and alkynes) in the synthesis of BNPs. Whereas, TEM and XRD showed the formation of small sized (16.57 nm) spherical shaped core–shell Au–Ag BNPs and ZnO nano-needles with spherical AuNPs (48.32 nm) and ZnO nano-rods with spherical AgNP (19.64 nm) hybrid BNPs. The biological activities of BNPs reinforced the fact that they show enhanced therapeutic efficacy as compared to their monometallic components. All BNPs showed comparable antibacterial activities as compared to standard tetracycline discs. While small sized Au–Ag BNPs were most effective in killing human hepato-cellular carcinoma cells (HepG2) in terms of lowest cell viability, highest intracellular ROS/RNS production, loss of mitochondrial membrane potential, induction of caspase-3 gene expression and enhanced caspase-3/7 activity. BNPs also effectively inhibited advanced glycation end products and carbohydrate digesting enzymes which can be used as a nano-medicine for aging and diabetes. The most important finding was the permissible biocompatibility of these BNPs towards brine shrimp larvae and human RBCs, which suggests their environmental and biological safety. This research study gives us insight into the promise of using a green route to synthesize commercially important BNPs with enhanced therapeutic efficacy as compared to conventional treatment options.

Graphical demonstartion of the Manikara zapota-mediated biosynthesis of Bimetallic nanoparticles (BNPs) and evalution of their biological activities.  相似文献   

15.
Fe-based metal organic frameworks (Fe-MOFs) were successfully synthesized with the dielectric barrier discharge (DBD) plasma method and FeSO4·7H2O as the Fe precursor. Fe-MOFs were used as Fenton-like catalysts in DBD plasma/Fenton-like technology to treat wastewater, which addressed the issues with iron solubility. Since the valence state of iron will affect the catalytic performance, the Fe precursor FeSO4·7H2O was added to regulate the valence state and adjust the catalytic performance by improving the availability of active sites. The influences of discharge voltage, catalyst addition amount, H2O2 addition amount and pH on the degradation efficiency of methyl orange (MO) were systematically examined. Through free radical capture experiments, the reaction mechanism of the plasma/Fenton-like catalytic degradation process was deduced primarily as the coordinated oxidation process of hydroxyl radicals (·OH), photo-generated holes (h+) and superoxide radicals (·O2). The reusability experiments proved that the catalyst was stable and reusable. The possible degradation pathways were proposed based on the identification of intermediate products generated in the degradation process by liquid chromatography-mass spectrometry (LC-MS) analyses.

Fe-based metal organic frameworks (Fe-MOFs) were successfully synthesized with the dielectric barrier discharge (DBD) plasma method and FeSO4·7H2O as the Fe precursor.  相似文献   

16.
Three novel phosphine-free Ru-alkylidenes (7a–7c) have been synthesized and utilized as efficient catalysts for ring closing metathesis (RCM) reaction. Spectroscopic data, i.e. NMR and HRMS, along with single crystal X-ray diffraction analysis, were used to confirm their chemical structures. The tosylated carbenoid 7b showed the highest efficiency in cyclizing different acyclic diene substrates. RCM of various (un)substituted N,N-diallylaniline derivatives and stereoselective RCM of different macromolecular dienes were well tolerated using only a catalytic amount (0.5–2.0 mol%) of the additive catalyst (7b) as compared to the well-known Grubbs (II) and Hoveyda–Grubbs (II) catalysts.

Three novel phosphine-free Ru-alkylidenes (7a–7c) have been synthesized and utilized as efficient catalysts for ring closing metathesis (RCM) reaction.  相似文献   

17.
One-dimensional Co–B amorphous alloy nanowires (NWs) were prepared using surfactant as a template and were treated with plasma to study the effect of different treatment times on the essential physical and chemical properties of the catalyst. The study showed that plasma with a certain amount of strength will not change the morphology and amorphous structure of the NWs within the chosen treatment time. It could, however, modify the electronic structure and active sites of the catalyst surface, increase its specific surface area and H2 adsorption capacity, and also improve the selective hydrogenation performance of cinnamaldehyde. Most of all, plasma treatment could also play an important role in the reuse of catalysts. After several recycling reactions, plasma treatment on Co–B amorphous alloy NWs could regenerate their high catalytic activity. This work provides a novel method for preserving the high catalytic activity and stability of amorphous alloy nanomaterials, as well as for increasing their reusability.

Co–B amorphous alloy nanowires exhibited the improvement of catalytic hydrogenation activity and cycling life by plasma treatment.  相似文献   

18.
Highly active and thermally stable Cu–Re bimetallic catalysts supported on TiO2 with 2.0 wt% loading of Cu were prepared via an incipient wetness impregnation method and were applied for liquid phase selective hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL) in H2. The effect of the molar ratios of Cu : Re on the physico-chemical properties and the catalytic performance of the Cu–Re/TiO2 catalysts was investigated. Moreover, the influence of various reaction parameters on the hydrogenation of LA to GVL was studied. The results showed that the Cu–Re/TiO2 catalyst with a 1 : 1 molar ratio of Cu to Re (Cu–Re(1 : 1)/TiO2) exhibited the highest performance for the reaction. Complete conversion of LA with a 100% yield of GVL was achieved in 1,4-dioxane solvent under the reaction conditions of 180 °C, 4.0 MPa H2 for 4 h, and the catalyst could be reused at least 6 times with only a slight loss of activity. Combined with the characterization results, the high performance of the catalyst was mainly attributed to the well-dispersed Cu–Re nanoparticles with a very fine average size (ca. 0.69 nm) and the co-presence of Cu–Re bimetal and ReOx on the catalyst surface.

Herein, we report a highly efficient and recyclable Cu–Re(1 : 1)/TiO2 bimetallic catalyst for liquid phase hydrogenation of levulinic acid to γ-valerolactone.  相似文献   

19.
The photocatalytic efficiencies of bimetallic MOFs, namely STA-12-Mn–Fe, for the reductive removal of Cr(vi) were explored. The best effective variable values were obtained and correlation between the response and influential variables was optimized via experimental design methodology. Complete Cr(vi) removal was achieved under natural sunlight and fluorescent 40 W lamp radiation at pH 2, with an initial Cr(vi) concentration of 20 mg L−1, and 10 mg of photocatalyst within 30 min. A pseudo-first-order rate constant of 0.132 min−1 at T = 298 K was obtained for the Cr(vi) reduction reaction. The title catalysts revealed high performance in the visible region based on photoefficiency measurements, while improved activity was observed compared to the corresponding single-metal MOFs under natural sunlight, highlighting the synergistic effect between the two metal ions. Trapping experiment results proved that direct electron transfer is the main pathway during the photocatalytic Cr(vi) reduction process.

The photocatalytic efficiencies of bimetallic MOFs for the reductive removal of Cr(vi) were explored. The catalysts revealed higher performance compared to the corresponding single-metal MOFs, highlighting the synergistic effect between the two metal ions.  相似文献   

20.
The transmutation of waste into valuable materials has a special place in green chemistry. Herein, we report the preparation of quinazoline-2,4(1H,3H)-diones from 2-iodoaniline, isocyanides, and carbon dioxide in the presence of ZnO NPs stably placed on the surface of dendritic fibrous nanosilica by cellulose (DFNS/cellulose-ZnO) as a catalyst. This is a great economic strategy to create three bonds in a one-pot multicomponent reaction step employing functional groups. To prepare the catalyst, the dendritic fibrous nanosilica surface was first activated using cellulose as a substrate to support ZnO NPs. Cellulose acts as a stabilizing and reducing agent for the ZnO nanocatalyst and eliminates the need for a reducing agent. The structure of the prepared DFNS/cellulose-ZnO was examined by various methods, including thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma (ICP). The largest amount of quinazoline-2,4(1H,3H)-diones was obtained under ideal situations in the presence of 5 mg of DFNS/cellulose-ZnO under carbon dioxide (1 atm) utilizing a balloon set at 70 °C for 3 hours. The substance was reused for ten consecutive runs and the quinazoline-2,4(1H,3H)-dione content was more than 92% each time. This indicates the potential for application in the green and economic production of quinazoline-2,4(1H,3H)-diones, especially from low-cost feedstocks.

The transmutation of waste into valuable materials has a special place in green chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号