首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The triosmium cluster [Os3(CO)10(μ-OH)(μ-H)] containing bridging hydride and hydroxyl groups at a common Os–Os edge was obtained in good yield (ca. 75%) from the hydrolysis of the labile triosmium cluster [Os3(CO)10(NCMe)2] in THF at 67 °C. [Os3(CO)10(μ-OH)(μ-H)] reacts with dppm at 68 °C to afford the isomeric clusters 1 and 2 with the general formula [Os3(CO)8(μ-OH)(μ-H)(μ-dppm)] that differ by the disposition of bridging dppm ligand. Cluster 1 is produced exclusively from the reaction of [Os3(CO)10(μ-OH)(μ-H)] with dppm in CH2Cl2 at room temperature in the presence of added Me3NO. Heating cluster 1 at 81 °C furnishes 2 in a process that likely proceeds by the release of one arm of the dppm ligand, followed by ligand reorganization about the cluster polyhedron and ring closure of the pendent dppm ligand. The oxo-capped [Os3(CO)73-CO)(μ3-O)(μ-dppm)] (3) has been isolated starting from the thermolysis of either 1 or 2 at 139 °C. Reactions of [Os3(CO)10(μ-dppm)] with ROH (R = Me, Et) in the presence of Me3NO at 80 °C furnish [Os3(CO)8(μ-OH)(μ,η11-OCOR)(μ-dppm)] (4, R = Me; 5, R = Et). Clusters 1–5 have been characterized by a combination of analytical and spectroscopic studies, and the molecular structure of each product has been established by X-ray crystallography. The bonding in these products has been examined by electronic structure calculations, and cluster 1 is confirmed as the kinetic product of substitution, while cluster 2 represents the thermodynamically favored isomer.

The cluster [Os3(CO)10(μ-OH)(μ-H)] was obtained in 75% from the hydrolysis of [Os3(CO)10(NCMe)2].  相似文献   

2.
It is known that hydrogen embrittlement could result in warping and destruction of pure Pd membranes, which limits the working temperatures to be above 293 °C. This study attempted to investigate the relationship between hydrogen embrittlement resistance and membrane geometry of ultrathin pure Pd membranes of 2.7–6.3 μm thickness. Thin tubular Pd membranes with an o.d. of 4 mm, 6 mm and 12 mm immediately suffered from structural destruction when exposed to H2 at room temperature. In contrast, thin hollow fiber membranes (outer diameter, 2 mm, thickness < 4 μm) exhibit strong resistance against hydrogen embrittlement at temperatures below 100 °C during repeated heating/cooling cycles at a rate up to 10 °C min−1 under H2 atmosphere. This is ascribed to reduced lattice strain gradients during α–β phase transition in cylindrical structures and lower residual stresses according to in situ XRD analysis, which shows a great prospect in low temperature applications.

Thin tubular membranes (outer diameter, 2 mm, thickness < 4 mm) exhibits strong resistance against hydrogen embrittlement at temperatures below 100 °C due to reduced lattice strain gradients in cylindrical structures and lower residual stresses.  相似文献   

3.
Nanoemulsions have emerged as novel vehicles for drug delivery that allow sustained or controlled release for topical application. In this study, kojic acid ester-based nanoemulsion (KAE-NA) was analyzed for in vitro permeation evaluation, kinetic release study, in vitro antimicrobial activity and in vivo toxicity profile on embryonic zebrafish (Danio rerio). Based on KAE-NA in vitro permeation evaluation, the percentage of permeation was significantly improved from 4.94% at 1 h to 59.64% at 8 h of application. The permeation rate of KAE-NA at 8 h was 4659.50 μg cm−2 h−1 (initial concentration, C0 = 2000 μg mL−1) with a permeability coefficient (Kp) value of 0.48 cm h−1. The kinetic release analysis showed the Korsmeyer–Peppas model was the best fitted kinetic model with high linearity [R2 = 0.9964]. Antimicrobial activity of KAE-NA was studied against the skin pathogen bacteria Staphylococcus aureus ATCC 43300. The results indicated that the inhibition zone size of the KAE-NA (8.00 ± 0.0 mm) was slightly bigger than that of its active ingredient, kojic acid ester (6.5 ± 0.0 mm). The toxicity profile of KAE-NA on embryonic zebrafish revealed less toxicity with LC50 (50% lethal concentration) more than 500 μg mL−1. The survival rate of the embryonic zebrafish was more than 80% when treated at doses ranging from 7.81–250 μg mL−1 and showed normal development throughout the experiment without any observed deformation. Hence, KAE-NA proved to be less toxic on the embryonic zebrafish.

Nanoemulsions have emerged as novel vehicles for drug delivery that allow sustained or controlled release for topical application.  相似文献   

4.
Hemicellulose has shown great potential in food packaging due to its excellent biodegradability and low oxygen permeability. However, its strong hydrophilicity leads to poor moisture resistance and hinders its wide application. To address this issue, herein a ternary carboxylic acid, citric acid (CA), was incorporated into hemicellulose as esterifying agent to form a crosslinking structure via the esterification reaction. The CA-modified hemicellulose films showed an increased contact angle of 87.5° (vs. 40.5° for unmodified film), demonstrating that the hydrophobicity of hemicellulose had been improved significantly. In addition, the esterification/cross-linking modification enhanced oxygen barrier performance with oxygen permeability decreasing from 1053 (cm3 μm) (m2 d kPa)−1 to 1.8 (cm3 μm) (m2 d kPa)−1. Moreover, the tensile strength rose to a peak value and then fell back at higher CA content. Effect of CA addition on elongation at break exhibited an opposite trend. The modified hemicellulose films with 20% CA addition possessed the highest tensile strength and the lowest elongation at break. Morphology observation with scanning electron microscopy indicated that at CA content exceeding 20%, the modified films were dense with a smooth surface, illustrating the improvement of phase compatibility. A possible mechanism for esterification/cross-linking was proposed to elucidate the connection between CA addition and film performances.

The esterification of hemicellulose with citric acid formed cross-linking structure and promoted the hydrophobicity and oxygen barrier performance of films.  相似文献   

5.
Mullite is a promising material for advanced ceramic applications. The synthesis of mullite from oxides requires very high temperatures (T > 1000 °C). Here highly crystalline mullite whiskers with an average length and diameter of 2.37 ± 1.7 μm and 0.18 ± 0.11 μm, respectively, were synthesized by a fluoride-assisted method from aluminium sulfate, aluminium fluoride and fumed silica at a temperature as low as 800 °C.

Fluoride-assisted method for obtaining highly crystalline mullite whiskers at low temperature (∼800 °C) is reported.  相似文献   

6.
Ligand-based and energy-optimized structure-based approaches were considered to obtain excellent candidates as AChE inhibitors. The known AChE inhibitors were utilized to develop a pharmacophore hypothesis, HPRRR and X-ray crystallographic structures of AChE were used to produce three e-pharmacophore hypotheses viz. AHHRR, AHRR, and DHRR. Based on in silico approaches, we came across eight structurally diverse hits as non-competitive AChE inhibitors with good ADME properties. The best four hits, ZINC20592007, ZINC05354646, ZINC20649934, and ZINC39154782 were non-toxic, neuroprotective, and were selective AChE inhibitors (IC50 values 482 ± 1.88 nM, 580 ± 1.63 nM, 854 ± 2.65 nM, and 636 ± 1.79 nM respectively). The hits showed non-competitive inhibition of AChE at PAS site with attractive Ki values (0.21 ± 0.027 μM, 0.27 ± 0.064 μM, 0.3 ± 0.018 μM, and 0.28 ± 0.032 μM for ZINC20592007, ZINC05354646, ZINC20649934, and ZINC39154782 respectively), and increased the cholinergic activity as well as inhibited Aβ aggregation.

Ligand-based and energy-optimized structure-based approaches were helpful to obtain excellent candidates as non-toxic, PAS site selective, non-competitive AChE inhibitors.  相似文献   

7.
In the present study, novel β-cyclodextrin doped carbon dots (CCDs) were prepared via a simple one-pot hydrothermal method at a mild temperature (140 °C), using mixtures of β-cyclodextrin and citric acid as precursors. By characterizing the chemical properties of CCDs prepared at 140 °C and 180 °C, the importance of low-temperature reaction for preservation of the specific structure of β-CD was elucidated. The CCDs showed excellent optical properties and were stable to changes in pH, ionic strength and light irradiation. Since the fluorescence of the CCDs could be selectively quenched by isoniazid (INZ) through specific host–guest recognition effects, a convenient isoniazid fluorescence sensor was developed. Under the optimal conditions, the sensor exhibited a relatively low detection limit of 0.140 μg mL−1 and a wide detection range from 0.2 μg mL−1 to 50 μg mL−1 for INZ detection. Furthermore, the sensor was employed successfully for the determination of INZ in urine samples with satisfactory recovery (91.1–109.5%), displaying potential in clinical applications. Finally, low cytotoxicity of the prepared CCDs was confirmed using the CCK-8 method, followed by application in HepG2 cell imaging.

Novel β-cyclodextrin (β-CD) doped carbon dots (CCDs) were prepared at a mild temperature to preserve the host–guest recognition properties of β-CD. An isoniazid fluorescence sensor was constructed with a limit of detection of 0.14 μg mL−1.  相似文献   

8.
The microbial transformation of anabolic androgenic steroid mestanolone (1) with Macrophomina phaseolina and Cunninghamella blakesleeana has afforded seven metabolites. The structures of these metabolites were characterized as 17β-hydroxy-17α-methyl-5α-androsta-1-ene-3,11-dione (2), 14α,17β-dihydroxy-17α-methyl-5α-androstan-3,11-dione (3), 17β-hydroxy-17α-methyl-5α-androstan-1,14-diene-3,11-dione (4), 17β-hydroxy-17α-methyl-5α-androstan-3,11-dione (5), 11β,17β-dihydroxy-17α-methyl-5α-androstan-1-ene-3-one (6), 9α,11β,17β-trihydroxy-17α-methyl-5α-androstan-3-one (7), and 1β,11α,17β-trihydroxy-17α-methyl-5α-androstan-3-one (8). All the metabolites, except 5 and 6, were identified as new compounds. Substrate 1 (IC50 = 27.6 ± 1.1 μM), and its metabolites 2 (IC50 = 19.2 ± 2.9 μM) and 6 (IC50 = 12.8 ± 0.6 μM) exhibited moderate cytotoxicity against the HeLa cancer cell line (human cervical carcinoma). All metabolites were noncytotoxic to 3T3 (mouse fibroblast) and H460 (human lung carcinoma) cell lines. The metabolites were also evaluated for immunomodulatory activity, and all were found to be inactive.

The microbial transformation of anabolic androgenic steroid mestanolone (1) with Macrophomina phaseolina and Cunninghamella blakesleeana has afforded seven metabolites. Some of them have exhibited moderate cytotoxicity against HeLa cancer cell line.  相似文献   

9.
Magnetotactic bacteria, which synthesize biological magnetite nanoparticles (BMs), are the main microbial source of magnetic nanomaterials. Although the use of BMs has been explored in vitro and in vivo for new anticancer formulations, targeted treatments of fungal and parasitic diseases would also benefit from biogenic magnetic nanoformulations. Due to the necessity of new formulations of amphotericin B, we developed a magnetic-nanoparticle based conjugate of this drug using bacterial magnetosomes. Different amphotericin B preparations were obtained using BMs extracted from Magnetovibrio blakemorei strain MV-1T as well as glutaraldehyde and poly-l-lysine as linking reagents. The highest capture efficiencies and drug loadings were achieved using 0.1‰ poly-l-lysine as the only linking agent (52.7 ± 2.1%, and 25.3 ± 1.9 μg per 100 μg, respectively) and 0.1‰ poly-l-lysine and glutaraldehyde 12.5% (45.0 ± 5.4%, and 21.6 ± 4.9 μg per 100 μg, respectively). Transmission electron microscopy and infrared spectroscopy analyses confirmed the association of amphotericin B to the BM surface. Moreover, controlled drug release from these nanoparticles was achieved by applying an alternating magnetic field. In this condition the release of amphotericin B in PBS increased approximately four-fold as compared to the release under standard conditions with no applied magnetic fields. Hence, the functionalization of BMs with amphotericin B produces stable nanoformulations with a controllable drug release profile, thus, enabling its potential in the treatment of fungal and parasitic diseases.

Three-dimensional representation of amphotericin B molecules bound to magnetosomes derived from Magnetovibrio blakemorei strain MV-1T. Drug molecules are electrostatically adsorbed onto nanoparticles coated with positively charged poly-l-lysine.  相似文献   

10.
Eleven new 9,19-cycloartane triterpenes (1–9, 11–12) and one undescribed lanostane-type aglycone (10) were identified from the aerial parts of Cimicifuga yunnanensis. The new structures were elucidated by analysis of spectroscopic data. Compounds 3–5, 7–9, and 11, without obvious cytotoxicity at 50 μM, were evaluated for inhibiting the mRNA expressions of atherosclerosis-related factors of CD147 (extracellular matrix metalloproteinase inducer, EMMPRIN), matrix metalloproteinase 2 (MMP-2) and MMP-9 in phorbol-12-myristate-13-acetate (PMA) induced Human monocytic THP-1 cells by using a quantitative real-time PCR method (q-PCR). Among them, aglycones 7 and 8 showed potent activities, whereas all tested glycosides were inactive. Compounds 7 and 8 suppressed the mRNA expression of CD147 in a dose-dependent manner, with an IC50 value of 3.38 ± 0.27 μM and 8.25 ± 0.33 μM, respectively. Besides, 7 dose-related down-regulated the mRNA expression of MMP-2, and MMP-9, having an IC50 value of 6.32 ± 0.31 μM and 11.57 ± 0.23 μM, respectively. Meanwhile, 8 at 10 μM reduced the mRNA expression of MMP-2 and MMP-9 by 35% and 25%, respectively. Significantly, the migration ability of the induced THP-1 cells was potently and dose-dependently inhibited by 7, with an IC50 value of 5.87 ± 0.27 μM.

Eleven new 9,19-cycloartane triterpenes (CTs) (1–9, 11–12) and one undescribed lanostane-type aglycone (10) were identified from Cimicifuga yunnanensis. CTs aglycones 7 and 8 potently down-regulated the mRNA expression of CD147, MMP-2, and MMP-9.  相似文献   

11.
In this work, we introduce a simple and effective method for the controlled release of dye from dye saturation flocs by a well-designed pH responsive chitosan-based flocculant. The dye flocculation capacities could be precisely controlled from 0.5 to 2 g g−1 by simply adjusting the pH of the desorption solution. A series of flocs with different dye flocculation capacities was prepared and used as nitrogen-rich precursors to prepare nitrogen-doped carbon materials through one-step carbonization. The results demonstrate that the specific surface areas, pore structures and supercapacitance performance of the resulting N-doped carbon materials could be readily controlled by varying the dye flocculation capacity. By using a dye sludge floc with an appropriate dye flocculation capacity (1.5 g g−1) as a precursor, the resulting N-doped material exhibited a high specific capacity and good cycling performance for a supercapacitor electrode. The unique pH-responsive properties of the chitosan-based flocculant facilitated easy tuning of the surface cationic degree and deprotonation behavior by varying pH. This work presents a new concept for balancing between environmental capacity and energy capacity using a smart pH-responsive carrier system based on modified chitosan, which is highly promising for the recycling of industrial wastewater to produce energy materials.

Balance between environmental capacity and energy capacity using a pH-responsive chitosan-based flocculant.  相似文献   

12.
An anabolic-androgenic synthetic steroidal drug, methasterone (1) was transformed by two fungi, Cunninghamella blakesleeana and Macrophimina phaseclina. A total of six transformed products, 6β,7β,17β-trihydroxy-2α,17α-dimethyl-5α-androstane-3-one (2), 6β,7α,17β-trihydroxy-2α,17α-dimethyl-5α-androstane-3-one (3), 6α,17β-dihydroxy-2α,17α-dimethyl-5α-androstane-3,7-dione (4), 3β,6β,17β-trihydroxy-2α,17α-dimethyl-5α-androstane-7-one (5), 7α,17β-dihydroxy-2α,17α-dimethyl-5α-androstane-3-one (6), and 6β,9α,17β-trihydroxy-2α,17α-dimethyl-5α-androstane-3-one (7) were synthesized. Among those, compounds 2–5, and 7 were identified as new transformed products. MS, NMR, and other spectroscopic techniques were performed for the characterization of all compounds. Substrate 1 (IC50 = 23.9 ± 0.2 μg mL−1) showed a remarkable anti-inflammatory activity against nitric oxide (NO) production, in comparison to standard LNMMA (IC50 = 24.2 ± 0.8 μg mL−1). Whereas, its metabolites 2, and 7 showed moderate inhibition with IC50 values of 38.1 ± 0.5 μg mL−1, and 40.2 ± 3.3 μg mL−1, respectively. Moreover, substrate 1 was found to be cytotoxic for the human normal cell line (BJ) with an IC50 of 8.01 ± 0.52 μg mL−1, while metabolites 2–7 were identified as non-cytotoxic. Compounds 1–7 showed no cytotoxicity against MCF-7 (breast cancer), NCI-H460 (lung cancer), and HeLa (cervical cancer) cell lines.

Fungal transformation of methasterone resulted in six products (2–7). 2–5, and 7 were identified as new. Substrate 1 showed remarkable anti-inflammatory activity but was cytotoxic. Products 2 and 7 showed moderate activity but were non-cytotoxic.  相似文献   

13.
Hybrid hydrogels based on silylated polyethylene glycol, Si-PEG, were evaluated as hybrid matrices able to trap, stabilize and release bovine serum albumin (BSA) in a controlled manner. Parameters of the inorganic condensation reaction leading to a siloxane (Si–O–Si) three dimensional network were carefully investigated, in particular the temperature, the surrounding hygrometry and the Si-PEG concentration. The resulting hydrogel structural features affected the stability, swelling, and mechanical properties of the network, leading to different protein release profiles. Elongated polymer assemblies were observed, the length of which ranged from 150 nm to over 5 μm. The length could be correlated to the Si–O–Si condensation rate from 60% (hydrogels obtained at 24 °C) to about 90% (xerogels obtained at 24 °C), respectively. Consequently, the controlled release of BSA could be achieved from hours to several weeks, with respect to the fibers'' length and the condensation rate. The protein stability was evaluated by means of a thermal study. The main results gave insight into the biomolecule structure preservation during polymerisation, with ΔG < 0 for encapsulated BSA in any conditions, below the melting temperature (65 °C).

Silylated hybrid hydrogels of polyethylene glycol were designed to trap, stabilize and release a model protein (bovine serum albumin). Fine-tuning sol–gel reactions lead to sustained release of BSA over weeks, with good insight of protein stability.  相似文献   

14.
A cyclic tri-β-peptide cyclo(β-Ala-β-Ala-β-Lys) having diethylaminonaphthalimide at the β-Lys side chain (CP3Npi) self-assembled into a peptide nanotube in a solution of HFIP and water. CD spectra of the CP3Npi nanotubes show a negative Cotton effect at 441 nm and a positive Cotton effect at 393 nm, indicating that D–π–A naphthalimide chromophores are aligned in a left-handed chiral way along the nanotube. The CP3Npi nanotubes bear positive charges under acidic conditions retaining the nanotube structure but pH-responsive switching of D–π–A naphthalimide alignments along the nanotube between a left-handed chiral and random arrangement was observed. The peptide nanotube is a stable scaffold for attaining pH-responsive alignment switching of side-chain chromophores.

pH-Responsive switching between a left-handed chiral and random alignments of D–π–A naphthalimides along a peptide nanotube (PNT) composed of tri-β-cyclic peptides was attained in response to repeated pH changes.  相似文献   

15.
We assessed the pharmacokinetics and safety of solithromycin, a fluoroketolide antibiotic, in a phase 1, open-label, multicenter study of 13 adolescents with suspected or confirmed bacterial infections. On days 3 to 5, the mean (standard deviation) maximum plasma concentration and area under the concentration versus time curve from 0 to 24 h were 0.74 μg/ml (0.61 μg/ml) and 9.28 μg · h/ml (6.30 μg · h/ml), respectively. The exposure and safety in this small cohort of adolescents were comparable to those for adults. (This study has been registered at ClinicalTrials.gov under registration no. NCT01966055.)  相似文献   

16.

Introduction

Low plasma glutamine levels are associated with worse clinical outcome. Intravenous glutamine infusion dose- dependently increases plasma glutamine levels, thereby correcting hypoglutaminemia. Glutamine may be transformed to glutamate which might limit its application at a higher dose in patients with severe traumatic brain injury (TBI). To date, the optimal glutamine dose required to normalize plasma glutamine levels without increasing plasma and cerebral glutamate has not yet been defined.

Methods

Changes in plasma and cerebral glutamine, alanine, and glutamate as well as indirect signs of metabolic impairment reflected by increased intracranial pressure (ICP), lactate, lactate-to-pyruvate ratio, electroencephalogram (EEG) activity were determined before, during, and after continuous intravenous infusion of 0.75 g L-alanine-L-glutamine which was given either for 24 hours (group 1, n = 6) or 5 days (group 2, n = 6) in addition to regular enteral nutrition. Lab values including nitrogen balance, urea and ammonia were determined daily.

Results

Continuous L-alanine-L-glutamine infusion significantly increased plasma and cerebral glutamine as well as alanine levels, being mostly sustained during the 5 day infusion phase (plasma glutamine: from 295 ± 62 to 500 ± 145 μmol/ l; brain glutamine: from 183 ± 188 to 549 ± 120 μmol/ l; plasma alanine: from 327 ± 91 to 622 ± 182 μmol/ l; brain alanine: from 48 ± 55 to 89 ± 129 μmol/ l; p < 0.05, ANOVA, post hoc Dunn’s test).Plasma glutamate remained unchanged and cerebral glutamate was decreased without any signs of cerebral impairment. Urea and ammonia were significantly increased within normal limits without signs of organ dysfunction (urea: from 2.7 ± 1.6 to 5.5 ± 1.5 mmol/ l; ammonia: from 12 ± 6.3 to 26 ± 8.3 μmol/ l; p < 0.05, ANOVA, post hoc Dunn’s test).

Conclusions

High dose L-alanine-L-glutamine infusion (0.75 g/ kg/ d up to 5 days) increased plasma and brain glutamine and alanine levels. This was not associated with elevated glutamate or signs of potential glutamate-mediated cerebral injury. The increased nitrogen load should be considered in patients with renal and hepatic dysfunction.

Trial registration

Clinicaltrials.gov NCT02130674. Registered 5 April 2014  相似文献   

17.
We report thermally induced nematic to isotropic (N–I) phase transition as well as dewetting of 5CB Liquid Crystal (LC) thin films coated on flat and topographically patterned substrates with grating geometry of different line width (lP) and periodicity (λP). On a flat substrate, the nematic to isotropic (N–I) phase transition, which takes place within a temperature range between 31.1 °C and 34.4 °C is fully reversible, with re-appearance of identical Schlieren texture when the sample is cooled down during isotropic to nematic (I–N) transition. Upon further heating beyond N–I transition and annealing at T ≈ 65 °C, the film undergoes nucleated dewetting with formation and growth of holes, which eventually merge to form isolated droplets. The morphology of the dewetted structures remains unaltered when the film is cooled to room temperature from this stage, though the features undergo phase transition to the nematic state. In contrast on a topographically patterned substrate, the phase transition cycle is associated with a change of the texture of the film during cooling to the nematic stage. Interestingly the molecules exhibit homeotropic anchoring when λP ≈ 1.5 μm and planar anchoring when λP large (≈10 μm). When heated further to T ≈ 65 °C, the film dewets on topographically patterned substrates resulting in a collection of droplets, which are aligned to the substrate patterns when λP is large (≈10 μm). In contrast the dewetted droplets are random and not correlated to the patterns when λP is lower (≈1.5 μm).

Thermally induced nematic to isotropic (N–I) phase transition and dewetting of 5CB liquid crystal thin films on flat and topographically patterned substrates.  相似文献   

18.
Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) is one of the most important energetic materials. Investigations on its phase transitions and chemical reactions under extreme conditions are very important to understand the explosion process and design new energetic materials. By using a diamond anvil cell combined with in situ Raman, IR and X-ray diffraction techniques up to a pressure of ∼40 GPa, we found that β-HMX undergoes four reversible phase transitions without any chemical reaction under external pressure at room temperature. Isostructural phase transitions emerge around 5 GPa (ζ-HMX) and 10–13 GPa (ε-HMX), and another two phases emerge at 16 GPa (η-HMX) and 27 GPa (ϕ-HMX). The unit cells of ζ-HMX and ε-HMX were determined as a = 6.215 Å, b = 10.417 Å, c = 8.272 Å, β = 124.88°, P21/c at 6.2 GPa and a = 6.130 Å, b = 9.846 Å, c = 8.258 Å, β = 125.06°, P21/c at 12.6 GPa, respectively. The crystal structures of β, ζ, and ε-HMX were obtained by Rietveld refinement, based on which the rotations of NO2 groups were found to be related to the phase transition at 5 GPa. Additionally, HMX decomposes at 8.7 GPa and 300 °C. Carbon dioxide, hydroxyl, imino and hydroxyimino groups were detected in the IR spectrum, which indicates that the reaction contains a hydrogen transfer process. Our investigation uncovers the structural variation of β-HMX under external pressure and identifies the decomposition products under extreme conditions, which provides new insight to understand the detonation process of energetic materials.

Phase transitions, crystal structures and chemical reactions of β-HMX under extreme conditions were described systematically.  相似文献   

19.
Bio-recognizable and photocleavable amphiphilic glycopolymers and prodrugs containing photodegradable linkers (i.e. 5-hydroxy-2-nitrobenzyl alcohol) as junction points between bio-recognizable hydrophilic glucose (or maltose) and hydrophobic poly(α-azo-ε-caprolactone)-grafted alkyne or drug chains were synthesized by combining ring-opening polymerization, nucleophilic substitution, and “click” post-functionalization with alkynyl-pyrene and 2-nitrobenzyl-functionalized indomethacin (IMC). The block-grafted glycocopolymers could self-assemble into spherical photoresponsive micelles with hydrodynamic sizes of <200 nm. Fluorescence emission measurements indicated the release of Nile red, a hydrophobic dye, encapsulated by the Glyco-ONB-P(αN3CL-g-alkyne)n micelles, in response to irradiation caused by micelle disruption. Light-triggered bursts were observed for IMC-loaded or -conjugated micelles during the first 5 h. Following light irradiation, the drug release rate of IMC-conjugated micelles was faster than that of IMC-loaded micelles. Selective lectin binding experiments confirmed that glycosylated Glyco-ONB-P(αN3CL-g-alkyne)n could be used in bio-recognition applications. The nano-prodrug with and without UV irradiation was associated with negligible levels of toxicity at concentrations of less than 30 μg mL−1. The confocal microscopy and flow cytometry results indicated that the uptake of doxorubicin (DOX)-loaded micelles with UV irradiation by HeLa cells was faster than without UV irradiation. The DOX-loaded Gluco-ONB-P(αN3CL-g-PONBIMC)10 micelles effectively inhibited HeLa cells'' proliferation with a half-maximal inhibitory concentration of 8.8 μg mL−1.

Bio-recognizable and photocleavable amphiphilic glycopolymers and prodrugs containing photodegradable linkers as junction points between hydrophilic glycose and hydrophobic poly(α-azo-ε-caprolactone)-grafted alkyne or drug chains were synthesized.  相似文献   

20.
This work focuses on the microstructural analysis, magnetic properties, magnetocaloric effect, and critical exponents of Ni0.6Cd0.2Cu0.2Fe2O4 ferrites. These samples, denoted as S1000 and S1200, were prepared using the sol–gel method and sintered separately at 1000 °C and 1200 °C, respectively. XRD patterns confirmed the formation of cubic spinel structures and the Rietveld method was used to estimate the different structural parameters. The higher sintering temperature led to an increased lattice constant (a), crystallite size (D), magnetization (M), Curie temperature (TC), and magnetic entropy change (−ΔSM) for samples that exhibited second-order ferromagnetic–paramagnetic (FM–PM) phase transitions. The magnetic entropy changed at an applied magnetic field (μ0H) of 5 T, reaching maximum values of about 1.57–2.12 J kg−1 K−1, corresponding to relative cooling powers (RCPs) of 115 and 125 J kg−1 for S1000 and S1200, respectively. Critical exponents (β, γ, and δ) for samples around their TC values were studied by analyzing the M(μ0H, T) isothermal magnetizations using different techniques and checked by analyzing the −ΔSMvs. μ0H curves. The estimated values of β and γ exponents (using the Kouvel–Fisher method) and δ exponent (from M(TC, μ0H) critical isotherms) were β = 0.443 ± 0.003, γ = 1.032 ± 0.001, and δ = 3.311 ± 0.006 for S1000, and β = 0.403 ± 0.008, γ = 1.073 ± 0.016, and δ = 3.650 ± 0.005 for S1200. Obviously, these critical exponents were affected by an increased sintering temperature and their values were different to those predicted by standard theoretical models.

This work focuses on the microstructural analysis, magnetic properties, magnetocaloric effect, and critical exponents of Ni0.6Cd0.2Cu0.2Fe2O4 ferrites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号