首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The preparation of CsyFA1−yPbIxBr3−x-based perovskite by ultrasonic spraying has valuable application in the preparation of tandem solar cells on textured substrates due to its excellent stability and the advantages of large-area uniform preparation from the spraying technology. However, the bandgap of perovskite prepared by spraying method is difficult to adjust, and perovskites with a wide bandgap have the issue of phase instability. Here, we improved the crystallinity of the perovskite by simply controlling the post-annealing temperature. The results show that perovskite film prepared by hybrid spray method has the best crystallinity and device performance at a post-annealing temperature of 170 °C. On this basis, the bandgap of perovskite was changed from 1.53 eV to 1.76 eV by controlling the ratio of the organic halogen precursor solution. When the bandgap is 1.57 eV, a perovskite solar cell with an efficiency of 18.31% is obtained.

High-efficiency perovskite solar cells with good grain morphology and adjustable band gap were prepared by ultrasonic spray.  相似文献   

2.
Bandgap engineering of lead halide perovskite materials is critical to achieve highly efficient and stable perovskite solar cells and color tunable stable perovskite light-emitting diodes. Herein, we propose the use of machine learning as a tool to predict the bandgap of the perovskite materials from their compositions. By learning from the experimental results, machine learning algorithms present reliable performance in predicting the bandgap of the lead halide perovskites. The linear regression model can be used to manually predict the bandgap of the perovskite with the formula of CsaFAbMA(1−ab)Pb(ClxBryI(1−xy))3 (FA = formamidinium, MA = methylammonium). The neural network (NN) algorithm, which takes the interplay of cations and halide ions into account in predicting the bandgap, presents higher accuracy (with a RMSE of 0.05 eV and a Pearson coefficient larger than 0.99). Furthermore, the compositions of the mixed halide perovskites with desirable bandgaps and high iodide ratio for suppressing halide segregation are predicted by NN algorithm. These results highlight the power of machine learning in predicting the bandgap of the perovskites from their compositions and provide bandgap tuning directions for experiments.

Bandgap engineering of lead halide perovskite materials is critical to achieve highly efficient and stable perovskite solar cells and color tunable stable perovskite light-emitting diodes.  相似文献   

3.
Inorganic–organic hybrid perovskite solar cells (PSCs) have stirred up a new research spree in the field of photovoltaics due to its high photoelectric conversion efficiency and simple preparation process. In recent years, the research of inorganic–organic hybrid PSCs has been widely reported, among which FA+/Cs+ PSCs are especially outstanding. However, there are few reports explaining the lattice structural change mechanism of CsxFA1−xPbI1.80Br1.20 PSCs from the view of chemical bonds. In this work, a facile method of 15% Cs+ cations partially substituting FA+ cations has been presented to enhance the structural stability and photovoltaic performances of FAPbI1.80Br1.20 PSCs. The partial incorporation of Cs+ in FAPbI1.80Br1.20 resulted in a more beneficial tolerance factor and inhibited the deep defect state of elemental Pb. More importantly, it inhibited the phase transition from the cubic black α-phase to the hexagonal yellow δ-phase of FAPbI1.80Br1.20. Moreover, the power conversion efficiency (PCE) of Cs0.15FA0.85PbI1.80Br1.20 PSCs achieved a substantial improvement. The stability also achieved a remarkable promotion, which was demonstrated by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Nuclear Magnetic Resonance (NMR). These analyses indicate that 15% Cs+ can induce the lattice shrinkage, reduce the specific traps and inhibit the phase transition, thus improving the structural stabilities of Cs0.15FA0.85PbI1.80Br1.20 PSCs under atmosphere and calefaction. These results provide an effective way for fabricating stable and efficient inorganic–organic perovskite solar cells with promising properties.

The Cs0.15FA0.85PbI1.80Br1.20 perovskite shows excellent structural stability, while 15% Cs+ can reduce specific traps such as Pb0 and I0.  相似文献   

4.
For the perovskite solar cells with formamidinium lead iodide (FAPbI3) as a light harvester, cesium ions (Cs+) can be used to stabilize the perovskite crystal structure of FAPbI3. However, the incorporation of Cs+ ions usually reduces the grain size and degrades the crystallization of FAPbI3 layers, and this is harmful to the photovoltaic performance of solar cells. In this work, we incorporate Cs+ ions into FAPbI3 layers using the interfacial doping method, which is different from the mixed solution doping method in previous reports. Elemental analysis indicates that Cs+ dopants cannot be detected at the outer surfaces of perovskite layers, and the majority of Cs+ dopants should be localized in the vicinity of TiO2/perovskite interfaces, which is remarkably different from the distribution of Cs+ dopants in the perovskite layers prepared using the mixed solution doping method. It is found that interfacial doping method can avoid the blue shift of the light absorption edge and can improve the crystallization of FAPbI3 layers. For the optimized conditions, CsxFA1−xPbI3 solar cells prepared using the interfacial doping method achieve a power conversion efficiency (PCE) of 17.1%, which is better than the PCE of CsxFA1−xPbI3 devices prepared using the mixed solution doping method.

An interfacial doping method leads to a localized profile of dopants at interfaces, which results in improved photovoltaic performance.  相似文献   

5.
Despite the impressive photovoltaic performance with a power conversion efficiency beyond 23%, perovskite solar cells (PSCs) suffer from poor long-term stability, failing by far the market requirements. Although many efforts have been made towards improving the stability of PSCs, the thermal stability of PSCs with CH3NH3PbI3 as a perovskite and organic hole-transport material (HTM) remains a challenge. In this study, we employed the thermally stable (NH2)2CHPbI3 (FAPbI3) as the light absorber for the carbon-based and HTM-free PSCs, which can be fabricated by screen printing. By introducing a certain amount of CsBr (10%) into PbI2, we obtained a phase-stable CsxFA1−xPbBrxI3−x perovskite by a “two-step” method and improved the device power conversion efficiency from 10.81% to 14.14%. Moreover, the as-prepared PSCs with mixed-cation perovskite showed an excellent long-term stability under constant heat (85 °C) and thermal cycling (−30 °C to 85 °C) conditions. These thermally stable and fully-printable PSCs would be of great significance for the development of low-cost photovoltaics.

Mixed-cation CsxFA1–xPbBrxI3–x perovskite was used as light absorber for the carbon-based perovskite solar cells, and the as-prepared solar devices showed excellent long-term stability under constant heat (85 °C) and thermal cycling (−30 °C to 85 °C) condition.  相似文献   

6.
The conversion efficiencies for silicon-based photovoltaic devices have become stagnant, with the record conversion efficiency of 26.7% achieved in 2017. This record efficiency is also close to the theoretical Auger limit of 29.4% for single-junction silicon solar cells. Therefore, it is anticipated that further enhancement in conversion efficiency could only be achieved by adopting multijunction or tandem concepts for silicon PV devices. In this context, perovskites are widely preferred for tandem application with silicon solar cells to mitigate thermalization and non-absorbed photon losses to achieve higher conversion efficiencies. The perovskite–silicon (PVK–Si) tandem design can deliver 45.1% efficiency, and currently, this design holds a record conversion efficiency of 29.5%. Therefore, critical research and development activities are required to unlock the potential of such devices. Thus, we have designed and investigated enhanced hole extraction PVK–Si monolithic tandem solar cells with 33% power conversion efficiency (PCE) to make a humble contribution in this field. The device is facilitated with Me-4PACz and ITO-based ideal tunnel recombination junctions for current matching, with parasitic absorption losses. Detailed standalone and tandem analysis has been carried out in terms of absorber layer thickness variation, illuminated current density–voltage (JV) curves, external quantum efficiency (EQE), energy band diagrams (EBDs), filtered spectra, filtered integrated power, current matching, and tandem PV parameters to finalize the conversion efficiency. The device constructed using a 1.68 eV perovskite top cell and 1.12 eV c-Si-based heterojunction with an intrinsic thin layer (HIT) based bottom cell showed an open-circuit voltage, VOC, of as high as 2.02 V. The comprehensive analysis of PVK–Si tandem devices reported in this work may pave the way for developing high-efficiency tandem solar cells in the future.

The conversion efficiencies for silicon-based photovoltaic devices have become stagnant, with the record conversion efficiency of 26.7% achieved in 2017.  相似文献   

7.
Mi-Hee Jung 《RSC advances》2021,11(52):32590
The perovskite solar cells have demonstrated to be strong competitors for conventional silicon solar cells due to their remarkable power conversion efficiency. However, their structural instability is the biggest obstacle to commercialization. To address these issues, we prepared (CH3NH3)1−x(HC(NH2)2)xPbI3 (CH3NH3 = MA, HC(NH2)2 = FA) perovskite alloys that contain ethylammonium (EA, CH3CH2NH3+) and benzylammonium (BA, C6H5CH2NH3+) cations with no new additional two-dimensional (2D) perovskite phases. The crystal structures of alloy perovskites exhibit the cubic phase, which decreased the cation disorder and the intrinsic instability compared to 3D MAPbI3 perovskite. The band gaps of the alloy perovskites are almost the same as the corresponding 3D perovskites, which exhibit a high refractive index, a large absorption coefficient, and paramagnetic properties for the production of high performance photovoltaic devices. After we constructed the solar cell with the configuration of regular (n–i–p) solar cells using the alloy perovskites, the power conversion efficiencies (PCE) of the MA0.83EA0.17PbI3 perovskite solar cell showed the highest efficiency, which was 10.22%, under 1 sun illumination.

We prepared (MA)1−x(FA)xPbI3 (CH3NH3 = MA, HC(NH2)2 = FA) perovskite alloys that contain ethylammonium (CH3CH2NH3+) and benzylammonium (C6H5CH2NH3+) cations with no new additional two-dimensional perovskite phases.  相似文献   

8.
One step solution processing together with anti-solvent engineering is a tested route in producing high-quality perovskite films due to its simplicity and low fabrication costs. Commercialization of perovskites will require replacing the anti-solvent drip process and lowering annealing temperatures to decrease the energy payback time. In this work, we successfully replace the anti-solvent drip with the anti-solvent bath (ASB) method through balancing the methylammonium (MA) and formamidinium (FA) cations to produce high-quality cesium (Cs)/FA/MA triple cation perovskite films. Furthermore, the annealing parameters of Cs0.05FA0.16MA0.79PbI2.7Br0.3 are enhanced to allow for a low-temperature fabrication process when paired with the ASB method. This resulted in the formation of remarkable films with micrometer grains and few defects. Self-powered photodetectors were constructed using the improved conditions, resulting in devices that exhibited a low dark current, an on/off ratio of >103, and a rapid rise time of 12.4 μs. The conclusion of this work shows that ASB can be applied to triple cation perovskites and in using this method, the previously established optimal annealing temperature is lowered.

High quality triple cation perovskite thin films realized through the combination of the anti-solvent bath method and low temperature annealing.  相似文献   

9.
To overcome the drawbacks in three-dimensional (3D) perovskites, such as instability, surface hydration, and ion migration, recently researchers have focused on comparatively stable lower-dimensional perovskite derivatives. All-inorganic zero-dimensional (0D) perovskites (e.g., Cs4PbX6; X = Cl, Br, I) can be evolved as a high performing material due to their larger exciton binding energy and better structural stability. The clear understanding of carrier recombination process in 0D perovskites is very important for better exploitation in light-emitting devices. In this work, we comprehensively studied the light emission process in 0D Cs4PbI6 nanocrystals (NCs) and interestingly we observe intense white light emission at low temperatures. According to our experimental observations, we conclude that the white light emission contains an intrinsic exciton emission at 2.95 eV along with a broadband emission covering from 1.77 eV to 2.6 eV. We also confirm that the broadband emission is related to the carrier recombination of both self-trapped excitons (STE) and defect state trapped excitons. Our investigations reveal the carrier recombination processes in Cs4PbI6 NCs and provide experimental guidelines for the potential application of white light generation.

The broadband white light emission is realized in zero dimensional (OD) Cs4PbI6 nanocrystals at low temperatures. The white light emission originates from recombination of both self-trapped excitons and defect state trapped excitons.  相似文献   

10.
We theoretically investigated the structural and electronic properties of the all-inorganic perovskite CsSn1−xPbxBr3, compared with the mixed perovskite compound MAyCs1−ySn1−xPbxBr3, based on first-principle calculations. It has been demonstrated that Pb and Sn atoms are inclined to occupy the lattice sites uniformly in the all-inorganic perovskite, and this is distinguished from the most stable configurations observed in the mixed Cs-MA system. It is interesting that small Sn atoms prefer to stay close to the large MA+ cations, leading to smaller local structural distortion. Through spin-orbital coupling calculations, we found non-linear bowing band evolution in the all-inorganic mixed Sn–Pb system with a small bowing parameter (b = 0.35), while the band gap of MAyCs1−ySn1−xPbxBr3 was clearly reduced as the ratio of MA was around 0.5 (y ≥ 0.25). We determined the bowing band evolution in the mixed cation perovskites and the intrinsic electronic deficiency of the all-inorganic perovskite to obtain the optimal band gap.

We theoretically investigated the structural and electronic properties of the all-inorganic perovskite CsSn1−xPbxBr3, compared with the mixed perovskite compound MAyCs1−ySn1−xPbxBr3, based on first-principle calculations.  相似文献   

11.
Cs2TiIyBr6−y is a potential light absorption material for all-inorganic lead free perovskite solar cells due to its suitable and tunable bandgap, high optical absorption coefficient and high environmental stability. However, solar cells fabricated based on Cs2TiIyBr6−y do not perform well, and the reasons for their low efficiency are still unclear. Herein, hot carrier relaxation processes in Cs2TiIyBr6−y (y = 0, 2 and 6) were investigated by a time-domain density functional theory combined with the non-adiabatic molecular dynamics method. It was found that the relaxation time of the hot carriers in Cs2TiIyBr6−y ranges from 2–3 ps, which indicates that the hot carriers within 10 nm from the Cs2TiIyBr6−y/TiO2 interface can be effectively extracted before their energy is lost completely. The carrier-phonon non-adiabatic coupling (NAC) analyses demonstrate that the longer hot electron relaxation time in Cs2TiI2Br4 compared with that in Cs2TiBr6 and Cs2TiI6 originates from its weaker NAC strength. Furthermore, the electron–phonon interaction analyses indicate that the relaxation of hot electrons mainly comes from the coupling between the electrons distributed on the Ti–X bonds and the Ti–X vibrations, and that of hot holes can be attributed to the coupling between the electrons distributed on the X atoms and the distortions of [TiIyBr6−y]2−. The simulation results indicate that Cs2TiI2Br4 should be better than Cs2TiBr6 and Cs2TiI6 to act as a light absorption layer based on the hot carrier energy loss, and the hot electron relaxation time in Cs2TiIyBr6−y can be adjusted by tuning the proportion of the I element.

The hot carriers within 10 nm from the Cs2TiIyBr6−y/TiO2 interface can be extracted effectively due to their 2–3 ps relaxation time.  相似文献   

12.
Non-toxic lead free inorganic metal halide cubic double perovskites have drawn a lot of attention for their commercial use in optoelectronic and photovoltaic devices. Here we have explored the structural, electronic, optical and mechanical properties of lead-free non-toxic inorganic metallic halide cubic double perovskite Cs2AgBiBr6 in its ordered and disordered forms using first-principles density functional theory (DFT) to verify the suitability of its photovoltaic and optoelectronic applications. The indirect bandgap of Cs2AgBiBr6 is tuned to a direct bandgap by changing it from an ordered to disordered system following the disordering of Ag+/Bi3+ cations by creating antisite defects in its sublattice. In the disordered Cs2AgBiBr6, the Bi 6p orbital modifies the conduction band significantly and leads to a shift the conduction band minimum (CBM) from L to Γ-point. Consequently, the system changes from indirect to direct band gap material. At the same time the band gap reduces significantly. The band gap of Cs2AgBiBr6 decreases from 2.04 eV to 1.59 eV. The absorption edge towards the lower energy region and strong optical absorption in the visible to the UV region indicate that the disordered direct band gap material Cs2AgBiBr6 is appropriate for use in solar cells and optoelectronic and energy harvesting devices. Dielectric function, reflectivity and refractive index of disordered direct band gap material Cs2AgBiBr6 is favorable for its optoelectronic and photovoltaic applications. However, its stability and ductility favor its thin film fabrication. The creation of antisite defects in the sublattice of double perovskites opens a new avenue for the design of photovoltaic and optoelectronic materials.

The bandgap of Cs2AgBiBr6 is tuned to a direct bandgap by the disordering of Ag+/Bi3+ cations, creating antisite defects. The creation of antisite defects in the sublattice of double perovskites opens a new avenue for the design of photovoltaic and optoelectronic materials.  相似文献   

13.
With the increase in the importance of using green energy sources to meet the world''s energy demands, attempts have been made to push perovskite solar cell technology toward industrialization all around the world. Improving the properties of perovskite materials as the heart of PSCs is one of the methods to fabricate favorable photovoltaic (PV) solar cells based on perovskites. Here, cadmium chloride (CdCl2) was used as an additive source for the perovskite precursor to improve its PV properties. Results indicated CdCl2 improves the perovskite growth and tailors its crystalline properties, suggesting boosted charge transport processes in the bulk and interfaces of the perovskite layer with electron–hole transport layers. Overall, by incorporation of 1.0% into the MAPbI3 layer, a maximum power conversion efficiency of 15.28% was recorded for perovskite-based solar cells, higher than the 12.17% for the control devices. The developed method not only improved the PV performance of devices but also boosted the stability behavior of solar cells due to the passivated domain boundaries and enhanced hydrophobicity in the CdCl2-based devices.

With the increase in the importance of using green energy sources to meet the world''s energy demands, attempts have been made to push perovskite solar cell technology toward industrialization all around the world.  相似文献   

14.
Liping Peng  Wei Xie 《RSC advances》2020,10(25):14679
Perovskite solar cells based on the lead free hybrid organic–inorganic CH3NH3SnI3 (MASnI3) and CH4N2SnI3 (FASnI3) perovskites were fabricated, and the photoelectric conversion efficiency (PCE) was assessed. FASnI3''s PCE was higher than MASnI3''s efficiency. To study the different photovoltaic properties, we calculated their structural, electronic, and optical properties using density functional theory via the Perdew–Burke–Ernzerhof and spin–orbit coupling (PBE-SOC) methods. The results show that FASnI3 exhibits an appropriate band gap, substantial stability, marked optical properties, and significant hole and electron conductive behavior compared with MASnI3. The interaction of organic cations (FA+) with the inorganic framework of FASnI3 was stronger than that with MASnI3, so they affected the band length and band angle distribution, causing the structure of the FASnI3 and MASnI3 to change. The calculations also demonstrated that energy splitting was evident in FASnI3 due to the spin–orbit coupling effect, however, it was moderate in MASnI3, which was caused by the H bond effect. This research not only furthers the understanding of these functional materials, but also can assist the development of highly efficient and stable non-lead perovskite solar cells.

Perovskite solar cells based on the lead free hybrid organic–inorganic CH3NH3SnI3 (MASnI3) and CH4N2SnI3 (FASnI3) perovskites were fabricated, and the photoelectric conversion efficiency (PCE) was assessed.  相似文献   

15.
Organic–inorganic hybrid perovskites have emerged as promising light harvesting materials for many optoelectronic devices. Here, we present a facile mechanochemical synthesis (MCS) route for the preparation of a series of pure phase mixed-cation/anion (FAPbI3)x(MAPbBr3)1−x (0 ≤ x ≤ 1) hybrid perovskite materials for high-efficiency thin-film perovskite solar cells (PSCs). The use of (α-FAPbI3)0.95(MAPbBr3)0.05 perovskite prepared by MCS for the thin-film PSCs achieves a maximum PCE of 15.9% from a current–voltage (JV) scan, which stabilises at 15.4% after 120 s of the maximum power point output. Furthermore, PSCs based on (KPbI3)0.05(FAPbI3)0.9(MAPbBr3)0.05 perovskite prepared by MCS exhibit higher photovoltaic performance and lower hysteresis compared with (α-FAPbI3)0.95(MAPbBr3)0.05, with a maximum PCE of 16.7%. These results indicate that the use of mechanochemically synthesised perovskites provides a promising strategy for high performance PSCs and superior control in optoelectronic properties, leading to improved control in fabrication approaches and facilitating the development of efficient and stable PSCs in the future.

Pure phase mixed-cation/anion (α-FAPbI3)x(MAPbBr3)1−x (0 ≤ x ≤ 1) hybrid perovskites are efficiently prepared via MCS, and the band gaps can be tuned easily. PSCs based on 5% K-doped perovskite exhibit low IV hysteresis, with a maximum PCE of 16.7%.  相似文献   

16.
As outstanding light harvesters, solution-processable organic–inorganic hybrid perovskites (OIHPs) have been drawing considerable attention thanks to their higher power conversion efficiency (PCE) and cost-effective synthesis relative to other photovoltaic materials. Nevertheless, their further development is severely hindered by the drawbacks of poor stability and rapid degradation in particular. First-principles calculations based on density functional theory (DFT) are hence performed towards the perovskite compounds MA1−αFAαPbI3−βXβ (X = Cl, Br), with the aim of exploring more efficient and stable OIHPs. In addition to that, a hybrid density functional is adopted for exact electronic properties, and their band structures indicate that the doped series are all direct band-gap semiconductors. Moreover, the defect formation energies indicate that the stability of perovskite compounds can be significantly enhanced via ion doping. Meanwhile, it is unveiled that the optical performance of the doped perovskite series is also effectively improved through ion doping. Therefore, the investigated perovskite compounds MA1−αFAαPbI3−βXβ (X = Cl, Br) are promising candidates for enhancing solar-energy conversion efficiency. Our results pave a way in deeper understanding of the inherent characteristics of OIHPs, which is useful for designing new-type perovskite-based photovoltaic devices.

The absorption performance of perovskite CH3NH3PbI3 can be significantly improved via mono-, or co-doping of organic cations and halide ions.  相似文献   

17.
We herein demonstrate n-i-p-type planar heterojunction perovskite solar cells employing spin-coated ZnO nanoparticles modified with various alkali metal carbonates including Li2CO3, Na2CO3, K2CO3 and Cs2CO3, which can tune the energy band structure of ZnO ETLs. Since these metal carbonates doped on ZnO ETLs lead to deeper conduction bands in the ZnO ETLs, electrons are easily transported from the perovskite active layer to the cathode electrode. The power conversion efficiency of about 27% is improved due to the incorporation of alkali carbonates in ETLs. As alternatives to TiO2 and n-type metal oxides, electron transport materials consisting of doped ZnO nanoparticles are viable ETLs for efficient n-i-p planar heterojunction solar cells, and they can be used on flexible substrates via roll-to-roll processing.

Planar formamidinium perovskite solar cells have been fabricated with an alkali carbonate-doped zinc oxide layer.  相似文献   

18.
Aluminum-doped and undoped zinc oxide films were investigated as potential front and rear contacts of perovskite single and perovskite/silicon tandem solar cells. The films were prepared by atomic layer deposition (ALD) at low (<200 °C) substrate temperatures. The deposited films were crystalline with a single-phase wurtzite structure and exhibit excellent uniformity and low surface roughness which was confirmed by XRD and SEM measurements. Necessary material characterizations allow for realizing high-quality films with low resistivity and high optical transparency at the standard growth rate. Spectroscopic ellipsometry measurements were carried out to extract the complex refractive index of the deposited films, which were used to study the optics of perovskite single junction and perovskite/silicon tandem solar cells. The optics was investigated by three-dimensional finite-difference time-domain simulations. Guidelines are provided on how to realize perovskite solar cells exhibiting high short-circuit current densities. Furthermore, detailed guidelines are given for realizing perovskite/silicon tandem solar cells with short-circuit current densities exceeding 20 mA cm−2 and potential energy conversion efficiencies beyond 31%.

The necessity of thin and highly doped metal oxide films is discussed for realizing efficient perovskite single and perovskite/silicon tandem solar cells.  相似文献   

19.
In order to achieve low-cost, high efficiency and stable photoelectric devices, two-dimensional (2D) inorganic halide perovskite photosensitive layers need to cooperate with other functional layers. Here, we investigate the structure, stability and optical properties of perovskite and transition metal dichalcogenide (TMD) heterostructures using first-principles calculations. Firstly, Cs2PbX4–PtSe2 (X = Cl, Br, I) heterostructures are stable because of negative interface binding energy. With the halogen varying from Cl to I, the interface binding energies of Cs2PbX4–PtSe2 heterostructures decrease rapidly. 2D Cs2PbCl4–PtSe2, Cs2PbBr4–PtSe2 and Cs2PbI4–PtSe2 heterostructures have an indirect bandgap with the value of 1.28, 1.02, and 1.29 eV, respectively, which approach the optimal bandgap (1.34 eV) for solar cells. In the contact state, the electrons transfer from the PtSe2 monolayer to Cs2PbX4 monolayer and only the Cs2PbBr4–PtSe2 heterostructure maintains the type-II band alignment. The Cs2PbBr4–PtSe2 heterostructure has the strongest charge transfer among the three Cs2PbX4–PtSe2 heterostructures because it has the lowest tunnel barrier height (ΔT) and the highest potential difference value (ΔEP). Furthermore, the light absorption coefficient of Cs2PbX4–MSe2 heterostructures is at least two times higher than that of monolayer 2D inorganic halide perovskites. With the halogen varying from Cl to I, the light absorption coefficients of the Cs2PbX4–PtSe2 heterostructures increase rapidly in the visible region. Above all, the Cs2PbX4–MSe2 heterostructures have broad application prospects in photodetectors, solar cells and other fields.

Energy level graphs of the monolayer PtSe2 and Cs2PbX4 in the (a) precontact and (b) contact. The Cs2PbBr4–PtSe2 heterostructure has a type-II level alignment which is conducive to spontaneously driving the holes and electrons to move forward in opposite directions.  相似文献   

20.
The addition of alkali metal halides to hybrid perovskite materials can significantly impact their crystallisation and hence their performance when used in solar cell devices. Previous work on the use of potassium iodide (KI) in active layers to passivate defects in triple-cation mixed-halide perovskites has been shown to enhance their luminescence efficiency and reduce current–voltage hysteresis. However, the operational stability of KI passivated perovskite solar cells under ambient conditions remains largely unexplored. By investigating perovskite solar cell performance with SnO2 or TiO2 electron transport layers (ETL), we propose that defect passivation using KI is highly sensitive to the composition of the perovskite–ETL interface. We reconfirm findings from previous reports that KI preferentially interacts with bromide ions in mixed-halide perovskites, and – at concentrations >5 mol% in the precursor solution – modifies the primary absorber composition as well as leading to the phase segregation of an undesirable secondary non-perovskite phase (KBr) at high KI concentration. Importantly, by studying both material and device stability under continuous illumination and bias under ambient/high-humidity conditions, we show that this secondary phase becomes a favourable degradation product, and that devices incorporating KI have reduced stability.

The addition of alkali metal halides to hybrid perovskite materials can significantly impact their crystallisation and hence their performance when used in solar cell devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号