首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liver fibrosis, originating from activated hepatic stellate cells (HSCs), is receiving much attention in the treatment of clinical liver disease. In this study, mitochondria-targeted curcumin (Cur) loaded 3-carboxypropyl-triphenylphosphonium bromide–poly(ethylene glycol)–poly(ε-caprolactone) (CTPP–PEG–PCL) micelles were constructed to prolong the systemic circulation of Cur, improve the bioavailability of Cur and play a precise role in anti-fibrosis. The prepared Cur–CTPP–PEG–PCL micelles with a spherical shape had satisfactory dispersion, low critical micelle concentration (CMC) and high encapsulation efficiency (92.88%). The CTPP modification endowed good endosomal escape ability to the CTPP–PEG–PCL micelles, and micelles could be selectively accumulated in mitochondria, thereby inducing the enhanced cell proliferation inhibition of HSC-T6 cells. Mitochondrial Membrane Potential (MMP) was greatly reduced due to the mitochondrial-targeting of Cur. Moreover, the system circulation of Cur was extended and bioavailability was significantly enhanced in vivo. As expected, Cur loaded CTPP–PEG–PCL micelles were more effective in improving liver fibrosis compared with Cur and Cur–mPEG–PCL micelles. In conclusion, the Cur–CTPP–PEG–PCL based micelles can be a potential candidate for liver fibrosis treatment in future clinical applications.

A mitochondria-targeting micelle system based on CTPP–PEG–PCL polymer was designed to deliver curcumin to active HSC-T6 cells and prolong the systemic circulation and bioavailability of curcumin in vivo for effective treatment of liver fibrosis.  相似文献   

2.
Reduction-responsive polymer micelles are highly promising drug carriers with better tumor therapeutic effect, which can be achieved by controlled drug release under stimulation. Gold nanorods (AuNRs) have attracted considerable attention due to their unique optical and electronic properties when used for biomedical applications. Herein, the lipoic-acid-functionalized reduction-responsive amphiphilic copolymer poly(ε-caprolactone)-b-poly[(oligoethylene glycol) acrylate] (LA–PCL–SS–POEGA) with a disulfide group between the two blocks was prepared to modify AuNRs via Au–S bonds. The size and morphology of AuNRs@LA–PCL–SS–POEGA were measured by dynamic laser light scattering (DLS) and transmission electron microscopy (TEM) methods. The stabilities of AuNRs@LA–PCL–SS–POEGA in different types of media were studied by UV/vis spectroscopy and DLS techniques. The results show that AuNRs@LA–PCL–SS–POEGA gradually aggregate in a concentrated salt solution containing 150 mM dithiothreitol (DTT), but exhibit high stability in a non-reducing environment. Near infrared (NIR)-induced heating of AuNRs@LA–PCL–SS–POEGA was investigated in an aqueous solution under NIR laser irradiation (808 nm), revealing that AuNRs@LA–PCL–R–POEGA maintain excellent photothermal conversion efficiency after modification. When compared with non-reduction responsive AuNRs@LA–PCL–CC–POEGA, the in vitro internalization of AuNRs@LA–PCL–SS–POEGA demonstrates that the reduction-responsive polymer could enhance the cellular uptake of nanoparticles measured by inductively coupled plasma mass spectrometry (ICP-MS) and TEM.

Gold nanorod (AuNRs) modified by reduction-responsive amphiphilic copolymer poly(ε-caprolactone)-b-poly[(oligoethylene glycol)acrylate] (LA–PCL–SS–POEGA) can enhance the cellular uptake of AuNRs, presumably due to the aggregation under reducing environment in the cells.  相似文献   

3.
The β-selective asymmetric addition of γ-butyrolactam with cyclic imino esters catalyzed by a bifunctional chiral tertiary amine has been developed, which provides an efficient access to optically active β-position functionalized pyrrolidin-2-one derivatives in both high yield and enantioselectivity (up to 78% yield and 95 : 5 er). This is the first catalytic method to access chiral β-functionalized pyrrolidin-2-one via a direct organocatalytic approach.

The asymmetric addition of γ-butyrolactam with cyclic imino esters catalyzed by (DHQD)2AQN has been developed, which provides an access to β-position functionalized pyrrolidin-2-one derivatives in high levels yield and enantioselectivity.

Metal-free organocatalytic asymmetric transformations have successfully captured considerable enthusiasm of chemists as powerful methods for the synthesis of various kinds of useful chiral compounds ranging from the preparation of biologically important molecules through to novel materials.1 Chiral pyrrolidin-2-ones have been recognized as important structural motifs that are frequently encountered in a variety of biologically active natural and synthetic compounds.2 In particular, the β-position functionalized pyrrolidin-2-one backbones, which can serve as key synthetic precursors for inhibitory neurotransmitters γ-aminobutyric acids (GABA),3 selective GABAB receptor agonists4 as well as antidepressant rolipram analogues,5 have attracted a great deal of attention. Therefore, the development of highly efficient, environmentally friendly and convenient asymmetric synthetic methods to access these versatile frameworks is particularly appealing.As a direct precursor to pyrrolidin-2-one derivatives, recently, α,β-unsaturated γ-butyrolactam has emerged as the most attractive reactant in asymmetric organometallic or organocatalytic reactions for the synthesis of chiral γ-position functionalized pyrrolidin-2-ones (Scheme 1). These elegant developments have been achieved in the research area of catalytic asymmetric vinylogous aldol,6 Mannich,7 Michael8 and annulation reactions9 in the presence of either metal catalysts or organocatalysts (a, Scheme 1). These well-developed catalytic asymmetric methods have been related to the γ-functionalized α,β-unsaturated γ-butyrolactam to date. However, in sharp contrast, the approaches toward introducing C-3 chirality at the β-position of butyrolactam through a direct catalytic manner are underdeveloped (b, Scheme 1)10 in spite of the fact that β-selective chiral functionalization of butyrolactam can directly build up α,β-functionalized pyrrolidin-2-one frameworks.Open in a separate windowScheme 1Different reactive position of α,β-unsaturated γ-butyrolactam in catalytic asymmetric reactions.So far, only a few metal-catalytic enantioselective β-selective functionalized reactions have been reported. For examples, a rhodium/diene complex catalyzed efficient asymmetric β-selective arylation10a and alkenylation10b have been reported by Lin group (a, Scheme 2). Procter and co-workers reported an efficient Cu(i)–NHC-catalyzed asymmetric silylation of unsaturated lactams (b, Scheme 2).10c Despite these creative works, considerable challenges still exist in the catalytic asymmetric β-selective functionalization of γ-butyrolactam. First, the scope of nucleophiles is limited to arylboronic acids, potassium alkenyltrifluoroborates and PhMe2SiBpin reagents. Second, the catalytic system and activation mode is restricted to metal/chiral ligands. To our knowledge, an efficient catalytic method to access chiral β-functionalized pyrrolidin-2-one via a direct organocatalytic approach has not yet been established. Therefore, the development of organocatalytic asymmetric β-selective functionalization of γ-butyrolactam are highly desirable. In conjunction with our continuing efforts in building upon chiral precedents by using chiral tertiary amine catalytic system,11 we rationalized that the activated α,β-unsaturated γ-butyrolactam might serve as a β-position electron-deficient electrophile. This γ-butyrolactam may react with a properly designed electron-rich nucleophile to conduct an expected β-selective functionalized reaction of γ-butyrolactam under a bifunctional organocatalytic fashion, while avoiding the direct γ-selective vinylogous addition reaction or β,γ-selective annulation as outlined in Scheme 2. Herein we report the β-selective asymmetric addition of γ-butyrolactam with cyclic imino esters12 catalyzed by a bifunctional chiral tertiary amine, which provides an efficient and facile access to optically active β-position functionalized pyrrolidin-2-one derivatives with both high diastereoselectivity and enantioselectivity.Open in a separate windowScheme 2β-Selective functionalization of γ-butyrolactam via metal- (previous work) or organo- (this work) catalytic approach.To begin our initial investigation, several bifunctional organocatalysts13 were firstly screened to evaluate their ability to promote the β-selective asymmetric addition of γ-butyrolactam 2a with cyclic imino ester 3a in the presence of 15 mol% of catalyst loading at room temperature in CH2Cl2 (entries 1–6,
EntryCat.SolventYieldeerf
11aCH2Cl270%40 : 60
21bCH2Cl2<5%57 : 43
31cCH2Cl270%65 : 35
41dCH2Cl268%70 : 30
51eCH2Cl258%63 : 47
61fCH2Cl271%77 : 23
71fDCE72%80 : 20
81fCHCl370%80 : 20
91fMTBE68%79 : 21
101fToluene63%78 : 22
111fTHF45%76 : 24
121fMeOH32%62 : 38
13b1fDCE : MTBE75%87 : 13
14c1fDCE : MTBE72%87 : 13
15d1fDCE : MTBE70%85 : 15
Open in a separate windowaReaction conditions: unless specified, a mixture of 2a (0.2 mmol), 3a (0.3 mmol) and a catalyst (15 mmol%) in a solvent (2.0 mL) was stirred at rt. for 48 h.bThe reaction was carried out in 2.2 mL a mixture of dichloroethane and methyl tert-butyl ether (volume ratio = 10 : 1).cThe reaction was carried out in 2.2 mL a mixture of dichloroethane and methyl tert-butyl ether (volume ratio = 10 : 1) for 24 h.dThe reaction was carried out in 2.2 mL a mixture of dichloroethane and methyl tert-butyl ether (volume ratio = 10 : 1) and 10 mol% of catalyst was used.eIsolated yields.fDetermined by chiral HPLC, the product was observed with >99 : 1 dr by 1H NMR and HPLC. Configuration was assigned by X-ray crystal data of 4a.The results of experiments under the optimized conditions that probed the scope of the reaction are summarized in Scheme 3. The catalytic β-selective asymmetric addition of γ-butyrolactam 2a with cyclic imino esters 3a in the presence of 15 mol% (DHQD)2AQN 1f was performed. A variety of phenyl-substituted cyclic imino esters including those bearing electron-withdrawing and electron-donating substituents on the aryl ring, heterocyclic were also examined. The electron-neutral, electron-rich, or electron-deficient groups on the para-position of phenyl ring of the cyclic imino esters afforded the products 4a–4m in 57–75% yields and 82 : 18 to 95 : 5 er values. It appears that either an electron-withdrawing or an electron-donating at the meta- or ortho-position of the aromatic ring had little influence on the yield and stereoselectivity. Similar results on the yield and enantioselectivities were obtained with 3,5-dimethoxyl substituted cyclic imino ester (71% yield and 91 : 9 er). It was notable that the system also demonstrated a good tolerance to naphthyl substituted imino ester (78% yield and 92 : 8 er value). The 2-thienyl substituted cyclic imino ester proceeded smoothly under standard conditions as well, which gave the desired product 4p in good enantioselectivity (88 : 12 er), although yield was slightly lower. However, attempts to extend this methodology to aliphatic-substituted product proved unsuccessful due to the low reactivity of the substrate 3q. It is worth noting that the replacement of Boc group with 9-fluorenylmethyl, tosyl or benzyl group as the protection, no reaction occurred. The absolute and relative configurations of the products were unambiguously determined by X-ray crystallography (4a, see the ESI).Open in a separate windowScheme 3Substrate scope of the asymmetric reaction of α,β-unsaturated γ-butyrolactam 2 to cyclic imino esters 3.a aReaction conditions: unless specified, a mixture of 2 (0.2 mmol), 3 (0.3 mmol) and 1f (15.0 mmol%) in 2.2 mL a mixture of dichloroethane and methyl tert-butyl ether (volume ratio = 10 : 1) was stirred at rt. bIsolated yields. cDetermined by chiral HPLC, all products were observed with >99 : 1 dr by 1H NMR and HPLC. Configuration was assigned by comparison of HPLC data and X-ray crystal data of 4a.We then examined the substrate scope of the imide derivatives (Scheme 4). Investigations with maleimides 4r–4u gave 48–61% yield of corresponding products as lower er and dr values than most of γ-butyrolactams. As for methyl substituted maleimides, the reaction failed to give any product.Open in a separate windowScheme 4Substrate scope of the asymmetric reaction of maleimides to cyclic imino esters.a aReaction conditions: unless specified, a mixture of 2 (0.2 mmol), 3 (0.3 mmol) and 1f (15.0 mmol%) in 2.2 mL a mixture of dichloroethane and methyl tert-butyl ether (volume ratio = 10 : 1) was stirred at rt. bIsolated yields. cDetermined by 1H NMR and chiral HPLC.The chloride product 4a ((R)-tert-butyl 4-((R)-3-((E)-(4-chlorobenzylidene)amino)-2-oxotetra hydrofuran-3-yl)-2-oxopyrrolidine-1-carboxylate) was recrystallized and the corresponding single crystal was subjected to X-ray analysis to determine the absolute structure. Based on this result and our previous work, a plausible catalytic mechanism involving multisite interactions was assumed to explain the high stereoselectivity of this process (Fig. 1). Similar to the conformation reported for the dihydroxylation and the asymmetric direct aldol reaction, the transition state structure of the substrate/catalyst complexes might be presumably in the open conformation. The acidic α-carbon atom of cyclic imino ester 3a could be activated by interaction between the tertiary amine moiety of the catalyst and the enol of 3avia a hydrogen bonding. Moreover, the enolate of 3a in the transition state might be in part stabilized through the π–π stacking between the phenyl ring of 3a and the quinoline moiety. Consequently, the Re-face of the enolate is blocked by the left half of the quinidine moiety. The steric hindrance between the Boc group of 2a and the right half of the quinidine moiety make the Re-face of 2a face to the enolate of 3a. Subsequently, the attack of the incoming nucleophiles forms the Si-face of enolate of 3a to Re-face of 2a takes place, which is consistent with the experimental results.Open in a separate windowFig. 1Proposed transition state for the reaction.In conclusion, we have disclosed the β-selective asymmetric addition of γ-butyrolactam with cyclic imino esters catalyzed by a bifunctional chiral tertiary amine, which provides an efficient and facile access to optically active β-position functionalized pyrrolidin-2-one derivatives with high diastereoselectivity and enantioselectivity. To our knowledge, this is the first catalytic method to access chiral β-functionalized pyrrolidin-2-one via a direct organocatalytic approach. Current efforts are in progress to apply this new methodology to synthesize biologically active products.  相似文献   

4.
Functionalization of α-hydroxyphosphonates as a convenient route to N-tosyl-α-aminophosphonates     
Tomasz Cytlak  Monika Skibi&#x;ska  Patrycja Kaczmarek  Marcin Ka mierczak  Magdalena Rapp  Maciej Kubicki  Henryk Koroniak 《RSC advances》2018,8(22):11957
Direct conversion of the α-hydroxyl group by para-toluenesulfonamide to yield α-(N-tosyl)aminophosphonates is reported. α-Aminophosphonates 23a,b–37a,b were obtained from the corresponding α-hydroxyphosphonates 6a,b–21a,b in the presence of K2CO3, via the retro-Abramov reaction of the appropriate aldehydes, 1–5. The subsequent formation of imines with simultaneous addition of diethyl phosphite provided access to the α-sulfonamide phosphonates 23a,b–37a,b with better diastereoselectivity than in the case of the Pudovik reaction. The mechanism for this transformation is proposed herein. When Cbz N-protected aziridine 9a,b and phenylalanine analogue 12a,b were exploited, intramolecular substitution was observed, leading to the corresponding epoxide 38 as the sole product, or oxazolidin-2-one 39 as a minor product. Analogous substitution was not observed in the case of proline 18a,b and serine 21a,b derivatives.

The reaction mechanism and diastereoselectivity of the direct transformation of α-hydroxyphosphonates 6a,b–21a,b by para-toluenesulfonamide, yielding α-(N-tosyl)aminophosphonates 23a,b–37a,b under K2CO3 conditions are presented.  相似文献   

5.
Nanostructured poly(l-lactic acid)–poly(ethylene glycol)–poly(l-lactic acid) triblock copolymers and their CO2/O2 permselectivity     
Yun Xueyan  Li Xiaofang  Pan Pengju  Dong Tungalag 《RSC advances》2019,9(22):12354
Biodegradable poly(l-lactic acid)–poly(ethylene glycol)–poly(l-lactic acid) (PLLA–PEG–PLLA) copolymers were synthesized by ring-opening polymerization of l-lactide using dihydroxy PEG as the initiator. The effects of different PEG segments in the copolymers on the mechanical and permeative properties were investigated. It was determined that certain additions of PEG result in composition-dependent microphase separation structures with both PLLA and PEG blocks in the amorphous state. Amorphous PEGs with high CO2 affinity form gas passages that provide excellent CO2/O2 permselectivity in such a nanostructure morphology. The gas permeability and permselectivity depend on the molecular weight and content of the PEG and are influenced by the temperature. Copolymers that have a higher molecular weight and content of PEG present better CO2 permeability at higher temperatures but provide better CO2/O2 permselectivity at lower temperatures. In addition, the hydrophilic PEG segments improve the water vapor permeability of PLLA. Such biodegradable copolymers have great potential for use as fresh product packaging.

Biodegradable PLLA copolymers, containing higher molecular weight and content of PEG present better CO2 permeability and CO2/O2 permselectivity, have great potential for use as fresh product packaging.  相似文献   

6.
Effect of stereocomplex crystal and flexible segments on the crystallization and tensile behavior of poly(l-lactide)     
Xiaolu Li  Xiuqin Zhang  Guoming Liu  Zhongkai Yang  Bo Yang  Yue Qi  Rui Wang  De-Yi Wang 《RSC advances》2018,8(50):28453
The effects of poly(ethylene glycol) (PEG) and/or poly(d-lactide) (PDLA) blocks on the crystallization and mechanical properties of poly(l-lactide) (PLLA) were investigated systematically via differential scanning calorimetry (DSC), polarized optical microscopy (POM), wide-angle X-ray diffraction (WAXD) and tensile testing. The structural evolution during uniaxial stretching of the obtained blends above the glass transition temperature was studied by in situ WAXD. It was observed that the stereocomplex (SC) crystals promoted the nucleation of PLLA homocrystals (α/α′ crystal), and flexible PEG blocks could enhance the spherulitic growth rate. The PLLA/PDLA–PEG–PDLA had a higher elongation at break than that of PLLA/PDLA without significant loss in tensile strength and stiffness. In situ WAXD showed that the PLLA/PDLA–PEG–PDLA crystallized faster during stretching. It was shown that the incorporation of SC crystals and flexible PEG blocks could not only accelerate the crystallization but also improve the toughness of PLLA.

Effect of stereocomplex crystal and PEG segments in blends on the crystallization and tensile behavior of PLLA.  相似文献   

7.
Synthesis,physicochemical characterization,toxicity and efficacy of a PEG conjugate and a hybrid PEG conjugate nanoparticle formulation of the antibiotic moxifloxacin     
Lesego L. Tshweu  Mohamed A. Shemis  Aya Abdelghany  Abdullah Gouda  Lynne A. Pilcher  Nicole R. S. Sibuyi  Mervin Meyer  Admire Dube  Mohammed O. Balogun 《RSC advances》2020,10(34):19770
Antibiotic resistance is increasing at such an alarming rate that it is now one of the greatest global health challenges. Undesirable toxic side-effects of the drugs lead to high rates of non-completion of treatment regimens which in turn leads to the development of drug resistance. We report on the development of delivery systems that enable antibiotics to be toxic against bacterial cells while sparing human cells. The broad-spectrum fluoroquinolone antibiotic moxifloxacin (Mox) was successfully conjugated to poly(ethylene glycol) (PEG) which was further encapsulated into the hydrophobic poly(ε-caprolactone) (PCL) nanoparticles (NPs) with high efficiency, average particle size of 241.8 ± 4 nm and negative zeta potential. Toxicity against erythrocytes and MDBK cell lines and drug release in human plasma were evaluated. Hemocompatibility and reduced cytotoxicity of the PEG–Mox and PCL(PEG–Mox) NPs were demonstrated in comparison to free Mox. Antimicrobial activity was assessed against drug sensitive and resistant: Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae. The antibacterial activity of Mox was largely maintained after conjugation. Our data shows that the toxicity of Mox can be effectively attenuated while, in the case of PEG–Mox, retaining significant antibacterial activity. At the conditions employed in this study for antimicrobial activity the encapsulated conjugate (PCL(PEG–Mox) NPs) did not demonstrate, conclusively, significant antibacterial activity. These systems do, however, hold promise if further developed for improved treatment of bacterial infections.

Moxifloxacin was conjugated to polyethylene glycol to segregate host cell toxicity from antimicrobial activity. The conjugate was then encapsulated into a polycaprolactone nanoparticle to assist the simultaneous delivery of multiple drugs to the site of microbial infection.  相似文献   

8.
Aromatic fluorocopolymers based on α-(difluoromethyl)styrene and styrene: synthesis,characterization, and thermal and surface properties     
Joanna Wolska  Justyna Walkowiak-Kulikowska  Anna Szwajca  Henryk Koroniak  Bruno Amduri 《RSC advances》2018,8(73):41836
A study on the α-(difluoromethyl)styrene (DFMST) reactivity under conventional radical copolymerization conditions is presented. Although the homopolymerization of DFMST failed, its radical bulk copolymerization with styrene (ST) led to the synthesis of fluorinated aromatic polymers (FAPs). The resulting novel poly(DFMST-co-ST) copolymers were characterized by 1H, 19F and 13C NMR spectroscopies that evidenced the successful incorporation of DFMST units into copolymers and enabled the assessment of their respective molar percentages (10.4–48.2 mol%). The molar masses were in the range of 1900–17 200 g mol−1. The bulkier CF2H group in the α-position induced the lower reactivity of the DFMST comonomer. ST and DFMST monomer reactivity ratios (rDFMST = 0.0 and rST = 0.70 ± 0.05 at 70 °C) were determined based on linear least-square methods. These values indicate that DFMST monomer is less reactive than ST, retards the polymerization rate, and thus reduces the molar masses. Moreover, the thermal properties (Tg, Td) of the resulting copolymers indicate that the presence of DFMST units incorporated into poly(ST) structure promotes an increase of the Tg values up to 109 °C and a slightly better thermal stability than that of poly(ST). Additionally, the thermal decomposition of poly(DFMST-co-ST) copolymer (10.4/89.6) was assessed by simultaneous thermal analysis coupled with Fourier-transform infrared spectroscopy and thermogravimetric analysis coupled with mass spectrometry showing that H2O, CO2, CO and styrene were released. The surface analysis was focused on the effects of the –CF2H group at the α-position of styrene comonomers on surface free energy of the copolymer films. Water and diiodomethane contact angle (CA) measurements confirmed that these copolymers (Mn = 2300–17 200 g mol−1) are not exactly the same as polystyrenes (Mn = 2100–21 600 g mol−1) in the solid state. The CA hysteresis for poly(ST) (6–8°) and poly(DFMST-co-ST) copolymers (3–5°) reflected these differences even more accurately.

A study on the α-(difluoromethyl)styrene (DFMST) reactivity under conventional radical (co)polymerization conditions is presented.  相似文献   

9.
Aerobically stable and substitutionally labile α-diimine rhenium dicarbonyl complexes     
Kevin Schindler  Aurlien Crochet  Fabio Zobi 《RSC advances》2021,11(13):7511
New synthetic routes to aerobically stable and substitutionally labile α-diimine rhenium(i) dicarbonyl complexes are described. The molecules are prepared in high yield from the ciscistrans-[Re(CO)2(tBu2bpy)Br2] anion (2, where tBu2bpy is 4,4′-di-tert-butyl-2,2′-bipyridine), which can be isolated from the one electron reduction of the corresponding 17-electron complex (1). Compound 2 is stable in the solid state, but in solution it is oxidized by molecular oxygen back to 1. Replacement of a single bromide of 2 by σ-donor monodentate ligands (Ls) yields stable neutral 18-electron ciscistrans-[Re(CO)2(tBu2bpy)Br(L)] species. In coordinating solvents like methanol the halide is replaced giving the corresponding solvated cations. [Re(CO)2(tBu2bpy)Br(L)] species can be further reacted with Ls to prepare stable ciscistrans-[Re(CO)2(tBu2bpy)(L)2]+ complexes in good yield. Ligand substitution of Re(i) complexes proceeds via pentacoordinate intermediates capable of Berry pseudorotation. In addition to the ciscistrans-complexes, cisciscis- (all cis) isomers are also formed. In particular, ciscistrans-[Re(CO)2(tBu2bpy)(L)2]+ complexes establish an equilibrium with all cis isomers in solution. The solid state crystal structure of nearly all molecules presented could be elucidated. The molecules adopt a slightly distorted octahedral geometry. In comparison to similar fac-[Re(CO)3]+complexes, Re(i) diacarbonyl species are characterized by a bend (ca. 7°) of the axial ligands towards the α-diimine unit. [Re(CO)2(tBu2bpy)Br2] and [Re(CO)2(tBu2bpy)Br(L)] complexes may be considered as synthons for the preparation of a variety of new stable diamagnetic dicarbonyl rhenium cis-[Re(CO)2]+ complexes, offering a convenient entry in the chemistry of the core.

New synthetic routes to aerobically stable and substitutionally labile α-diimine rhenium(i) dicarbonyl complexes offer a convenient entry in the chemistry of the cis-[Re(CO)2]+ core.  相似文献   

10.
Chemical stability of Ca3Co4−xO9+δ/CaMnO3−δ p–n junction for oxide-based thermoelectric generators     
Anette Eleonora Gunns  Raluca Tofan  Kristian Berland  Sandeep Gorantla  Thomas Storaas  Temesgen Debelo Desissa  Matthias Schrade  Clas Persson  Mari-Ann Einarsrud  Kjell Wiik  Truls Norby  Nikola Kanas 《RSC advances》2020,10(9):5026
An all-oxide thermoelectric generator for high-temperature operation depends on a low electrical resistance of the direct p–n junction. Ca3Co4−xO9+δ and CaMnO3−δ exhibit p-type and n-type electronic conductivity, respectively, and the interface between these compounds is the material system investigated here. The effect of heat treatment (at 900 °C for 10 h in air) on the phase and element distribution within this p–n junction was characterized using advanced transmission electron microscopy combined with X-ray diffraction. The heat treatment resulted in counter diffusion of Ca, Mn and Co cations across the junction, and subsequent formation of a Ca3Co1+yMn1−yO6 interlayer, in addition to precipitation of Co-oxide, and accompanying diffusion and redistribution of Ca across the junction. The Co/Mn ratio in Ca3Co1+yMn1−yO6 varies and is close to 1 (y = 0) at the Ca3Co1+yMn1−yO6–CaMnO3−δ boundary. The existence of a wide homogeneity range of 0 ≤ y ≤ 1 for Ca3Co1+yMn1−yO6 is corroborated with density functional theory (DFT) calculations showing a small negative mixing energy in the whole range.

The heat treatment beneficially affects the performance of an all-oxide thermoelectric generator through phase and element distribution within this p–n junction.  相似文献   

11.
High pressure as a novel tool for the cationic ROP of γ-butyrolactone     
Roksana Bernat  Paulina Maksym  Magdalena Tarnacka  Katarzyna Malarz  Anna Mrozek-Wilczkiewicz  Tadeusz Biela  Sylwia Golba  Ewa Kami&#x;ska  Marian Paluch  Kamil Kami&#x;ski 《RSC advances》2021,11(55):34806
In this study, we report the acid-catalyzed and high pressure assisted ring-opening polymerization (ROP) of γ-butyrolactone (GBL). The use of a dually-catalyzed approach combining an external physical factor and internal catalyst (trifluoromethanesulfonic acid (TfOH) or p-toluenesulfonic acid (PTSA)) enforced ROP of GBL, which is considered as hardly polymerizable monomer still remaining a challenge for the modern polymer chemistry. The experiments performed at various thermodynamic conditions (T = 278–323 K and p = 700–1500 MPa) clearly showed that the high pressure supported polymerization process led to obtaining well-defined macromolecules of better parameters (Mn = 2200–9700 g mol−1; Đ = 1.05–1.46) than those previously reported. Furthermore, the parabolic-like dependence of both the molecular weight (MW) and the yield of obtained polymers on variation in temperature and pressure at either isobaric or isothermal conditions was also noticed, allowing the determination of optimal conditions for the polymerization process. However, most importantly, this strategy allowed to significantly reduce the reaction time (just 3 h at room temperature) and increase the yield of obtained polymers (up to 0.62 gPGBL/gGBL). Moreover, despite using a strongly acidic catalyst, synthesized polymers remained non-toxic and biocompatible, as proven by the cytotoxicity test we performed in further analysis. Additional investigation (including MALDI-TOF measurements) showed that the catalyst selection affected not only MW and yield but also the linear/cyclic form content in obtained macromolecules. These findings show the way to tune the properties of PGBL and obtain polymer suitable for application in the biomedical industry.

Well-defined poly(γ-butyrolactone) was synthesized with great efficiency via high pressure assisted cationic ROP of hardly polimerizable γ-butyrolactone.  相似文献   

12.
High-pressure synthesis of ε-FeOOH from β-FeOOH and its application to the water oxidation catalyst     
Kazuhiko Mukai  Tomiko M. Suzuki  Takeshi Uyama  Takamasa Nonaka  Takeshi Morikawa  Ikuya Yamada 《RSC advances》2020,10(73):44756
Research on materials under extreme conditions such as high pressures provides new insights into the evolution and dynamics of the earth and space sciences, but recently, this research has focused on applications as functional materials. In this contribution, we examined high-pressure/high-temperature phases of β-FeO1−x(OH)1+xClx with x = 0.12 (β-FeOOH) and their catalytic activities of water oxidation, i.e., oxygen evolution reaction (OER). Under pressures above 6 GPa and temperatures of 100–700 °C, β-FeOOH transformed into ε-FeOOH, as in the case of α-FeOOH. However, the established pressure–temperature phase diagram of β-FeOOH differs from that of α-FeOOH, probably owing to its open framework structure and partial occupation of Cl ions. The OER activities of ε-FeOOH strongly depended on the FeOOH sources, synthesis conditions, and composite electrodes. Nevertheless, one of the ε-FeOOH samples exhibited a low OER overpotential compared with α-FeOOH and its parent β-FeOOH, which are widely used as OER catalysts. Hence, ε-FeOOH is a potential candidate as a next-generation earth-abundant OER catalyst.

Research on materials under extreme conditions such as high pressures provides new insights into the evolution and dynamics of the earth and space sciences, but recently, this research has focused on applications as functional materials.  相似文献   

13.
Theoretical study of D–A′–π–A/D–π–A′–π–A triphenylamine and quinoline derivatives as sensitizers for dye-sensitized solar cells     
Ying Zhang  Ji Cheng  Wang Deng  Bin Sun  Zhixin Liu  Lei Yan  Xueye Wang  Baomin Xu  Xingzhu Wang 《RSC advances》2020,10(29):17255
We have designed four dyes based on D–A′–π–A/D–π–A′–π–A triphenylamine and quinoline derivatives for dye-sensitized solar cells (DSSCs) and studied their optoelectronic properties as well as the effects of the introduction of alkoxy groups and thiophene group on these properties. The geometries, single point energy, charge population, electrostatic potential (ESP) distribution, dipole moments, frontier molecular orbitals (FMOs) and HOMO–LUMO energy gaps of the dyes were discussed to study the electronic properties of dyes based on density functional theory (DFT). And the absorption spectra, light harvesting efficiency (LHE), hole–electron distribution, charge transfer amount from HOMO to LUMO (QCT), D index, HCT index, Sm index and exciton binding energy (Ecoul) were discussed to investigate the optical and charge-transfer properties of dyes by time-dependent density functional theory (TD-DFT). The calculated results show that all the dyes follow the energy level matching principle and have broadened absorption bands at visible region. Besides, the introduction of alkoxy groups into triarylamine donors and thiophene groups into conjugated bridges can obviously improve the stability and optoelectronic properties of dyes. It is shown that the dye D4, which has had alkoxy groups as well as thiophene groups introduced and possesses a D–π–A′–π–A configuration, has the optimal optoelectronic properties and can be used as an ideal dye sensitizer.

We have designed four dyes based on D–A′–π–A/D–π–A′–π–A triphenylamine and quinoline derivatives for DSSCs and studied their optoelectronic properties as well as the effects of the introduction of alkoxy groups and thiophene group on the properties.  相似文献   

14.
Lanthanide complexes combined with chiral salen ligands: application in the enantioselective epoxidation reaction of α,β-unsaturated ketones     
Xuexiu Xia  Chengrong Lu  Bei Zhao  Yingming Yao 《RSC advances》2019,9(24):13749
Readily available lanthanide amides Ln[N(SiMe3)2]3 (Ln = Nd (1), Sm (2), Eu (3), Yb (4), La (5)), combined with chiral salen ligands H2La ((S,S)-N,N′-di-(3,5-disubstituted-salicylidene)-1,2-cyclohexanediamine) and H2Lb ((S,S)-N,N′-di-(3,5-disubstituted-salicylidene)-1,2-diphenyl-1,2-ethanediamine) were employed in the enantioselective epoxidation of α,β-unsaturated ketones. It was found that the salen–La complex shows the highest efficiency and enantioselectivity. A relatively broad scope of α,β-unsaturated ketones was investigated, and excellent yields (up to 99%) and moderate to good enantioselectivities (37–87%) of the target molecules were achieved.

The enantioselective epoxidation of α,β-unsaturated ketones was catalysed by readily available lanthanide amides La[N(SiMe3)2]3 combined with chiral salen ligands.  相似文献   

15.
Improvement of thermoelectric performance of copper-deficient compounds Cu2.5+δIn4.5Te8 (δ = 0–0.15) due to a degenerate impurity band and ultralow lattice thermal conductivity     
Ting Ren  Pengzhan Ying  Gemei Cai  Xiaoyan Li  Zhongkang Han  Lei Min  Jiaolin Cui 《RSC advances》2018,8(48):27163
Cu–In–Te ternary chalcogenides have unique crystal and band structures; hence they have received much attention in thermoelectrics. In this work we have observed an enhancement in Hall carrier concentration (nH) and ultralow lattice thermal conductivity (κL) when Cu was added to ternary Cu2.5+δIn4.5Te8 (δ = 0–0.15) compounds. The enhancement in nH is attributed to a degenerate impurity band at the G point in the valence band maximum (VBM), while the extremely low κL results from the increased lattice disorder. We thus obtained the minimum κL value of only 0.23 W K−1 m−1 in the sample at δ = 0.1 and 820 K, which is in good agreement with the calculation using the Callaway model. The highest thermoelectric figure of merit ZT is 0.84 for the material at δ = 0.1, which is about 0.38 higher than that of the pristine Cu2.5In4.5Te8.

Improvement of thermoelectric performance of copper-deficient compounds Cu2.5+δIn4.5Te8 (δ = 0–0.15) due to degenerate impurity band (IB) and ultralow lattice thermal conductivity.  相似文献   

16.
Cationic palladium(ii)-catalyzed synthesis of substituted pyridines from α,β-unsaturated oxime ethers     
Takahiro Yamada  Yoshimitsu Hashimoto  Kosaku Tanaka  III  Nobuyoshi Morita  Osamu Tamura 《RSC advances》2022,12(33):21548
An efficient method for the synthesis of multi-substituted pyridines from β-aryl-substituted α,β-unsaturated oxime ethers and alkenes via Pd-catalyzed C–H activation has been developed. The method, using Pd(OAc)2 and a sterically hindered pyridine ligand, provides access to various multi-substituted pyridines with complete regioselectivity. Mechanistic studies suggest that the pyridine products are formed by Pd-catalyzed electrophilic C–H alkenylation of α,β-unsaturated oxime followed by aza-6π-electrocyclization. The utility of this method is showcased by the synthesis of 4-aryl-substituted pyridine derivatives, which are difficult to synthesize efficiently using previously reported Rh-catalyzed strategies with alkenes.

An efficient method for the synthesis of multi-substituted pyridines from α,β-unsaturated oxime ethers via cationic Pd(ii)-catalyzed C–H activation has been developed.  相似文献   

17.
Effect of molecular weight of polyethylene glycol on crystallization behaviors,thermal properties and tensile performance of polylactic acid stereocomplexes     
Ruilong Li  Yifan Wu  Zhuyu Bai  Jianbing Guo  Xiaolang Chen 《RSC advances》2020,10(69):42120
In this work, the poly(d-lactic acid)–polyethylene glycol–poly(d-lactic acid) (PDLA–PEG–PDLA) triblock copolymer as a novel modification agent was incorporated into poly(l-lactic acid) (PLLA) to improve the thermal and mechanical properties of PLLA. The influences of molecular weight of PEG in the triblock copolymer on the structure, crystallization behaviors, heat resistance and tensile properties of PDLA–PEG–PDLA/PLLA blends were investigated by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), differential scanning calorimetry (DSC), polarized optical microscopy (POM), thermogravimetric analysis (TGA) and tensile testing. The results from FTIR, XRD and DSC confirm the formation of a polylactide stereocomplex in the PLLA blends. The structure and properties of the stereocomplex crystals are different from those of pure PLLA. The melting temperature (Tm) of the stereocrystal is near 200 °C, which is significantly higher than that of the homogeneous crystal of PLLA. The effect of molecular weight of PEG on the crystal morphology of PLLA blends is also obvious. The improvement of tensile properties for PLLA blends is attributed to the crystal morphological features, which will potentially enhance the utility of the PLLA based polymer.

In this work, the poly(d-lactic acid)–polyethylene glycol–poly(d-lactic acid) (PDLA–PEG–PDLA) triblock copolymer as a novel modification agent was incorporated into poly(l-lactic acid) (PLLA) to improve the thermal and mechanical properties of PLLA.  相似文献   

18.
Elucidating π–π interaction-induced extension effect in sandwich phthalocyaninato compounds     
Xin Chen  Dongdong Qi  Chao Liu  Hailong Wang  Zheng Xie  Tse-Wei Chen  Shen-Ming Chen  Tien-Wen Tseng  Jianzhuang Jiang 《RSC advances》2019,10(1):317
Electrochemical and theoretical investigations over triple-quadruple-, quintuple-, and sextuple-decker sandwich-type compounds {[(Pc*)Sm][(Pc*)Cdn(Pc*)n][Sm(Pc*)]} (n = 0–3) elucidate successive π–π interaction-linked extension in the perpendicular direction of the phthalocyanine plane along with increasing the stacked tetrapyrrole number, significantly improving the nonlinear optical properties including effective imaginary third order molecular hyperpolarizability and optical limiting threshold.

π–π interaction-linked extension in the perpendicular direction to the monomers and corresponding effect on nonlinear optic properties have been clearly disclosed over the multiple-decker sandwich-type phthalocyaninato metal compounds.  相似文献   

19.
Additive effects of alkali metals on Cu-modified CH3NH3PbI3−δClδ photovoltaic devices     
Naoki Ueoka  Takeo Oku  Atsushi Suzuki 《RSC advances》2019,9(42):24231
We investigated the addition of alkali metal elements (namely Na+, K+, Rb+, and Cs+) to Cu-modified CH3NH3PbI3−δClδ photovoltaic devices and their effects on the photovoltaic properties and electronic structure. The open-circuit voltage was increased by CuBr2 addition to the CH3NH3PbI3−δClδ precursor solution. The series resistance was decreased by simultaneous addition of CuBr2 and RbI, which increased the external quantum efficiencies in the range of 300–500 nm, and the short-circuit current density. The energy gap of the perovskite crystal increased through CuBr2 addition, which we also confirmed by first-principles calculations. Charge carrier generation was observed in the range of 300–500 nm as an increase of the external quantum efficiency, owing to the partial density of states contributed by alkali metal elements. Calculations suggested that the Gibbs energies were decreased by incorporation of alkali metal elements into the perovskite crystals. The conversion efficiency was maintained for 7 weeks for devices with added CuBr2 and RbI.

Addition of alkali metal elements (Na+, K+, Rb+, and Cs+) to Cu-modified CH3NH3PbI3−δClδ devices improved the photovoltaic properties.  相似文献   

20.
Crystallization,rheology and mechanical properties of the blends of poly(l-lactide) with supramolecular polymers based on poly(d-lactide)–poly(ε-caprolactone-co-δ-valerolactone)–poly(d-lactide) triblock copolymers     
Zhanxin Jing  Jin Li  Weiyu Xiao  Hefeng Xu  Pengzhi Hong  Yong Li 《RSC advances》2019,9(45):26067
In this study, we investigated the blending of poly(l-lactide) (PLLA) with supramolecular polymers based on poly(d-lactide)–poly(ε-caprolactone-co-δ-valerolactone)–poly(d-lactide) (PDLA–PCVL–PDLA) triblock copolymers as an efficient way to modify PLLA. The supramolecular polymers (SMP) were synthesized by the terminal functionalization of the PDLA–PCVL–PDLA copolymers with 2-ureido-4[1H]-pyrimidinone (UPy). The structure, thermal properties and rheological behavior of the synthesized supramolecular polymers were studied; we found that the formation of the UPy dimers expanded the molecular chain of the polymer and the incorporation of the UPy groups suppressed the crystallization of polymers. In addition, the synthesized supramolecular polymers had a low glass transition temperature of about −50 °C, showing the characteristics of elastomers. On this basis, superior properties such as a fast crystallization rate, high melt strength, and toughness of fully bio-based, i.e., PLA-based materials were achieved simultaneously by blending PLLA with the synthesized supramolecular polymers. In the PLLA/SMP blends, PLLA could form a stereocomplex with its enantiomeric PDLA blocks of supramolecular polymers, and the stereocomplex crystals with the cross-linking networks reinforced the melt strength of the PLLA/SMP blends. The influences of the SMP composition and the SMP content in the PLLA matrix on crystallization and mechanical properties were analyzed. The supramolecular polymers SMP0.49 and SMP1.04 showed a reverse effect on the crystallization of PLLA. Tensile tests revealed that the lower content of the synthesized supramolecular polymers could achieve toughening of the PLLA matrix. Therefore, the introduction of supramolecular polymers based on PDLA–PCVL–PDLA is an effective way to control the crystallization, rheology and mechanical properties of PLLA.

Supramolecular polymer based on PDLA–PCVL–PDLA triblock copolymer was used for the modification of PLLA, and the results showed that it is an effective way to control the crystallization, rheology and mechanical properties of PLLA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号