首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Oil-in-water food emulsions consisting of natural emulsifiers has been an active field of green scientific inquiry. Here, we extract two types of new hemicellulose-based emulsifiers (HH and HL) from holocellulose and dewaxed materials of bamboo (Phyllostachys pubescens), as well as compare their emulsifying soy oil ability, respectively. The main content of HH is arabinoxylan, while the primary composition in HL is glucan. The emulsifying capacity of these two types of hemicellulose-based emulsifiers are evaluated by droplet size distribution, surface charge and optical microscopy. Since HL possesses higher lignin and protein residual contents, the resultant emulsion exhibits smaller droplets and higher emulsion stability. In comparison, HH emulsifier has almost no emulsifying capacity due to the lack of non-polar groups. This study provides insight into the choice of hemicelluloses-based emulsifiers for the formation of stable oil-in-water food emulsions.

Oil-in-water food emulsions consisting of natural emulsifiers has been an active field of green scientific inquiry.  相似文献   

2.
An emulsion is a thermodynamically unstable system consisting of at least two immiscible liquid phases, one of which is dispersed in the other in the form of droplets of varying size. Most studies on emulsions have focused on the behaviour of emulsion droplets with diameter from ∼50 μm and upwards. However, the properties of smaller droplets may be highly relevant in order to understand the behaviour of emulsions, including their performance in numerous applications within the fields of food, industry, and medical science. The relatively long life-time and small size of these droplets compared to other emulsion droplets, make them suited for optical trapping and micromanipulation technologies. Optical tweezers have previously shown potential in the study of stabilized emulsions. Here we employ optical tweezers to examine unstable oil-in-water emulsions to determine the effects of system parameters on depletion force and coalescence times.

Presented here are ways of producing unstable emulsions and use these in optical tweezers studies to determine the effects of system parameters on droplet depletion force and coalescence time.  相似文献   

3.
This study describes for the first time the preparation of re-dispersible surfactant-free dry eicosane oil emulsion using cellulose nanocrystals (CNCs) using the freeze-drying technique. Surface properties of CNCs constitute a critical point for the stability of o/w emulsions and thus can affect both the droplet size and dispersion properties of the emulsion. Therefore, surface modification of CNCs was performed to understand its effect on the size of the obtained re-dispersible dry o/w eicosane emulsion. Decoration of the CNC surface with metal and metal oxide nanoparticles was conducted through the available alcoholic groups of glycosidic units of CNC, which played a dual role in reducing and stabilizing nanoparticles. Of these nanoparticles, silver (AgNPs), gold (AuNPs), copper oxide (CuO-NPs), and iron oxide (Fe3O4-NPs) nanoparticles were prepared via a facile route using alkali activated CNCs. Thorough characterizations pertaining to the as-prepared nanoparticles and their re-dispersible dry eicosane o/w emulsions were investigated using UV-vis spectroscopy, TEM, XRD, particle size, zeta potential, and STEM. Results confirmed the ability of CNCs to stabilize and/or reduce the formed nanoparticles with different sizes and shapes. These nanoparticles showed different shapes and surface charges accompanied by individual morphologies, reflecting on the stability of the re-dispersed dry eicosane emulsions with droplet sizes varying from 1.25 to 0.5 μm.

Schematic diagram for the detailed preparation of dry eicosane o/w emulsions.  相似文献   

4.
Application of droplet microfluidics for the encapsulation of bacteria in water-in-oil-in-water (W/O/W) emulsion allows for production of monodisperse droplets with controllable size. In this study the release of bacteria from W/O/W emulsion, the effect of the double emulsion structure on bacterial growth and metabolic activity, and the stability and mechanism of bacterial release were investigated. W/O/W emulsions were formed using a double flow-focusing junction microfluidic device under controlled pressure to produce droplets of approximately 100 μm in diameter containing an inner aqueous phase (W1) of about 40–50 μm in diameter. GFP-labelled Escherichia coli (E. coli-GFP) bacteria were encapsulated within the W1 droplets and the stability of emulsions was studied by monitoring droplet size and creaming behaviour. The double emulsions were stabilised using a hydrophilic (Tween 80) and a lipophilic surfactant (polyglycerol polyricinoleate) and were destabilised by altering the osmotic balance, adding NaCl either in the inner W1 phase (hypo-osmotic) or outer W2 phase (hyper-osmotic). The release of E. coli-GFP was monitored by plating on agar whereby the colony form unit (CFU) of the released bacteria was determined while fluorescent microscopy was employed to observe the mechanism of release from the droplets. The release of E. coli-GFP was significantly increased with higher concentrations of NaCl and lower amounts of Tween 80. Microscopic observation revealed a two-step mechanism for the release of bacteria: double W/O/W emulsion droplet splitting to release W1 droplets forming a secondary double emulsion followed by the collapse of W1 droplets to release E. coli-GFP into the continuous aqueous phase.

Encapsulation enhanced viability and metabolic activity. Nutrients can cross the oil layer. Bacterial release increased while emulsion stability decreased at high osmotic pressure and low surfactant concentration. Two-step release mechanism observed.  相似文献   

5.
The synergistic effect of oil viscosity and oil droplet size on the deposition profile of oil on cotton fabric was studied using polydimethylsiloxane (PDMS) as a model oil-in-water emulsion system. Under the same preparation conditions, low viscosity PDMS produced emulsions containing small droplets, which resulted in a uniform surface deposition profile, whilst high viscosity PDMS resulted in a localised deposition profile. Interfacial phenomena such as wicking and penetration of PDMS into cotton fabrics were found to be viscosity-dependent, which agrees with the surface deposition data. Both mechanical characterisation (friction, compression, stiffness) and consumer evaluation confirm that the fabrics treated by the emulsion containing low viscosity PDMS were preferred, suggesting that a homogeneous surface deposition and an excellent penetration profile of PDMS are critical for maximising tactile sensorial benefits, which could be accomplished by optimising the emulsion formulation to contain oil of low viscosity and small PDMS droplets.

The synergistic effect of oil viscosity and oil droplet size on the deposition profile of oil on cotton fabric was studied using polydimethylsiloxane (PDMS) as a model oil-in-water emulsion system.  相似文献   

6.
Background : Intravenous lipid emulsions stabilized with phospholipids have been an attractive alternative as vehicles for drug delivery, particularly for the parenteral administration of drugs with solubility problems. Methods: Naproxen (a poorly aqueous soluble non-steroidal anti-inflammatory agent) emulsions were formulated with different types of emulsifiers (soybean lecithin, synperonic PEF-127 and a 50:50 mixture of these). The stability of the various emulsion systems was evaluated at different temperatures (4, 25 and 40 °C) for a period of 6 months by measuring changes in pH, droplet size, viscosity and percentage oil separation. The percentage of naproxen incorporation and the degree of haemolysis induced by the different types of emulsion systems was also determined. Results: The emulsifier type showed a pronounced effect on the physicochemical properties of the emulsion systems, whereas storage temperature and time did not. Irrespective of emulsifier type, storage temperature and time, the percentage incorporation of naproxen in emulsions was between 80 and 100%. The degree of haemolysis induced by other emulsion components (dimethylsulfoxide (DMSO) and naproxen solution in DMSO) was about 10 times higher than that induced by emulsion systems. Conclusion: Choice of emulsifier is the most important factor in the stability of the naproxen emulsions.  相似文献   

7.
This work discusses the possibility of designing multilayer oil-in-water emulsions to introduce the maximum possible amount of an antioxidant at the droplet interfaces for the optimal protection of a linseed oil core against oxidation, using a systematic three-step colloidal procedure. An antioxidant (here Tannic Acid – TA) is chosen and its interactions with a primary emulsifier (here Bovine Serum Albumin – BSA) and several polysaccharides are first examined in solution using turbidity measurements. As a second step, LbL deposition on solid surfaces is used to determine which of the polysaccharides to combine with BSA and tannic acid in a multilayer system to ensure maximum presence of tannic acid in the films. From UV-vis and polarization modulation infrared reflection–absorption (PM-IRRAS) spectroscopic measurements it is suggested that the best components to use in a multilayer emulsion droplet, together with BSA and TA, are chitosan and pectin. BSA, chitosan and pectin are subsequently used for the formation of three-layer linseed oil emulsions, and tannic acid is introduced into any of the three layers as an antioxidant. The effect of the exact placement of tannic acid on the oxidative stabilization of linseed oil is assessed by monitoring the fluorescence of Nile red, dissolved in the oil droplets, under the attack of radicals generated in the aqueous phase of the emulsion. From the results it appears that the three-stage procedure presented here can serve to identify successful combinations of interfacial components of multilayer emulsions. It is also concluded that the exact interfacial placement of the antioxidant plays an important role in the oxidative stabilization of the valuable oil core.

Three-step method optimizes multilayer emulsion for maximum tannic acid (TA) amount at surfaces. (1) TA–emulsifier bulk interactions assessed. (2) LbL films built for optimal TA presence. (3) Emulsions built as per LbL design and TA action evaluated.  相似文献   

8.
Celluloses are renewable and biodegradable natural resources. The application of celluloses as oil-in-water Pickering emulsifiers is still quite limited. In this paper, cellulose nanofibrils (CNFs) with oxidation degrees (DOs) of 52.8% and 92.7% (DO50 and DO90) were obtained from TEMPO-mediate oxidation for microcrystalline cellulose (MC). The production of carboxyl groups of CNFs were confirmed by FT-IR and 13C solid-NMR. CNF-stabilized O/W Pickering emulsion showed excellent colloidal stability compared with un-oxidized cellulose by Turbiscan stability analysis. Additionally, CNF-stabilized Pickering emulsions showed stable colloidal properties in simulated intestinal fluid (SIF). Most importantly, in vitro fatty acid release kinetics under SIF showed that CNFs have strong inhibitory lipid digestion behavior. Our results suggest that the oxidation modification not only improves their emulsification activity but also promotes their application in oil digestion inhibition, providing inspiration for designing and developing low-calorie food products.

Oil digestion in CNF-stabilized Pickering emulsion was inhibited effectively.  相似文献   

9.
The stability and viscoelasticity of an oil-in-water emulsion formed with canola proteins could be significantly improved by heat-induced protein thermal denaturation followed by aggregation at the oil droplet surface. This phenomenon was used to develop emulsion-templated oleogels with improved rheology and used in cake baking. Canola oil (50 wt%)-in-water emulsions stabilized by 1 and 4 wt% canola protein isolates (CPI), prepared by high-pressure homogenization, were dried at 60 °C in a vacuum oven followed by shearing to create the oleogels. Before drying, the emulsions were heated (90 °C for 30 min) to induce protein denaturation. The oleogel from 4 wt% CPI heated emulsions (HE) exhibited the lowest oil loss, highest gel strength, firmness and stickiness compared to all other oleogels. Cake batter prepared with shortening showed the lowest specific gravity, highest viscosity and storage modulus compared to CPI oleogels. Confocal micrographs of shortening cake batters showed smaller air bubbles entrapped in the continuous fat phase. In comparison, the oleogel cake batters showed dispersion of larger air bubbles, oil droplets, and protein aggregates. The oleogel cake showed a darker colour compared to the shortening cake due to the dark colour of CPI. Interestingly, oleogel cakes showed lower hardness, higher cohesiveness and springiness than the shortening cake, which was attributed to the higher cake volume of the former due to the formation of larger air channels stabilized by canola proteins. In conclusion, CPI stabilized emulsion-templated oleogels could be used as a potential shortening replacer in cake and other baking applications.

The stability and viscoelasticity of an oil-in-water emulsion formed with canola proteins could be significantly improved by heat-induced protein thermal denaturation followed by aggregation at the oil droplet surface.  相似文献   

10.
Poly(styrene-co-divinylbenzene) monoliths were prepared from the polymerisation of water-in-monomer high internal phase emulsions consisting of a 90 vol% internal phase and stabilised by the non-ionic surfactant Span 80®. The materials were prepared in capillary housings of various internal diameters ranging from 150 μm to 540 μm by simply passing the emulsion through the capillaries. When low shear (300 rpm) was used for emulsification, the droplet and resulting void size distributions were observed to shift towards lower values when the emulsions were forced through capillaries of internal diameter less than 540 μm and all columns exhibited significant radial heterogeneity. When high shear was employed (14 000 rpm) the resulting emulsions preserved their structure when forced through these capillaries and possessed narrower void size distributions with no obvious radial heterogeneity observed upon curing. This resulted in significantly improved chromatographic performance for the separation of a standard mixture of proteins when compared to the materials prepared under low shear.

The preparation of polymerised high internal phase emulsions with high shear in narrower capillary dimensions results in significant improvements in the chromatographic performance for the separation of proteins.  相似文献   

11.
We investigate the role of viscosities on the formation of double emulsion in a microfluidic step emulsification system. Aqueous droplets of various viscosities and sizes were engulfed in fluorocarbon oil and subsequently transformed into double droplets in the microfluidic step emulsifying device. We identify two distinct regimes of double droplet formation: (i) core droplets split into multiple smaller droplets, or (ii) cores slip whole into the forming oil shell. We show that the viscosity ratio of the core and shell phases plays a crucial role in determining the mode of formation of the double emulsions. Finally, we demonstrate that high viscosity of the core droplet allows for generation of double emulsions with constant shell thickness for cores of various sizes.

We investigate the role of fluid viscosities on formation of double emulsion in a microfluidic step emulsification system. The ratio of fluid viscosities controls double droplet formation, leading to splitting of the core for low core-to-shell viscosity ratio.  相似文献   

12.
This study presents an alternative method to enhance the emulsion stability of oil based drilling fluids (OBMs). Modified dimer acid (MDA) was synthesized with a molecular structure having two hydrophilic heads and two hydrophobic tails. Theoretically, the adsorption of MDA on an oil–water interface makes it possible to increase hydrogen bonding between water droplets and form three dimensional networks which benefit emulsion stability. The influence of MDA on the stability of base emulsions was studied by visual observation. Then the stabilization mechanism of MDA was analyzed from the micro and macro points of view by morphology study using a cryo-scanning electron microscope (cryo-SEM) and rheological measurements including viscosity vs. shear rates, zero-shear viscosity (η0), and creep and recovery tests. Experimental results showed that a substantial improvement in emulsion stability was visually observed when the MDA concentration was 2 g L−1. From cryo-SEM observation, a honeycomb structure was observed in the emulsion containing 2 g L−1 MDA, which can provide a physical barrier to restrain the movement of water droplets. In comparison with the rheological behaviors of the emulsion without MDA, a remarkably larger zero-shear viscosity, a solid-like behavior and a greater elasticity were observed when 2 g L−1 MDA was present. Finally, the application in OBMs shows that MDA can largely enhance electrical stability (ES) and reduce the filtration volume. The method proposed in the paper could be used to enhance the stability of w/o emulsions in a variety of fields.

Modified dimer acid (MDA) can improve the stability of water-in-oil emulsions by establishing a network structure.  相似文献   

13.
An innovative method is introduced for environmental dust mitigation from a hydrophobic surface by a sessile water droplet. The sessile water droplet is located between two parallel plates having hydrophilic (at the top) and hydrophobic (at the bottom) states. The water droplet is located at the top hydrophilic plate, and the effect of the plate spacing on dust mitigation rate is examined. The droplet behavior is analyzed for different plate spacings and various droplet sizes using a high-speed camera. The fluid and the particle motions are simulated inside the droplet while adopting the experimental conditions. The findings demonstrate that the sessile droplet can effectively mitigate dust. Reducing the plate spacing increases the droplet meniscus diameter and enhances the dust removal rate. The surface tension force on the hydrophilic surface remains greater than that of the pinning force on the dusty hydrophobic surface even though the Magdeburg and surface tension forces contribute to the droplet pinning force on the hydrophobic dusty surface. Flow current is developed in the droplet fluid during the squeezing period, which considerably enhances the dust removal rate from the hydrophobic surface. The cleaned area increases with the droplet volume and plate spacing. Stria patterns are observed on the circumference of the dust-removed area. The present study provides a detailed analysis of a new method of dust removal from surfaces for self-cleaning applications.

An innovative method is introduced for environmental dust mitigation from a hydrophobic surface by a sessile water droplet.  相似文献   

14.
In recent years, the demand for non-surfactant based Pickering emulsions in many industrial applications has grown significantly because of the option to select biodegradable and sustainable materials with low toxicity as emulsion stabilisers. Usually, emulsions are a dispersion system, where synthetic surfactants or macromolecules stabilise two immiscible phases (typically water and oil phases) to prevent coalescence. However, synthetic surfactants are not always a suitable choice in some applications, especially in pharmaceuticals, food and cosmetics, due to toxicity and lack of compatibility and biodegradability. Therefore, this review reports recent literature (2018–2021) on the use of comparatively safer biodegradable polysaccharide particles, proteins, lipids and combinations of these species in various Pickering emulsion formulations. Also, an overview of the various tuneable factors associated with the functionalisation or surface modification of these solid particles, that govern the stability of the Pickering emulsions is provided.

In a Pickering emulsion, solid particles accumulate at the interface between two immiscible phases to reduce coalescence by forming a physical barrier. Using bioderived particles is becoming popular to generate more sustainable Pickering emulsions.  相似文献   

15.
The fabrication of concentrated nanoemulsions provides potential advantages such as loading capacity enhancement, storage and transportation costs reduction, and creation of novel textures. The current study investigated the capability of high power ultrasound on nanoemulsification of high concentration triglyceride using various natural emulsifiers (saponin, whey protein isolate, lecithin and sucrose monopalmitate). The impact of the emulsifier concentration (up to 6 wt%), oil content (up to 60 wt%) and exposure to sonication (up to 33 min) on the droplet size distribution, physical stability and rheological properties were evaluated. Regarding the dilute nanoemulsion (10 wt% oil), droplet size was inversely correlated with the concentration of emulsifiers, however only by using saponin (2 wt%) the droplet size was in nano range (d < 200 nm). The concentrated nanoemulsions (20–50 wt%) were also fabricated under sonication (15 min at saponin-to-oil ratio 2 : 10 w/w%). They also presented shear-thinning behavior with relatively low consistency coefficients. Surprisingly, the one with 60 wt% oil was easily converted to viscoelastic gel upon 3 min sonication. Owing to such characteristics, they could have potential applicability in formulation of soft foods, creams, sauces, salad dressings, pastes, lotions, cosmetics and pharmaceuticals.

The capability of ultrasonication and natural emulsifiers on nano-emulsification and nano-gelation of concentrated triglyceride oil was verified.  相似文献   

16.
Polysulfone (PSF)/fluorinated ethylene propylene (FEP) mixed matrix membranes (MMMs) with super hydrophobic surface were successfully fabricated via non-solvent induced phase separation (NIPS) method. The effects of FEP content on the morphology, roughness, wettability, pore size, and mechanical property of PSF/FEP MMMs were characterized by scanning electron microscope, confocal microscopy, contact angle goniometer, mercury porosimetry, and tensile testing instrument, respectively. When the FEP content was 9 wt%, the average roughness of M-4 reached 0.712 μm. Meanwhile, the water contact angle (CA) and the water sliding angle (SA) was 153.3° and 6.1°, respectively. M-4 showed super hydrophobicity with a micro- and nanoscale structure surface. Then, M-4 was used for separating of water-in-oil emulsion, showing high separation efficiency for water-in-kerosene and water-in-diesel emulsions of 99.79% and 99.47%, respectively. The flux and separation efficiency changed slightly after 10 cycles. Therefore, this study indicated that the obtained PSF/FEP MMM with super hydrophobic surface could be used for efficient water-in-oil emulsion separation.

The PSF/FEP membrane with super hydrophobic and super oleophilic surface had an outstanding separation performance for water-in-oil emulsion.  相似文献   

17.
The utility of a Pickering emulsion (PEm) under saline conditions is strongly dependent on the stability of the emulsion in the presence of different salt concentrations. In this study, we have evaluated the effect of NaCl and temperature on the stability of a polyacryloyl hydrazide (PAHz)–Ag nanocomposite (NC) based PEm utilizing ocular observation, an optical microscope with a thermal stage, TGA, DLS, electrical conductivity, and rheological studies at different temperatures. The creaming stability of PEm in the presence of salt concentrations in the range of 0.5 to 5.0 wt% was evaluated by adding different amounts of PAHz–Ag NC stabilizer. The effect of NaCl on emulsion stability is strongly dependent on the aggregation behaviour of the nanocomposites, showing signs of aggregation at low NaCl concentration (<3 wt%) and re-dispersion at high NaCl concentration (>3 wt%). As per the microscopy analysis, 25 wt% of PAHz–Ag NC was sufficient to stabilize the PEm for a period of up to 7 days in the presence of salt concentrations up to 3 wt% in the aqueous layer at 95 °C. Thus, the balance of ionic strength provides an important insight into the nature of nanocomposite interactions in emulsion systems and a possible mechanism for designing emulsion properties via salt inclusion.

Schematic for the impact of NaCl on droplet stabilization in Pickering emulsions.  相似文献   

18.
Fibrous mats with hydrophobic and oleophilic properties have been fabricated and used as absorbents of oil from stable water in oil emulsions. The mats were prepared by initially mixing two polymers, poly(methyl methacrylate) (PMMA) and polycaprolactone (PCL), in a common solvent. The subsequent electrospinning of the prepared solutions resulted in the production of mechanically stable fiber mats, with enhanced oil absorption capacity and oil absorption selectivity from the emulsions, compared to the pure PMMA or PCL mats. Furthermore, the formed fibrous substrates have been successful in the absorption of oil from different emulsions with a wide range of oil content, from 10 to 80 v%. The performance of the fibrous mats was optimized by the incorporation of hydrophobic silica nanoparticles, reaching oil absorption capacities of 28 g g−1 and negligible water uptake, in the emulsions with 80 v% oil content.

Fibrous mats with hydrophobic and oleophilic properties have been fabricated and used as absorbents of oil from stable water in oil emulsions.  相似文献   

19.
The purpose of the present study was to prepare and characterize a novel mucoadhesive microparticulate drug delivery system. Microparticles were prepared by the solvent evaporation emulsion technique using a poly(acrylic acid)-cysteine conjugate of an average molecular mass of 450 kDa with an amount of 308 micromol thiol groups per gram polymer. The cross-linking of thiol groups via the formation of disulfide bonds during this preparation process was pH-controlled. The resulting microparticles were characterized with regard to the degree of cross-linking and the amount of remaining free thiol groups, shape, size distribution and stability. Furthermore, the drug release behaviour using bromelain as model drug and the mucoadhesive properties were evaluated.Results demonstrated that the higher the pH of the aqueous phase was during the preparation process, the higher was the degree of cross-linking within the particles. However, even at pH 9, 8.9+/-2.2% of free thiol groups remained on the microparticles. Particles were of spherical and partially porous structure and had a main size in the range of 20-60 microm with a center at 35 microm. Because of the formation of disulfide bonds within the particles, they did not disintegrate under physiological conditions within 48 h. In addition, a controlled drug release of bromelain was achieved. Due to the immobilization of thiol groups on poly(acrylic acid), the mucoadhesive properties of the corresponding microparticles were improved threefold.These features should render poly(acrylic acid)-cysteine conjugate microparticles useful as drug delivery system providing a prolonged residence time on mucosal epithelia.  相似文献   

20.
This research investigated the influence of processing history on physicochemical properties of dairy protein-stabilized emulsions. Emulsions were heated (UHT) either before or after a single homogenization (UHTSH, SHUHT) or homogenized both before and after heating (double homogenization, DHUHT). The results demonstrated that UHT treatment increased the protein load at the oil/water interface while homogenization prior to UHT (SHUHT) inhibited displacement of protein by surfactant molecules, and this emulsion exhibited higher interfacial protein coverage and wider size distribution compared to the emulsion produced by UHTSH. The use of the double homogenization with UHT resulted in emulsion droplets with the smallest average size and lowest concentration of unabsorbed protein. However, no difference in the protein load in a specific area was noticed between emulsions produced by DHUHT and SHUHT. When changes of surface tension at the air/water interface were measured using a drop tensiometer, SHUHT emulsion showed the fastest decrease of surface tension due to the occurrence of a lower level of surfactant displacement where more surfactant was available for fast adsorption. Emulsions prepared with DHUHT or UHTSH decreased the surface tension in a slower speed than SHUHT. During storage, partial coalescence of emulsion droplets was observed for emulsions produced with single homogenization, regardless of whether this was carried out before or after heating. Double homogenization formed more stable emulsions than single homogenization. This work clearly showed that it is possible to tailor physico-chemical functionalities of dairy protein-based emulsions by controlling the interactions between proteins or with surfactants during processing.

This research investigated the influence of processing history on physicochemical properties of dairy protein-stabilized emulsions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号