首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Novolac-based poly(1,2,3-triazolium)s with 1,2,3-triazolium side groups spaced by oligo(ethylene glycol), a new kind of poly(ionic liquid) membrane, was prepared via the well-known Click chemistry (1,3-dipolar cycloaddition reaction). The thermal properties, ionic conductivity and gas permeation performance of these self-standing membranes were investigated. The obtained membranes exhibit glass transition temperatures ranging from −1 °C to −7.5 °C, and a temperature at 10% weight loss above 330 °C. These membranes have good ionic conductivity (σDC up to 5.1 × 10−7 S cm−1 at 30 °C under anhydrous conditions) as compared with the reported 1,2,3-triazolium-based crosslinked polymers. And they could be potentially used for CO2 separation as they exhibit enhanced CO2 permeability up to 434.5 barrer at 4 atm pressure.

Novolac-based poly(1,2,3-triazoliums)s with 1,2,3-triazolium in the side groups spaced by oligo(ethylene glycol) show enhanced CO2 permeability.  相似文献   

2.
We synthesized poly(4-vinylbenzyltributylammonium hexanesulfonate) (P[VBTBA][HS]), a poly(ionic liquid) that shows lower critical solution temperature (LCST), via the anion exchange reaction of poly(4-vinylbenzyltributylammonium chloride) (P[VBTBA][Cl]) with sodium hexanesulfonate in order to investigate its suitability as a draw solute for the forward osmosis (FO) process. P[VBTBA][Cl] was obtained by the free radical polymerization of (4-vinylbenzyltributylammonium chloride [VBTBA][Cl]) monomer acquired by the Menshutkin reaction. The FO performance and recovery properties of the synthesized materials were systematically investigated. For example, the LCST of P[VBTBA][HS] was observed to be ∼17 °C at 20 wt%, while no LCST was observed for [VBTBA][Cl] monomer and P[VBTBA][Cl] polymer before the anion exchange reaction, indicating that P[VBTBA][HS] can be recovered from the aqueous solution by heating it to above its LCST. Moreover, in an active layer facing the feed solution (AL-FS) system containing 20 wt% aqueous P[VBTBA][HS] solution at 15 °C, the water flux and reverse solute flux of P[VBTBA][HS] were found to be ∼5.85 L m−2 h−1 and 1.13 g m−2 h−1, respectively. Therefore, we studied the feasibility of using the poly(ionic liquid), a homopolymer having LCST characteristics, as a draw solute in the FO process.

A poly(ionic liquid) having lower critical solution temperature characteristics was synthesized to investigate its suitability as a draw solute for forward osmosis.  相似文献   

3.
A three-dimensional cross-linked Ni–V2O5 nanomaterial with a particle size of 250–300 nm was successfully prepared in a 1-butyl-3-methylimidazole bromide ionic liquid (IL). The formation of this structure may follow the rule of dissolution–recrystallization and the ionic liquid, as both a dissolution and structure-directing agent, plays an important role in the formation of the material. After calcination of the precursor, the active material (Ni–V2O5–IL) was used as an anode for lithium-ion batteries. The designed anode exhibited excellent electrochemical performance with 765 mA h g−1 at a current density of 0.3 A g−1 after 300 cycles, which is much higher than that of a NiVO–W material prepared via a hydrothermal method (305 mA h g−1). These results show the remarkable superiority of this novel electrode material synthesized in an ionic liquid.

A three-dimensional cross-linked Ni–V2O5 nanomaterial with a particle size of 250–300 nm was successfully prepared in a 1-butyl-3-methylimidazole bromide ionic liquid (IL).  相似文献   

4.
The development of electronic skin (e-skin) and soft tactile sensing has recently attracted great interest. Here we report for the first time on a novel ionic liquid (IL) based soft pressure sensor with multi-point touch detection capability using 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]+[BF4]) as a highly conductive sensing medium. The sensing mechanism is attributed to the repopulation of charge cations and anions in aqueous solution under pressure. The sensor can detect two dimensional touching positions with a sensitivity of −0.28% kPa−1. Our sensor showed good stability and temperature independence thanks to the incompressibility of IL in the range of touch pressure and the appropriate signal measurement configuration. We successfully demonstrated the sensor''s capability to detect multi-point human touch with different pressure levels. Our simple design with smart structures and ease of fabrication processes enable the development of a soft and low-cost sensor with multiple-point sensing capabilities on a single chip.

Here we report on an ionic liquid based soft pressure sensor. Our use of smart structures and ease of fabrication processes enable the development of a soft and low-cost sensor with multiple-point sensing capabilities on a single chip.  相似文献   

5.
A soluble and easily dispersive cross-linked poly(ionic liquid), copolymer of 1-vinyl-3-butylimidazolium bromide ([VBIM][Br]) and divinylbenzene (DVB), was used as a precursor for nitrogen doped porous carbons (NPCs) with SiO2 (from tetraethyl orthosilicate) as a template. The NPCs were characterized by infrared (IR) spectroscopy, nitrogen adsorption–desorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, thermo gravimetric analysis (TGA), elemental analysis and X-ray photoelectron spectroscopy (XPS). The specific surface area and porosity of NPCs depended on the carbonization temperature, the SiO2/[VBIM][Br] ratio and the precursors. Under the optimized conditions, the NPC prepared from cross-linked poly(ionic liquid), P([VBIM][Br]–0.1DVB), gave a high specific surface area up to 1324 m2 g−1. XRD indicated that amorphous and disordered graphitic layers were dominant in NPCs. The nitrogen content was about 4–5 wt% in NPCs, and the nitrogen bonding state observed using XPS analysis was mainly pyridinic- and pyrrolic-N. Meanwhile, the cyclic voltammetry, gravimetric charge–discharge curves and electrochemical impedance spectroscopy of the NPCs were also investigated, the specific capacitance was up to 243 F g−1 at 0.1 A g−1, and the retention ratio was nearly 100% after charge–discharge cycling 2400 times at 2 A g−1 in 6 M KOH electrolyte.

The cross-linked PIL with “network structure” can fabricate nitrogen-doped porous carbons with higher specific surface area.  相似文献   

6.
As potential hypergolic fuels, hypergolic ionic liquids have attracted much attention since their development. Herein, a series of hypergolic ionic liquids based on asymmetric [bis(imidazolyl)-BH2]+ cations were synthesized. The asymmetric structure of these hypergolic ionic liquids was further confirmed by NMR, infrared (IR), and high-resolution mass spectrometry-electron spray ionization (HRMS-ESI). Moreover, these hypergolic ionic liquids possess a high density of over 1.00 g cm−3, a comprehensive liquid range from −60 °C to 20 °C, and a density-specific impulse performance ranging from 305.4 to 357.8 s g cm−3, which is superior to that of unsymmetrical dimethylhydrazine. Remarkably, (1-allyl-1H-imidazol-3-ium-1-yl)(1-methyl-1H-imidazol-3-ium-1-yl) dihydroboronium dicyandiamide had the best ignition-delay time (18 ms), a high density (1.114 g cm−3), and a high value for heat of formation (400 kJ mol−1/1.48 kJ g−1). This work provides the possibility of a promising and green hypergolic fuel as rocket propellant.

Asymmetric [bis(imidazolyl)-BH2]+-cation-based hypergolic ionic liquids are successfully synthesized, which possess a high density-specific impulse ranging from 305.4 to 357.8 s g cm−3, that make them promising candidates for rocket propellants.  相似文献   

7.
An easily prepared ionic liquid was synthesized by a one-step method and applied in SO2 absorption efficiently. The cation of the ionic liquid is a supramolecular structure consisting of NH+4 and tetraglyme, similar to the structure of NH+4 and crown ether, and the anion is selected as SCN. The ionic liquid has good thermal stability. Under the conditions of 293 K and 1 bar, one mol ionic liquid can absorb 2.73 mol SO2, which is about 30% higher than tetraglyme. The absorption mechanism was characterized using IR and NMR. And the results confirmed that the interaction mechanism between SO2 and the ionic liquid is a physical interaction rather than a chemical interaction.

Simple prepared tetraglyme-NH4SCN ionic liquid is used to absorb sulfur dioxide efficiently and regenerate.  相似文献   

8.
The removal of TcO4 from aqueous solutions has attracted more and more attention recently, and ReO4 has been widely used as its natural analog. In this work, polymeric ionic liquid gel adsorbents, PC2-C12vimBr, with high adsorption capacity and selectivity towards ReO4 were synthesized by radiation-induced polymerization and crosslinking. PC2-C12vimBr was composed of two monomers: a hydrophobic unit, 1-vinyl-3-dodecylimidazolium bromide for high selectivity, and a hydrophilic unit, 1-vinyl-3-ethylimidazolium bromide for improved kinetics. A gel fraction up to 90% could be achieved under 40 kGy with varied monomer ratios. The adsorption of PC2-C12vimBr gels for ReO4 was evaluated by batch adsorption. The PC2-C12vimBr gel containing 20 mol% hydrophilic unit (named PC2-C12vimBr-A) could significantly improve the adsorption kinetics, which had an equilibrium time of ca. 24 h. The adsorption capacity obtained from the Langmuir model was 559 mg g−1 (Re/gel). The selective factor against NO3 was 33.4 ± 1.9, which was more than 10 times higher than that of PC2vimBr, and it could maintain ReO4 uptake as high as 100 mg g−1 in 0.5 mol kg−1 HNO3. The ΔHΘ and ΔSΘ of the NO3/ReO4 ion-exchange reaction of PC2-C12vimNO3-A were −16.9 kJ mol−1 and 29 J mol−1 K−1, respectively, indicating physical adsorption. The adsorption mechanism of ReO4 onto PC2-C12vimBr-A gel was ion-exchange, and it could be recovered using 5.4 mol kg−1 HNO3.

Polymeric ionic liquid gels composed of hydrophilic and hydrophobic units with high adsorption selectivity towards perrhenate were synthesized.  相似文献   

9.
Despite widely reported fluorescence sensors for cations, direct detection of anions is nevertheless still rare. In this work, ionic liquid-functionalized fluorescent carbon nanoribbons (IL-CNRs) are one-step synthesized and serve as the fluorescent probes for direct and sensitive detection of sulfide ions (S2−). The IL-CNRs are synthesized based on electrochemical exfoliation of graphite rods in a water-IL biphasic system. The as-prepared IL-CNRs exhibit uniform structure, high crystallinity, strong blue fluorescence (absolute photoluminescence quantum yield of 11.4%), and unique selectivity towards S2−. Based on the fluorescence quenching of IL-CNRs by S2−, a fluorescence sensor is developed for direct, rapid and sensitive detection of S2− in the range of 100 nM to 1 μM and 1–300 μM with a low detection limit (LOD, 85 nM). Moreover, detection of S2− in a real sample (tap water) is also demonstrated.

Sensitive detection of sulfide ions is realized based on one-step synthesis of ionic liquid functionalized fluorescent carbon nanoribbons.  相似文献   

10.
A simple, rapid, and environmentally friendly approach was introduced to determine triazole fungicides in water samples by air-assisted ionic liquid dispersive liquid–liquid microextraction based on solidification of the aqueous phase using high-performance liquid chromatography-diode array detection. Ionic liquid was applied as the extraction solvent rather than a high-toxicity extraction solvent. The air-assisted dispersion method induced a trace amount of the ionic liquid to disperse as small droplets in the water sample, which significantly increased the contact area between the organic phase and the aqueous phase for the rapid transfer of target fungicides without using a dispersion solvent or auxiliary extraction devices. The solidification of the aqueous phase facilitated the collection of extraction solvent. The type of extraction solvent, the volume ratio of the extraction solvent to the water sample, the number of extraction cycles, the addition of NaCl, and pH values were evaluated. The recoveries were 72.65–100.13% with a relative standard deviation of 0.92% to 5.99%. The limits of quantification varied from 0.65 ng mL−1 to 1.83 ng mL−1. This approach can be used to determine fungicides in ground, river, and lake water samples.

A simple, rapid, and environmentally friendly approach was introduced to determine triazole fungicides in water samples by air-assisted ionic liquid dispersive liquid–liquid microextraction based on solidification of the aqueous phase by HPLC-DAD.  相似文献   

11.
Triazolium-based ionic liquids (T1, T2 and T3) with or without terminal hydroxyl groups were prepared via Cu(i) catalysed azide–alkyne click chemistry and their properties were investigated using various technologies. The hydroxyl groups obviously affected their physicochemical properties, where with a decrease in the number of hydroxyl groups, their stability and conductivity were enhanced. T1, T2 and T3 showed relatively high thermal stability, and their electrochemical stability windows (ESWs) were 4.76, 4.11 and 3.52 V, respectively. T1S-20 was obtained via the addition of zinc trifluoromethanesulfonic acid (Zn(CF3SO3)2) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) to T1, displaying conductivity and ESW values of 1.55 × 10−3 S cm−1 and 6.36 V at 30 °C, respectively. Subsequently, a Zn/Li3V2(PO4)3 battery was assembled using T1S-20 as the electrolyte and its performances at 30 °C and 80 °C were investigated. The battery showed a capacity of 81 mA h g−1 at 30 °C, and its capacity retention rate was 89% after 50 cycles. After increasing the temperature to 80 °C, its initial capacity increased to 111 mA h g−1 with a capacity retention rate of 93.6% after 100 cycles, which was much higher than that of the aqueous electrolyte (WS-20)-based zinc ion battery (71.8%). Simultaneously, the T1S-20 electrolyte-based battery exhibited a good charge/discharge efficiency, and its Coulomb efficiency was 99%. Consequently, the T1S-20 electrolyte displayed a better performance in the Zn/Li3V2(PO4)3 battery than that with the aqueous electrolyte, especially at high temperature.

ZIB with T1S-20 electrolyte displays good charge/discharge performances and dendrite-free structure at high temperature, which is better than that with aqueous electrolyte (WS-20).  相似文献   

12.
Despite significant advances in the development of flexible gel polymer electrolytes (GPEs), there are still problems to be addressed to apply them to flexible electric double layer capacitors (EDLCs), including interfacial interactions between the electrolyte and electrode under deformation. Previously reported EDLCs using GPEs have laminated structures with weak interfacial interactions between the electrode and electrolyte, leading to fragility upon elongation and low power density due to lower utilization of the surface area of the carbon material in the electrode. To overcome these problems, we present a new strategy for constructing an epoxy-based GPE that can provide strong adhesion between electrode and electrolyte. The GPE is synthesized by polymerization of epoxy and an ionic liquid. This GPE shows high flexibility up to 509% and excellent adhesive properties that enable strong chemical bonding between the electrode and electrolyte. Moreover, the GPE is stable at high voltage and high temperature with high ionic conductivity of ∼10−3 S cm−1. EDLCs based on the developed GPE exhibit good compatibility between the electrode and electrolyte and work properly when deformed. The EDLCs also show a high specific capacitance of 99 F g−1, energy density of 113 W h kg−1, and power density of 4.5 kW g−1. The excellent performance of the GPE gives it tremendous potential for use in next generation electronic devices such as wearable devices.

A chemically bonded supercapacitor using a stretchable and adhesive gel polymer electrolyte based on ionic liquid and epoxy for flexible devices.  相似文献   

13.
Herein, silica-coated iron oxide nanoparticles modified with imidazolium-based polymeric ionic liquid (Fe3O4@SiO2@PIL) were fabricated as a sustainable sorbent for magnetic solid-phase extraction (MSPE) and simultaneous determination of trace antidiabetic drugs in human plasma by high-performance liquid chromatography-ultraviolet detection (HPLC-UV). The Fe3O4 core was functionalized by silica (SiO2) and vinyl layers where the ionic liquid 1-vinyl-3-octylimidazolium bromide (VOIM-Br) was attached through a free radical copolymerization process. In order to achieve hydrophobic magnetic nanoparticles and increase the merits of the sorbent, Br anions were synthetically replaced with PF6. The properties and morphology of the sorbent were characterized by various techniques and all the results illustrated the prosperous synthesis of Fe3O4@SiO2@PIL. A comprehensive study was carried out to investigate and optimize various parameters affecting the extraction efficiency. The limit of detection (LOD, S/N = 3) for empagliflozin, metformin and canagliflozin was 1.3, 6.0 and 0.8 ng mL−1, respectively. Linearity (0.997 ≥ r2 ≥ 0.993) and linear concentration ranges of 5.0–1200.0, 20.0–1800.0 and 5.0–1000.0 ng mL−1 were obtained for empagliflozin, metformin and canagliflozin, respectively. Intra-assay (3.8–7.5%, n = 9) and inter-assay (3.2–8.5%, n = 12) precisions as well as accuracies (≤9.1%) displayed good efficiency of the method. Finally, the method was applied for the quantitation of antidiabetic drugs in human plasma after oral administration and main pharmacokinetic data including Tmax (h), Cmax (ng mL−1), AUC0–24 (ng h mL−1), AUC0–∞ (ng h mL−1), and T1/2 (h) were evaluated.

A sustainable nanoscale core–shell modified with hydrophobic polymeric ionic liquid was fabricated for simultaneous extraction and determination of antidiabetic drugs.  相似文献   

14.
A series of imidazolinium-based porous poly(ionic liquid)s (PILs) with different anions prepared by free-radical copolymerization of an arene-bridged tris-vinylimidazolium salt and divinylbenzene (DVB) were constructed. The as-prepared PILs were characterized by BET, SEM, TEM, TGA and Elemental Analysis (EA), and the results showed that they had plentiful ionic sites, and abundant and stable mesopores. In particular, the density of ionic sites and pore structure of PILs could be controlled by adjusting the content of DVB. Moreover, the PILs were used as efficient heterogeneous catalysts for the decarboxylation of cyclic carbonates to epoxides for the first time. Results showed that the catalytic activity of PILs was positively correlated with the nucleophilicity of the anions in PILs, and PDVB-[PhTVIM]Cl-1 with a chloride anion-enriched skeleton displayed the best catalytic performance. Without any solvent or cocatalyst, PDVB-[PhTVIM]Cl-1 achieved a TOF value of 108.1 h−1 and the yield of butylene oxide of 89.6%, which was even better than the homogeneous IL-based catalysts (TOF value: 8.7 h−1) that had been previously reported. Meanwhile, PDVB-[PhTVIM]Cl-1 also exhibited excellent recyclability and substrate compatibility.

The tris-imidazolium-based porous poly(ionic liquid)s with plentiful ionic sites prepared by free-radical polymerization exhibited superior catalytic performance toward the heterogeneous conversion of butylene carbonate to butylene oxide.  相似文献   

15.
A novel modified glassy carbon electrode (GCE) was successfully fabricated with a tetra-component nanocomposite consisting of (1,1′-(1,4-butanediyl)dipyridinium) ionic liquid (bdpy), SiW11O39Ni(H2O) (SiW11Ni) Keggin-type polyoxometalate (POM), and phosphorus-doped electrochemically reduced graphene oxide (P-ERGO) by electrodeposition technique. The (bdpy)SiW11Ni/GO hybrid nanocomposite was synthesized by a one-pot hydrothermal method and characterized by UV-vis absorption, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) analysis, thermogravimetric-differential thermal analysis (TGA/DTA), and transmission electron microscopy (TEM). The morphology, electrochemical performance, and electrocatalysis activity of the nanocomposite modified glassy carbon electrode ((bdpy)SiW11Ni/P-ERGO/GCE) were analyzed by field emission scanning electron microscopy (FE-SEM) coupled with energy-dispersive X-ray spectroscopy (EDS), cyclic voltammetry (CV), square wave voltammetry (SWV), and amperometry, respectively. Under the optimum experimental conditions, the as-prepared sensor showed high sensitivity of 28.1 μA mM−1 and good selectivity for iodate (IO3) reduction, enabling the detection of IO3 within a linear range of 10–1600 μmol L−1 (R2 = 0.9999) with a limit of detection (LOD) of 0.47 nmol L−1 (S/N = 3). The proposed electrochemical sensor exhibited good reproducibility, and repeatability, high stability, and excellent anti-interference ability, as well as analytical performance in mineral water, tap water, and commercial edible iodized salt which might provide a capable platform for the determination of IO3.

Constructing a sensitive electrochemical sensor based on (bdpy)SiW11Ni/P-ERGO/GCE for IO3 detection at the nanomolar level with noticeable selectivity.  相似文献   

16.
Thin films of Co and Ni electroplated onto a copper electrode from acidic sulfate and Watts baths, respectively, were investigated. The use of an ionic liquid additive in the electrolyte is widespread for producing thin films by electrodeposition. In the present work, the influence of a new ionic liquid, namely, 1-methyl-3-((2-oxo-2-(2,4,5-trifluorophenyl)amino)ethyl)-1H-imidazol-3-ium iodide (Im-IL), in the electrodeposition of two metals was investigated using cathodic polarization (CP), cyclic voltammetry (CV), and anodic linear stripping voltammetry (ALSV) measurements and cathodic current efficiency (CCE%). The surface morphology of the Co- and Ni-coated samples was examined using Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and atomic force microscopy (AFM). The corrosion protection of the Co and Ni samples in a marine environment (3.5% NaCl solution) was studied by the potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The results show that the addition of Im-IL inhibits Co2+ and Ni2+ deposition, which leads to more fine-grained deposits, especially at low Im-IL concentrations. The inhibition of Co2+ and Ni2+ reduction in the presence of Im-IL ions occurs via adsorption, which obeys the Langmuir adsorption isotherm. The CCE% is higher in the presence of Im-IL. SEM images show smoother deposits of Co and Ni in 1 × 10−5 M and 1 × 10−4 M Im-IL solution respectively. The results prove that Im-IL acts as an efficient additive for electroplating soft Co and Ni films.

Thin films of Co and Ni electroplated onto a copper electrode from acidic sulfate and Watts baths, respectively, were investigated.  相似文献   

17.
A gemini-type basic morpholine ionic liquid ([Nbmd][OH]) was synthesized via a two-step method with morpholine, bromododecane and 1,4-dibromobutane as raw materials, and its structure was characterized by 1H NMR and FT-IR spectroscopy. Meanwhile, a series of anion exchange membranes ([Nbmd][OH]x–QCS) were prepared with quaternized chitosan (QCS) as the polymer matrix and [Nbmd][OH] as the dopant owing to its strong alkalinity and good solubility. The structures of the [Nbmd][OH]x–QCS composite membranes were characterized in detail by FT-IR spectroscopy, the OH conductivity by AC impedance spectroscopy, and the morphological features by scanning electron microscopy (SEM), thermal gravity analysis (TGA), etc. The results show that the [Nbmd][OH]x–QCS composite membranes have uniform surfaces and cross-section morphology. Increasing the content of [Nbmd][OH] not only enhances the thermal stability but also increases the OH conductivity; the thermal decomposition temperature of the [Nbmd][OH]40–QCS membrane is nearly 20 °C higher than that of the pristine QCS membrane, and the maximum OH conductivity is approximately 1.37 × 10−2 S cm−2 at 70 °C. The methanol permeability of the [Nbmd][OH]40–QCS membrane in 1 M methanol at room temperature is 2.21 × 10−6 cm−2 s−1, which is lower than that of Nafion®115, indicating a promising potential use in alkaline direct methanol fuel cells. Moreover, the [Nbmd][OH]40–QCS membrane exhibits the best alkaline stability of all the membranes prepared in this work, retaining approximately 81% of its initial conductivity after immersion in 3 M KOH solution for 120 h at 70 °C.

A gemini-type basic morpholine ionic liquid ([Nbmd][OH]) was synthesized via a two-step method with morpholine, bromododecane and 1,4-dibromobutane as raw materials, and its structure was characterized by 1H NMR and FT-IR spectroscopy.  相似文献   

18.
19.
A highly efficient and green strategy for the synthesis of 2-arylbenzoxazoles, 2-arylbenzimidazoles, and 2-arylbenzothiazoles catalyzed by phosphonium acidic ionic liquid has been developed via the condensation of o-aminophenol, o-phenylenediamines, and o-aminothiophenol, respectively, with aldehydes. The reaction has a good yield, the broad substrate scope, and mild condition. Triphenyl(butyl-3-sulphonyl)phosphonium toluenesulfonate catalyst was easily obtained from cheap and available starting materials through a one-pot synthesis. Its structure was identified by 1H NMR, 13C NMR, 31P NMR, and FT-IR techniques. Other properties including thermal stability and acidity were determined by TGA and Hammett acidity function method. Interestingly, the catalyst can maintain its constantly outstanding performance till the fourth recovery.

A green, straightforward, and efficient synthesis of 2-arylbenzoxazoles, 2-arylbenzimidazoles, and 2-arylbenzothiazoles catalyzed by phosphonium acidic ionic liquid has been developed.  相似文献   

20.
Bauxite residue (BR) contains substantial concentrations of rare-earth elements (REEs), but their recovery is a challenge. Acidic BR leachates typically comprise much higher concentrations of base elements (g L−1) than those of the REEs (ppm). Thus, adsorbents that are highly selective for the REEs over the base elements are required for the separation. The novel supported ionic liquid phase (SILP) betainium sulfonyl(trifluoromethanesulfonylimide) poly(styrene-co-divinylbenzene) [Hbet-STFSI-PS-DVB] was evaluated for the uptake of REEs (Sc, Y, Nd, Dy) in the presence of base elements (Ca, Al, Fe) from BR leachates. Breakthrough curves from acidic nitrate and sulfate media were investigated, as both HNO3 and H2SO4 are commonly used for leaching of BR. The SILP exhibited a superior affinity for REEs in both media, except in the case of Sc(iii) from the sulfate feed. The recovery rates of the trace amounts of REEs from the real nitrate feed were remarkably high (71.7–100%) via a simple chromatography separation, without requiring complexing agents or a pretreatment for the removal of interfering elements. The REEs were purified from the base elements and separated into three sub-groups (scandium, light REEs and heavy REEs) by an optimized elution profile with H3PO4 and HNO3 in a single chromatographic separation step.

Rare earths are separated from base metals in bauxite residue leachate by a supported ionic liquid phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号