首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
In the present work, nanothermometers based on amorphous zirconium metal–organic frameworks co-doped with rare-earth ions (YZ-BDC:Eu3+,Tb3+ nanothermometers) with sizes of about 10–30 nm were successfully synthesized via a microwave-assisted hydrothermal method at 120 °C for 15 min. The determined BET surfaces area, total pore volume and average pore diameter were ∼530 m2 g−1, 0.45 cm3 g−1 and 3.4 nm, respectively. Based on Fourier transform infrared spectroscopy (FTIR) and simultaneous thermal analysis (STA) results, the formation process of carboxylic acid salts and the molecular formula of the samples have been proposed. The thermometric properties of Zr-BDC:Eu3+,Tb3+ nanothermometers and their Y3+ ion co-doped counterparts (YZ-BDC:Eu3+,Tb3+) measured in the 133–573 K temperature range were compared. Moreover, the temperature-dependent CIE(x, y) chromaticity coordinates and emission color of the samples were also determined. As the temperature increased from 133 to 573 K, the emission color of Zr-BDC:Eu3+,Tb3+ nanothermometers without the presence of Y3+ ions changed from orange to red, while for YZ-BDC:Eu3+,Tb3+ nanothermometers, the emission color changed from yellow to orange, due to the strong effect of the presence of Y3+ ions on the luminescence intensity of Eu3+ and Tb3+ ions. The maximum relative sensitivity (SRmax) in both materials was close to 0.5%/K, however, the temperature range of their occurrence was significantly shifted toward higher temperatures due to doping with Y3+ ions. The obtained results showed that doping with Y3+ ions not only enables the modulation of the useful temperature range with high relative sensitivity, but also provides improved thermal stability.

In the present work, nanothermometers based on amorphous zirconium metal–organic frameworks co-doped with rare-earth ions (YZ-BDC:Eu3+,Tb3+) with sizes of about 10–30 nm were successfully synthesized via a microwave-assisted hydrothermal method at 120 °C for 15 min.  相似文献   

2.
Single phase Eu3+-activated Ba3Y4O9 (Ba3(Y1−xEux)4O9) red-emitting phosphors with different Eu3+ doping concentrations were synthesized by a high temperature solid-state reaction method. The phase purity, crystal structure, photoluminescence properties, internal quantum efficiency, decay lifetimes, and thermal stability were investigated. Upon excitation at 396 nm near-ultraviolet light and 469 nm blue light, the Ba3(Y1−xEux)4O9 phosphors exhibited a strong red emission at 614 nm due to the 5D07F2 transition of Eu3+ ions. The optimal doping concentration of Eu3+ ions in Ba3(Y1−xEux)4O9 was found to be x = 0.25. Furthermore, the critical distance was calculated to be 12.78 Å and the energy transfer mechanism for the concentration quenching effect was determined to be quadrupole–quadrupole interaction. In addition, the Commission Internationale de I''Eclairage (CIE) chromaticity coordinates of Ba3(Y0.75Eu0.25)4O9 phosphors were measured to be (0.6695, 0.3302) which located at the red region, and significantly, the high color purity was about 97.9%. The as-synthesized phosphors also possessed excellent thermal stability and the activation energy was determined to be 0.29 eV. Therefore, the investigated results indicated that the Ba3Y4O9:Eu3+ phosphor may be a suitable candidate as a red phosphor for white light-emitting diodes under effective excitation at near-ultraviolet and blue light.

High color purity Ba3Y4O9:Eu3+ red-emitting phosphors with excellent thermal stability were developed for warm W-LED application.  相似文献   

3.
Eu3+-activated Ba2Y5B5O17 (Ba2Y5−xEuxB5O17; x = 0.1–1) red-emitting phosphors were synthesized by the conventional high temperature solid-state reaction method in an air atmosphere. Powder X-ray diffraction (XRD) analysis confirmed the pure phase formation of the as-synthesized phosphors. Morphological studies were performed using field emission-scanning electron microscopy (FE-SEM). The photoluminescence spectra, lifetimes, color coordinates and internal quantum efficiency (IQE) as well as the temperature-dependent emission spectra were investigated systematically. Upon 396 nm excitation, Ba2Y5−xEuxB5O17 showed red emission peaking at 616 nm which was attributed to the 5D07F2 electric dipole transition of Eu3+ ions. Meanwhile, the influences of different concentrations of Eu3+ ions on the PL intensity were also discussed. The optimum concentration of Eu3+ ions in the Ba2Y5−xEuxB5O17 phosphors was found to be x = 0.8. The concentration quenching mechanism was attributed to the dipole–dipole interaction and the critical distance (Rc) for energy transfer among Eu3+ ions was determined to be 5.64 Å. The asymmetry ratio [(5D07F2)/(5D07F1)] of Ba2Y4.2Eu0.8B5O17 phosphors was calculated to be 3.82. The fluorescence decay lifetimes were also determined for Ba2Y5−xEuxB5O17 phosphors. In addition, the CIE color coordinates of the Ba2Y4.2Eu0.8B5O17 phosphors (x = 0.653, y = 0.345) were found to be very close to the National Television System Committee (NTSC) standard values (x = 0.670, y = 0.330) of red emission and also showed high color purity (∼94.3%). The corresponding internal quantum efficiency of the Ba2Y4.2Eu0.8B5O17 sample was measured to be 47.2%. Furthermore, the as-synthesized phosphors exhibited good thermal stability with an activation energy of 0.282 eV. The above results revealed that the red emitting Ba2Y4.2Eu0.8B5O17 phosphors could be potential candidates for application in near-UV excited white light emitting diodes.

A novel Ba2Y5B5O17:Eu3+ red-emitting phosphor with high color purity, high quantum efficiency and excellent thermal stability was developed.  相似文献   

4.
The Ba2La2.85−xTb0.15Eux(SiO4)3F (BLSOF:0.15Tb3+, xEu3+) multicolor phosphors with apatite structure were synthesized via the solid-state pathway. The crystal structure and luminescence properties of the phosphors were investigated by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), Rietveld refinement, photoluminescence excitation (PLE) and photoluminescence (PL). The luminescence performance of the phosphor was optimum when the concentration of Tb3+ was set to be 0.15 mol and the concentration of Eu3+ was set to be 0.22 mol. Under the accurate excitation of 373 nm near ultraviolet (n-UV) light, the emitting color of the phosphors can be tuned from green to red with increasing Eu3+/Tb3+ ratio. It was further proved that the quadrupole–quadrupole (q–q) interaction is responsible for the energy transfer (ET) in the BLSOF:0.15Tb3+, 0.22Eu3+ phosphor. Owing to the excellent thermal quenching luminescence property, the BLSOF:0.15Tb3+, xEu3+ phosphor can be applied in n-UV white light emitting diodes (w-LEDs) and serve as the warm part of warm white light.

The developed phosphors can be accurately excited by 373 nm (n-UV) light and produce a gradient of colors.  相似文献   

5.
Single-component white-emitting phosphors are highly promising for applications in phosphor-converted white light-emitting diodes. In this paper, novel single-phase LiCa3(1−x)ZnV3O12:Eu3+ (x = 0–0.05) phosphors with tunable white emissions were prepared by a conventional solid-state reaction. The LiCa3ZnV3O12 (x = 0) phosphor showed an efficient self-activated bluish-green emission due to the V5+–O2− charge transfer transition of the [VO4]3− groups, and possessed an intense broad excitation spectrum in the 250–400 nm wavelength range. Together with the [VO4]3− emission, the red emission of Eu3+ ions was also observed in LiCa3(1−x)ZnV3O12:Eu3+ phosphors. The energy transfer from the [VO4]3− groups to the Eu3+ ions was studied. Importantly, the emission colors of LiCa3(1−x)ZnV3O12:Eu3+ phosphors varied from greenish-blue to whitish and then to red with increasing Eu3+ content and the white-light emission was realized in the single-phase phosphor of LiCa3ZnV3O12:0.003Eu3+ by combining the [VO4]3−-emission and the Eu3+-emission. The energy-transfer efficiency from [VO4]3− groups to Eu3+ ions in the LiCa3ZnV3O12:0.003Eu3+ sample was determined to be about 52% and the internal quantum efficiency of the LiCa3ZnV3O12:0.003Eu3+ phosphor was found to be about 41.5%. In addition, the CIE chromaticity coordinates of LiCa3ZnV3O12:0.003Eu3+ were (x = 0.3374, y = 0.3596), and the correlated color temperature was estimated to be about 5311 K.

A novel high-efficiency white-emitting LiCa3ZnV3O12:Eu3+ phosphor was developed.  相似文献   

6.
A new kind of multicolor phosphor Ba2La3(GeO4)3F:0.15Tb3+,xEu3+ (BLGOF:0.15Tb3+,xEu3+) has been acquired through the traditional high temperature solid phase synthesis method. The structural information of the phosphor was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Rietveld refinement. The optical properties of the phosphor have also been studied in detail, including its photoluminescence spectra (PL), photoluminescence excitation spectra (PLE), fluorescence decay curves, energy transfer mechanism and thermal quenching spectra. It has been found that the optimum concentration of Eu3+ in BLGOF:0.15Tb3+,xEu3+ is 0.24 mol and the energy transfer mechanism from Tb3+ to Eu3+ in BLGOF is quadrupole–quadrupole. The color of BLGOF:0.15Tb3+,xEu3+ phosphors can be changed from green to yellow/orange to red. Some details of the energy transfer are reviewed and the effect of complex anion regulation on thermal stability has also been studied. All the properties are good and can contribute to the promotion from the laboratory to practical application for the phosphor.

Single-phase Ba2La3(GeO4)3F:Tb3+,Eu3+ phosphors were obtained for the first time.  相似文献   

7.
CaY1−xAl1+xO4:2%Eu (x = 0, 0.1, 0.2) phosphors have been synthesized via a solid-state reaction process. XRD patterns indicate that they are pure phase. The photoluminescence properties of the CaY1−xAl1+xO4:2%Eu phosphors exhibit both the blue emission of Eu2+ (4f65d1–4f7) and red-orange emission of Eu3+ (5D07F1,2,3,4) under UV light excitation, which showed that the Eu3+/2+ co-doping system was obtained by adjusting the Al/Y ratio. Eu3+ ions can be reduced to Eu2+ ions when the Al/Y ratio was changed. In this work, the bond energy method was used to determine and explain the mechanism of the site occupation of Eu ions entering the host matrix. Also, the emission spectrum showed an unusual comparable intensity 5D07F4 transition peak. The relative intensity of 5D07F2 and 5D07F4 can be stabilized by changing the relative proportions of Al3+ and Y3+. Furthermore, this was explained by the J–O theory.

CaY1−xAl1+xO4:2%Eu (x = 0, 0.1, 0.2) phosphors have been synthesized via a solid-state reaction process.  相似文献   

8.
Herein, a series of GdSr2AlO5:Tb3+,Eu3+ phosphors were successfully synthesized through a high temperature solid-state reaction, and their crystal structures as well as photoluminescence properties were investigated in detail. Compared to the intense emission of 5D07F1 or 5D07F2 transition of Eu3+, another strong emission corresponding to 5D07F4 was observed. Concentration quenching is not obvious in Tb3+ or Eu3+-doped GdSr2AlO5 because structure isolation and energy transfer (ET) of Gd3+ → Eu3+ and Gd3+ → Tb3+ were found. Moreover, the energy transfer process from Tb3+ to Eu3+ was verified by the overlap of luminescence spectra and the variation of lifetime. Energy transfer mechanism was determined to be a dipole–dipole interaction, and ET efficiency as well as quantum efficiency were also obtained. Moreover, the emission color of GdSr2AlO5:Tb3+,Eu3+ can be tuned from green to red by altering the ratio of Tb3+/Eu3+. These results indicate that the GdSr2AlO5:Tb3+,Eu3+ phosphor is a promising single-component white light-emitting phosphor.

The emission spectra of GdSr2AlO5:2%Tb3+,x%Eu3+ (x = 0, 0.5, 1, 2, 3, and 5) under 275 nm excitation. (b) Variation tendency of the green emission of Tb3+ and the red emission of Eu3+.  相似文献   

9.
(Tb1−xMnx)3Al2(Al1−xSix)3O12:Ce3+ solid solution phosphors were synthesized by introducing the isostructural Mn3Al2(SiO4)3 (MAS) into Tb3Al5O12:Ce3+ (TbAG). Under 456 nm excitation, (Tb1−xMnx)3Al2(Al1−xSix)3O12:Ce3+ shows energy transfers (ET) in the host, which can be obtained from the red emission components to enhance color rendering. Moreover, (Tb1−xMnx)3Al2(Al1−xSix)3O12:Ce3+ (x = 0–0.2) exhibits substantial spectral broadening (68 → 86 nm) due to the 5d → 4f transition of Ce3+ and the 4T16A1 transition of Mn2+. The efficiency of energy transfer (ηT, Ce3+ → Mn2+) gradually increases with increasing Mn2+ content, and the value reach approximately 32% at x = 0.2. Namely, the different characteristics of luminescence evolution based on the effect of structural variation by substituting the (MnSi)6+ pair for the larger (TbAl)6+ pair. Therefore, with structural evolution, the luminescence of the solid solution phosphors could be tuned from yellow to orange-red, tunable by increasing the content of MAS for the applications of white light emitting diodes (wLED).

(Tb1−xMnx)3Al2(Al1−xSix)3O12:Ce3+ solid solution phosphors were synthesized by introducing the isostructural Mn3Al2(SiO4)3 (MAS) into Tb3Al5O12:Ce3+ (TbAG).  相似文献   

10.
Undoped Ba(Zr0.9Ti0.1)O3 and rare-earth-doped (Ba1−xRE2x/3)(Zr0.9Ti0.1)O3 (RE3+ = La3+, Sm3+) perovskite compounds were synthesized by the conventional solid-state reaction route. Both solubility of rare earth in Ba(Zr0.9Ti0.1)O3 and formation of perovskite structure with the Pm3̄m space group were verified by the Rietveld method using X-ray diffraction data. SEM micrographs of all ceramics revealed high densification, low porosity, and even homogeneous grain distribution of various dimensions over the total surface. The frequency-dependent electrical properties were analyzed by complex impedance spectroscopy. Different types of studies such as the Nyquist plot, real and imaginary part of impedance, conductivity, modulus formalism, and charge carriers activation energy were used to explain the microstructure–electrical property relationships.

Undoped Ba(Zr0.9Ti0.1)O3 and rare-earth-doped (Ba1−xRE2x/3)(Zr0.9Ti0.1)O3 (RE3+ = La3+, Sm3+) perovskite compounds were synthesized by the conventional solid-state reaction route.  相似文献   

11.
12.
Cool green light emanating monoclinic Y4−xAl2O9:xTb3+ (x = 1–5 mol%) nanophosphors have been fabricated through gel-combustion method. X-ray diffraction and transmission electron-microscopy data have been utilized to assess their structural and microstructural characteristics, including cell parameters and crystallite size. Uneven aggregation of nanoparticles in the nano-scale with distinctive porosity can be seen in the TEM micrograph. Kubelka–Munk model imitative diffuse reflectance spectra and an optical band gap of 5.67 eV for the Y3.97Al2O9:0.03Tb3+ nanophosphor revealed high optical quality in the samples, which were thought to be non-conducting. The emission (PL) and excitation (PLE) spectra as well as lifetime measurements have been used to determine the luminescence characteristics of the synthesized nanophosphors. The emission spectra show two color i.e. blue color due to 5D37FJ (J = 4 and 5) transitions and green color due to 5D47FJ (J = 3, 4, 5 and 6) transitions. The most dominant transition (5D47F5) at 548 nm was responsible for the greenish color in focused nanocrystalline samples. Calculated colorimetric characteristics such as CIE, and CCT along with color purity of the synthesized nanocrystalline materials make them the best candidate for the solid-state lighting (SSL).

Cool green light emanating monoclinic Y4−xAl2O9:xTb3+ (x = 1–5 mol%) nanophosphors have been fabricated through gel-combustion method.  相似文献   

13.
New luminescent cage-like tetranuclear silsesquioxanes [NEt4][(Ph4Si4O8)2(Tb3Eu)(NO3)4(OH)(EtOH)3(H2O)]·4(EtOH) (1) and [NEt4]2[(Ph4Si4O8)2(Tb2Eu2)(NO3)6(EtOH)2(MeCN)2]·4(MeCN) (2) present a tunable thermosensitive Tb3+-to-Eu3+ energy transfer driven by Tb3+ and Eu3+ emission and may be used as temperature sensors operating in the range 41–100 °C with excellent linearity (R2 = 0.9990) and repeatability (>95%). The thermometer performance was evidenced by the maximum relative sensitivity of 0.63% °C−1 achieved at 68 °C.

Tetranuclear silsesquioxane cages with tunable thermosensitive Tb3+-to-Eu3+ energy transfer were used for temperature sensing based on the Tb3+-to-Eu3+ emission intensity ratio (LIR) with excellent linearity and sensitivity.  相似文献   

14.
In this study we have explored Ca10(PO4)6F2 as host to develop a variety of phosphor materials with tunable emission and lifetime characteristics based on Eu3+ and Tb3+ as co-dopant ions and the energy transfer process involved with them. The energy transfer from the excited state of Tb3+ ion to the 5D0 state of Eu3+ makes it possible to tune the colour characteristics from yellow to orange to red. Further, such energy transfer process is highly dependent on the concentration of Eu3+ and Tb3+ ions and their site-selective distribution among the two different Ca-sites (CaO9 and CaO6F) available. We have carried out DFT based theoretical calculation for both Eu3+ and Tb3+ ions in order to understand their distribution. It was observed that in cases of co-doped sample, Tb3+ ions prefer to occupy the Ca2 site in the CaO6F network while Eu3+ ions prefer Ca1 site in the CaO9 network. This distribution has significant impact on the lifetime values and the energy transfer process as observed in the experimental photoluminescence lifetime values. We have observed that for the 1st series of compounds, wherein the concentration Tb3+ ions are fixed, the energy transfer from Tb3+ ion at Ca2 site to Eu3+ ion at Ca1 site is dominating (Tb3+@Ca2 → Eu3+@Ca1). However, for the 2nd series of compounds, wherein the concentration Eu3+ ions are fixed, the energy transfer process was found to occur from the excited Tb3+ ion at Ca1 site to Eu3+ ions at both Ca1 and Ca2 (Tb3+@Ca1 → Eu3+@Ca1 and Tb3+@Ca1 → Eu3+@Ca2). This is the first reports of its kind on site-specific energy transfer driven colour tunable emission characteristics in Eu3+ and Tb3+ co-doped Ca10(PO4)6F2 phosphor and it will pave the way for the future development of effective colour tunable phosphor materials based on a single host and same co-dopant ions.

Various site specific energy transfer (ET) process such as Tb3+@Ca2 → Eu3+@Ca1, Tb3+@Ca1 → Eu3+@Ca2 and Tb3+@Ca1 → Eu3+@Ca1 were explored in Eu3+ and Tb3+ co-doped Ca10(PO4)6F2 phosphor, which are responsible for tunable colour characteristics.  相似文献   

15.
The quaternary halide-containing yttrium(iii) oxidoantimonates(iii) YSb2O4Cl and YSb2O4Br were synthesised through solid-state reactions from the binary components (Y2O3, Sb2O3 and YX3, X = Cl and Br) at 750 °C in evacuated fused silica ampoules with eutectic mixtures of NaX and CsX (X = Cl and Br) as fluxing agents. YSb2O4Cl crystallizes tetragonally in the non-centrosymmetric space group P4212 with unit-cell parameters of a = 773.56(4) pm and c = 878.91(6) pm, whereas YSb2O4Br is monoclinic (space group: P21/c) with a = 896.54(6) pm, b = 780.23(5) pm, c = 779.61(5) pm and β = 91.398(3)°, both for Z = 4. The two new YSb2O4X compounds contain [YO8]13− polyhedra, which are connected via four common edges to form layers (d(Y3+–O2−) = 225–254 pm) without any Y3+⋯X bonds (d(Y3+⋯X) > 400 pm). Moreover, all oxygen atoms belong to ψ1-tetrahedral [SbO3]3− units, which are either connected to four-membered rings [Sb4O8]4− in the chloride (Y2[Sb4O8]Cl2 for Z = 2) or endless chains in the bromide (Y1/2(SbO2)Br1/2 for Z = 8) by common vertices. With distances of 307 pm in YSb2O4Cl and 326 pm in YSb2O4Br there are not even substantial bonding Sb3+⋯X (X = Cl and Br) interactions at work. Luminescence spectroscopy on samples doped with trivalent europium and terbium showed an energy transfer from the oxidoantimonate(iii) moieties as the sensitizer in the host structure onto the lanthanoid activators.

The oxygen atoms of the two new compounds belong to ψ1-tetrahedral [SbO3]3− units, which are either vertex-connected to four-membered rings in YSb2O4Cl or to endless chains in YSb2O4Br. Eu3+- and Tb3+-doped samples show red or green luminescence.  相似文献   

16.
Energy transfer between rare earths in layered rare-earth hydroxides (LRHs) is worth the intensive study because the hydroxyls that act as the bridge connecting the neighbouring rare earths would generate non-radiative transitions. This study focuses on the energy transfer in the intralayer and the adjacent layers of LRHs. A series of LEuxTb1−xHs (x = 0, 0.05, 0.2, 0.5, 0.8, and 0.95) was synthesized, the basal spacing (dbasal) was adjusted from 8.3 to 46 Å through ion-exchange process, and unilamellar nanosheets were prepared through a delamination process. The luminescence behaviours of the samples demonstrated the following: (1) for the delaminated nanosheets, the quenching effect of both Eu3+ and Tb3+ was hardly observed. This implies that in the intralayer, the efficiency of energy transfer is extremely low, so that highly-concentrated co-doping does not influence the luminescence and by controlling the Eu/Tb molar ratio, white light can be obtained. (2) For small dbasal, e.g., 27 Å, the fluorescence quenching of Tb3+ and Eu3+ was remarkable, while for large dbasal, e.g., 46 Å, the emission of Tb3+ emerged and the self-quenching between Eu3+ ions weakened. (3) The energy transfer efficiency deceased with an increase in the distance between adjacent layers. In other words, either the energy transfer between Eu3+ and Tb3+ or the energy migration between Eu3+ ions was more efficient when they were located in adjacent layers than in intralayers even when they were the nearest neighbours.

In LRHs, the energy transfer between rare earths in adjacent layers was more efficient than that between neighboring rare earths in intralayers.  相似文献   

17.
In recent years, compounds with a cryolite structure have become excellent hosts for luminescent materials. In this paper, Tb3+ doped and Tb3+/Eu3+ co-doped K3LuF6 phosphors were prepared via a high temperature solid phase sintering method. The XRD, SEM, as well as photoluminescence excitation (PLE) and emission (PL) spectra were measured to investigate the structure and luminescence properties of the as-prepared samples. In the Tb3+/Eu3+ co-doped K3LuF6 samples, both characteristic emission spectra of Tb3+ and Eu3+ could be observed and the emission color of the K3LuF6:0.12Tb3+,xEu3+ phosphors could be adjusted from green to yellowish pink and the corresponding CIE values could be regulated from (0.2781, 0.5407) in the green area to (0.4331, 0.3556) in the yellowish pink area by controlling the concentration ratio of Eu3+/Tb3+. In addition, the energy transfer mechanism in Tb3+/Eu3+ co-doped K3LuF6 was calculated to be a quadrupole–quadrupole interaction from Tb3+ to Eu3+ based on the Dexter''s equation.

Single-phase multicolor phosphors with a cryolite structure were obtained via energy transfer from Tb3+ to Eu3+.  相似文献   

18.
The polychromatic phosphor with an apatite structure Ca2La3(SiO4)3F:0.15Tb3+,xSm3+ (CLSOF:0.15Tb3+,xSm3+) was synthesized via a solid-state route. The phase and morphology of the phosphor has been investigated by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The structures of the as-prepared phosphor were verified by means of the Rietveld method. The optical performance was investigated thoroughly and the phosphors could emit multicolor light from short wavelengths to long wavelengths by gradually increasing the doping contents of samarium. All the results support that the energy transfer in CLSOF:0.15Tb3+,xSm3+ contributes to the color tunable property of the phosphor.

The photoluminescence spectra of Ca2La2.85−x(SiO4)3F:0.15Tb3+,xSm3+ phosphors (left) could emit typical multicolor light with increasing doping contents of samarium (right).  相似文献   

19.
Using urea as a precipitation agent, Tb3+, Eu3+ co-doped Y2O3 nanophosphors were synthesized by a homogeneous precipitation method. The sizes of the sample particles were controlled by changing the molar ratio of the urea and rare earth ions. The microstructure and crystallographic structure of the sample were determined through powder X-ray diffraction (PXRD) and field emission scanning electron microscopy (FE-SEM). The test results show that the sample is body centered cubic. As the molar ratio of urea to rare earth ions increases, the size of the sample particles decreases. The temperature-dependent emission spectra of Tb3+, Eu3+ co-doped Y2O3 phosphors with different particle sizes were measured. The results showed that because the fluorescence intensity ratio (FIR) of Tb3+ and Eu3+ varies with temperature, it can be used to visually reflect changes in temperature. In addition, the temperature sensing sensitivity of Tb3+ and Eu3+ co-doped Y2O3 phosphors increased upon a decrease in the particle size, but the relative sensitivity decreased with a decrease in the particle size. The physical mechanism of the sensitivity and relative sensitivity changes with the size of the sample particles was also explained.

Using urea as a precipitation agent, Tb3+, Eu3+ co-doped Y2O3 nanophosphors were synthesized by a homogeneous precipitation method. The size dependence-optical temperature sensing properties of nanophosphors have been studied.  相似文献   

20.
The borate Ba3InB9O18 (BIBO) is a promising host material for phosphors. A series of Tb3+ and Eu3+ codoped Ba3InB9O18 phosphors were synthesized. Based on the Rietveld method, structure refinement of the codoped BIBO phosphor was carried out. Then, the luminescence properties of BIBO:Tb3+, Eu3+ phosphors were extensively investigated under ultraviolet (UV) and vacuum ultraviolet (VUV) excitation. The measured PL spectra and decay times evidenced that energy transfer occurs between the Tb3+ and Eu3+ ions. The energy-transfer mechanism from Tb3+ to Eu3+ in Ba3InB9O18 is dominated by electric multipolar interactions, with the critical distance calculated to be 10.97 Å. The temperature sensitivity of the Tb3+ and Eu3+ codoped sample under VUV was also investigated at the low temperature range from 25 K to 298 K. The emission color could be tuned from green to the red region by adjusting the concentration of codoped ions. The results indicate that the BIBO-based phosphors are valuable candidates for applications in the display and lighting fields.

The emission colors of Ba3InB9O18:Tb3+, Eu3+ can be adjusted from yellowish green to orange by tuning the content of Eu3+ ions due to the energy transfer from Tb3+ to Eu3+, thus showing a great potential for display and lighting fields applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号