首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the effects of natural solid particles on the phototransformation of pharmaceuticals in aqueous environments is very important, but studies on this are still limited. In this study, natural sands were selected as a solid particle model due to their wide distribution in surface waters during the rainy season, and the phototransformation of diphenhydramine (DP) in the presence of the sands was investigated. The kinetic studies showed that the natural sands exhibited significant photocatalytic activity for the DP photodegradation, and the activity varied depending on their sources. Scavenging experiments and electron paramagnetic resonance analysis demonstrated that O2˙ and ˙OH were produced in the irradiated natural sand systems, and O2˙ played a more important role than ˙OH in the photodegradation of DP. The results obtained from H2O2 treatment and deoxygenation experiments verified that the generation of radicals was mainly attributed to the low content of natural organic matter (NOM) in the sands. The possible reaction mechanism was that the NOM in the sands was excited and became triplet-state NOM after irradiation, and then induced the generation of free radicals through an electron transfer mechanism, resulting in DP oxidation. This work indicated that natural sand particles were a key factor affecting the phototransformation of drugs, and should be considered in evaluating their fate in natural waters.

Natural sand particles induced the generation of free radicals under simulated solar irradiation, resulting in the enhanced photodegradation of diphenhydramine.  相似文献   

2.
Hydrophobic clinoptilolite (CP) was successfully synthesized via a silanization method using methyltriethoxysilane (MTS) or diethoxydimethylsilane (DMTS) as silane coupling agents. The structural and textural properties of the resultant hydrophobic CP were characterized using various methods. The effect of the amount of MTS or DMTS additive on the induction (nucleation) and growth of CP were also investigated, and the apparent activation energy values for induction and growth periods were calculated, suggesting that the induction period is kinetically controlled, while the rapid growth process is thermodynamically controlled. Meanwhile, DMTS modification enhanced the hydrophobicity of CP compared with its MTS-modified counterpart and pure CP. Finally, various ZnO-supported CPs were used as photocatalysts for the removal of crystal violet from aqueous solution, demonstrating that ZnO/hydrophobic CP has the largest adsorption capacity and best removal performance. These results suggest that hydrophobic CP, as an adsorbent or support, has the most potential for applications in separation and catalysis.

One-step synthesis of hydrophobic CPs was demonstrated, in which the kinetically-controlled induction period and thermodynamically-based rapid growth process were elucidated.  相似文献   

3.
HKUST-1 is a copper-based metal–organic framework (MOF) and potential photocatalyst, but minimal research has addressed the performance and mechanism of HKUST-1 in the visible light photocatalytic degradation of dyes. In the present work, HKUST-1 was applied as a photocatalyst to activate peroxomonosulfate (PMS) under visible light (Vis) for dye removal in aqueous solution. The results showed that the removal efficiency of two cationic dyes [rhodamine B (RhB) and methylene blue (MB)] was greater than 95% within 120 min. Free radicals such as SO4˙, ·OH were present in the degradation process, with SO4˙ playing a dominant role. Zeta potential, X-ray photoelectron spectroscopy, and photoluminescence spectroscopy data were used to investigate the degradation mechanism. In the degradation process, surface charge attraction between HKUST-1 and cationic dyes promotes removal efficiency, with the degradation efficiency of cationic dyes (MB and RhB) more than 50% higher than for anionic dyes [acid orange 7 (AO7) and methyl red (MR)]. On the other hand, HKUST-1 has been proved to activate PMS by conducting photoelectrons, which accelerated the degradation of dyes. Compared with the reaction conditions of PMS/Vis, when the HKUST-1 was present (HKUST-1/PMS/Vis), the degradation rates of MB and RhB increased by 62.7 and 63.2%, respectively.

HKUST-1 is a copper-based metal–organic framework (MOF). The HKUST-1/PMS/Vis system can effectively degrade RhB and MB but accomplish poor removal of AO7 and MR, which is attributed to the repulsion between surface charges.  相似文献   

4.
Flower-like MgO microparticles with excellent photocatalytic performance in degradation of various organic dyes (e.g., methylene blue, Congo red, thymol blue, bromothymol blue, eriochrome black T, and their mixture) were synthesized by a facile precipitation method via the reaction between Mg2+ and CO32− at 70 °C. The reaction time was found to be crucial in determining the final morphology of flower-like MgO. After studying the particles from time-dependent experiments, scanning electron microscope observation, Fourier transform infrared spectra and thermogravimetric analyses demonstrated that the formation of flower-like particles involved a complex process, in which agglomerates or rod-like particles with a formula of xMgCO3·yH2O (x = 0.75–0.77 and y = 1.87–1.96) were favorably formed after the initial mixture of the reactants. Owing to the chemical instability, they would turn into flower-like particles, which had a composition of xMgCO3·yMg(OH)2·zH2O (x = 0.84–0.86, y = 0.13–0.23, and z = 0.77–1.15). After calcination, the generated product not only possessed a superior photocatalytic performance in degradation of organic dyes (100 mg L−1) under UV light irradiation in contrast to other morphologies of MgO and other related state-of-the-art photocatalysts (e.g., N-doped TiO2, Degussa P25 TiO2, ZnO, WO3, α-Fe2O3, BiVO4, and g-C3N4), but also could be used for five cycles, maintaining its efficiency above 92.2%. These capacities made the flower-like MgO a potential candidate for polluted water treatment. Also, the underlying photocatalysis mechanism of MgO was proposed through radical trapping experiments.

Flower-like MgO microparticles with excellent photocatalytic performance in degradation of various organic dyes were synthesized by a facile precipitation method via the reaction between Mg2+ and CO32− at 70 °C.  相似文献   

5.
A functional diatomite-supported Fe/Ni nanocomposite successfully remediated Orange II contaminant in aqueous solution. The hypothesis was that diatomite-supported Fe/Ni would not only be more effective than Fe/Ni but also require less metallic loading to effect the catalytic reaction. Batch experiments indicate that 99.00% of Orange II was removed using diatomite-supported Fe/Ni, while only 86.64 and 3.59% of Orange II were removed using bimetallic Fe/Ni nanoparticles and diatomite, after 6 h of reaction, respectively. Characterisation by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) indicates that the use of diatomite as a support material reduced the aggregation of bimetallic Fe/Ni nanoparticles, thereby resulting in an enhancement in the reactivity. A synergistic mechanism for the removal of Orange II by diatomite-supported Fe/Ni was proposed which involves adsorption, followed by catalytic reduction. This study has demonstrated that diatomite may be a suitable support material for stabilizing and dispersing bimetallic Fe/Ni nanoparticles and the resulting diatomite-supported Fe/Ni composite could be a promising catalyst for the remediation of dye-contaminated wastewater.

A functional diatomite-supported Fe/Ni nanocomposite successfully remediated Orange II contaminant in aqueous solution.  相似文献   

6.
In this work, we fabricated four different Ga2O3 polymorphs, namely, α-, β-, γ-, δ-Ga2O3, and investigated their photocatalytic activities by the degradation of ethylene under ultraviolet (UV) light irradiation. Owing to the more positive valence band, all these Ga2O3 polymorphs are more photocatalytic reactive than P25 during the degradation of ethylene. The normalized photocatalytic ethylene degradation rate constants of the as-prepared Ga2O3 polymorphs follow the order: α-Ga2O3 > β-Ga2O3 > γ-Ga2O3 > δ-Ga2O3, which is mainly determined by the position of VBM and the crystallinity of the samples. Among these Ga2O3 polymorphs, γ-Ga2O3, with the highest surface area, exhibits the highest activity during photocatalytic ethylene degradation, and the degradation rate constant is almost 10 times as that of P25. Furthermore, with the most positive CBM, γ-Ga2O3 produces the least CO. These attributes are beneficial for ethylene degradation during post-harvest storage of fruits and vegetables, which makes γ-Ga2O3 a potential candidate for practical photocatalytic ethylene degradations.

In this work, we fabricated four different Ga2O3 polymorphs, namely, α-, β-, γ-, δ-Ga2O3, and investigated their photocatalytic activities by the degradation of ethylene under ultraviolet (UV) light irradiation.  相似文献   

7.
Lu An  Pengfei Xiao 《RSC advances》2020,10(33):19401
Tetracycline antibiotics are widely used in human and veterinary medicine; however, their gradual increase in the aquatic environment poses a serious threat to human health and ecosystems. The reactivity of peroxydisulfate (PDS) in the degradation of chlortetracycline (CTC) in aqueous solution using a zero-valent iron/activated carbon (AC) microelectrolysis method (Fe0–AC/PDS) was investigated by batch experiments. The results showed that the effects of different systems were as follows: Fe0–AC/PDS > Fe0/PDS > AC/PDS > Fe0–AC > AC > Fe0 > PDS. In the Fe0–AC/PDS system, the degradation efficiency of CTC could reach 88% under the following optimal experimental conditions: Fe0 dose of 0.4 g L−1, PDS dose of 2 g L−1, pH of 3 and initial CTC concentration of 50 mg L−1. The presence of Cl, HCO3 and H2PO4 inhibited the degradation of CTC, while humic acid accelerated the degradation rate of CTC. The mineralization of CTC was evaluated from the TOC, with a value of 31.44% in 7 h. Free radical identification experiments showed that SO4˙ and O2˙ were involved in the degradation of CTC. The iron and carbon materials had good reusability, and the degradation rate of CTC was still approximately 70% after four cycles. Finally, the possible mechanism for the degradation of CTC by the Fe0–AC/PDS systems was discussed. Based on the above conclusions, Fe0–AC microelectrolysis is a new heterogeneous catalytic method for green and efficient activation of PDS and demonstrates potential applicability in the treatment of wastewater.

The microelectrolysis system composed of zero-valent iron and activated carbon can effectively activate persulfate to produce SO4˙ and O2˙, which have excellent capacity for degradation of chlortetracycline hydrochloride.  相似文献   

8.
Degradation of ornidazole (ONZ) by nanoscale zero-valent iron (nZVI) particles was investigated for the first time in this work. The results showed that ONZ was almost completely degraded within 30 min by 0.1 g L−1 nZVI at pH 5.8 and 25 °C. The effects of the nZVI dose, initial ONZ concentration, pH, and temperature on ONZ removal were systematically investigated, and removal of ONZ was followed by a pseudo-first-order kinetics model. Experimental results demonstrated that higher nZVI doses, lower initial ONZ concentrations, and lower pH levels could increase the pseudo-first-order rate constant (kobs) of ONZ removal. While higher temperatures favored removal, the activation energy results suggested that mass transfer was the limiting step during the removal process. The possible effect of oxygen was ruled out by introducing hydroxyl radical scavengers into the experiment. The variation of ONZ concentrations and total organic carbon (TOC) contents in the solution indicated that adsorption was not the main mechanism. The possibility that precipitation was the main mechanism was also excluded by the results for the change in pH and effect of pH. The characterization of nZVI before and after the reaction indicated that ONZ was reduced on the surface of nZVI, which was the main mechanism. Three intermediates and two final products were detected based on the results of UV-vis and high performance liquid chromatography/mass spectrometry (HPLC-MS) analyses. Dechlorination, nitro reduction, N-denitration, and cleavage were all involved in the entire reaction process, and therefore a complicated potential degradation pathway was proposed.

The whole possible process of ONZ removal by nZVI. The reduction on the surface of nZVI was the main mechanism. A potential pathway including dechlorination, nitro reduction, N-denitration, and cleavage was proposed for the degradation process.  相似文献   

9.
Along with the wide production, consumption and disposal of pesticides in the world, the concerns over their human and environmental health impacts are rapidly growing. Among developing treatment technologies, sonochemistry as an emerging and promising technology for the removal of pesticides in the aqueous environment has attracted the attention of many researchers in recent years. This systematic review presents an extensive study of sonochemical degradation of different types of pesticides from aqueous solution. The influence of various parameters including reactor configurations, initial concentration of pesticide, ultrasonic frequency, intensity of irradiation, bulk solution temperature, operational pH and sonication time on the degradation efficiency has been analyzed. The mechanism of ultrasonic degradation has been discussed, and recommendations for optimum operating conditions have been reported for maximizing degradation efficiency. Additionally, the intensification of ultrasonic cavitation by combining with oxidation processes was overviewed and the main advantages and disadvantages were pointed out, in order to address future studies and promote efficient large-scale operations. As a conclusion, it appears that ultrasonic irradiation can be effectively used for intensification of the degradation of pesticides from aqueous solution.

Along with the wide production, consumption and disposal of pesticides in the world, the concerns over their human and environmental health impacts are rapidly growing.  相似文献   

10.
A La-based adsorbent was prepared with La(NO3)3·6H2O, 2-methylimidazole and DMF via amide-hydrolysis and used for fluoride decontamination from aqueous water. The obtained adsorbent was lanthanum methanoate (La(COOH)3). The effects of pH value, initial F concentration and interfering ions on defluoridation properties of as-prepared La(COOH)3 were assessed through batch adsorption tests. The adsorption kinetics, isotherm models and thermodynamics were employed to verify the order, nature and feasibility of La(COOH)3 towards fluoride removal. The results imply that La(COOH)3 is preferable for defluoridation over a wide pH range of 2 to 9 without interference. Simultaneously, the defluoridation process of La(HCOO)3 accords to the pseudo-second order model and Langmuir isotherm, revealing chemical adsorption is the main control step. The maximum fluoride capture capacities of La(COOH)3 at 30, 40 and 50 °C are 245.02, 260.40 and 268.99 mg g−1, respectively. The mechanism for defluoridation by La(COOH)3 was revealed by PXRD and XPS. To summarize, the as-synthesized La based adsorbent could serve as a promising adsorbent for defluoridation from complex fluoride-rich water.

A La-based adsorbent was prepared with La(NO3)3·6H2O, 2-methylimidazole and DMF via amide-hydrolysis and used for fluoride decontamination from aqueous water.  相似文献   

11.
12.
TiO2 films on a capillary column were prepared using tetrabutoxytitanium as a source of TiO2via the sol–gel method. The film thickness showed a linear increase with tetrabutoxytitanium concentration. The specific surface area of the film was improved by adding polyethylene glycol with different molecular weights. Under optimal conditions, the prepared film had a good mesoporous structure with specific surface area of 47.72 m2 g−1, and showed nearly spherical nanoparticles with a 10 nm diameter and anatase phase. Influences of the thickness, specific surface area, and initial solution concentration on photodegradation of rhodamine B using TiO2 films as a catalyst were investigated. The results showed that the photodegradation efficiency increased with an increasing thickness and specific surface area of TiO2 films. For a rhodamine B solution of 15 mg L−1, the photodegradation efficiency was 98.33% in 30 min under the optimal conditions. The catalysts could be reused up to eight times with almost the same efficiency, indicating a firm immobilization of films on the inner wall of the capillary. Therefore, TiO2 films are promising for the treatment of wastewater.

TiO2 films on a capillary column were prepared using tetrabutoxytitanium as a source of TiO2via the sol–gel method.  相似文献   

13.
Very little information has appeared in the literature concerning the stability of amitriptyline hydrochloride (Fig. 1) either as the solid or in solution. The B.P. 1973 and The Extra Pharmacopoeia (1972) state that amitriptyline hydrochloride should be kept in a well closed container, but give no other storage directions either for the solid or for amitriptyline injection. However, the fact that there is a limit test for ketone and also that the injection is required to be sterilized by filtration would indicate that the solution is subject to decomposition. The present work, using thin layer chromatography and polarography, reports that solutions of amitriptyline hydrochloride in purified water at room temperature are stable for at least 8 weeks if protected from light.  相似文献   

14.
Mineral-based photocatalysts have received great attention due to their low cost. In this study, the photocatalytic activity of natural dolomite and its mechanism were investigated based on designed experiments and first-principles calculations. The kinetic study showed that natural dolomite showed notable photocatalytic activity for the degradation of target compounds including methylene blue, diphenhydramine, and tetracycline. The EPR analysis demonstrated that O2˙, ˙OH, and 1O2 were produced in the dolomite system under simulated sunlight irradiation. The first-principles calculations indicated that the isomorphous substitution of Fe2+ for Mg2+ in the dolomite lattice led to the impurity levels appearing in the forbidden band, which caused a significant decrease of the band gap from 5.02 to 1.63 eV. As a result, natural dolomite could act as a semiconductor photocatalyst in photochemical reactions due to the substitution of Mg2+ by Fe2+. Under simulated sunlight irradiation, photogenerated electron–hole pairs in the natural dolomite were separated and transferred to the surface, and then formed reactive radicals through further reactions, thereby enhancing the degradation of target compounds. This research may contribute to the understanding of the photocatalytic activity of natural minerals.

Natural dolomite exhibits notable photocatalytic activity due to the isomorphous substitution of Fe2+ for Mg2+ in the lattice, implying that it can be used as a low-cost photocatalyst.  相似文献   

15.
This study reports a new method for photocatalysts to degrade organic dyes on organic semiconductors. A novel strategy is reported to form TiO2 nanorod (NR)/polydopamine (PDA) electrodes with a photoelectric polymerization strategy for PDA (pep-PDA) to produce cocatalytic electrodes. Amperometric it curves and UV-vis diffuse reflectance spectra were recorded and showed that compared with traditional self-polymerization (sp-PDA) and electropolymerization (ep-PDA), TiO2 NR/pep-PDA exhibited an enhanced photocatalytic activity under visible light. As expected, TiO2 NR/pep-PDA showed a significant improvement for the degradation of methylene blue (MB) under visible light, which can be attributed to the strong absorption of PDA in the visible light region and the more complete and uniform coverage of the TiO2 NRs by the pep-PDA film. This study not only proposes a novel and highly efficient way to load PDA on TiO2 NRs but also provides useful insights for the loading of other photocatalysts on organic semiconductors to degrade organic dyes.

This study reports a new method for photocatalysts to degrade organic dyes on organic semiconductors.  相似文献   

16.
17.
A new squaraine based chemosensor TSQ was developed for colorimetric detection of Fe3+ ions. A thymine moiety in TSQ was constructed to act as an ion acceptor. The sensor displayed an instant colorimetric response specific to Fe3+ over the other metal ions in 20% AcOH–H2O solution. The limit of detection was much lower than that of the environmental protection agency guideline (5.37 μM) in drinking water. A 1 : 1 binding between TSQ and Fe3+ ion was evidenced by Job''s plot measurement, ESI-MS and Fourier transform infrared (IR) measurements. Moreover, the proposed sensing mechanism of the receptor towards Fe3+ was strongly supported by DFT calculation. Finally, the sensor has proven to be suitable in real sample applications.

A squaraine based chemosensor can be applied for instant colorimetric detection (blue to green) of Fe3+ ions in aqueous solution.  相似文献   

18.
Molybdenum disulphide (MoS2) is a layered material with interesting photocatalytic properties. In this study, a layered MoS2 was produced using a hydrothermal method. The obtained material was characterised by XRD (X-ray diffraction), XPS (X-ray photoelectron spectroscopy), SEM (scanning electron microscopy), UV-Vis spectroscopy, DLS (dynamic light scattering), and zeta potential analysis. For the evaluation of the photocatalytic properties of layered MoS2, a solution of bromophenol blue (BPB) and the catalyst was illuminated for 120 minutes. According to the experimental results, MoS2 exhibited excellent catalytic activity in BPB degradation. The MoS2 preparation method enabled improved light harvesting, avoided fast charge recombination (related to bulk MoS2), and created a large number of suitable electron transfer sites for photocatalytic reactions. Simulation of BPB decay and bromide production was carried out for a further understanding of MoS2 photocatalytic action. The simulation results proved the reduction mechanism of BPB photodegradation.

Molybdenum disulphide (MoS2) is a layered material with interesting photocatalytic properties.  相似文献   

19.
20.
Biochar is a low cost and renewable adsorbent which can be used to remove dye from wastewater. Cattle manure-derived low temperature biochar (CMB) was studied to remove methylene blue (MB) from aqueous solution in this paper. The effect of factors including initial concentration of MB, dosage, contact time, and pH on the adsorption properties of MB onto biochar were studied. Characterization of the CMB and MB adsorbed on CMB was performed using techniques including BET, FTIR and SEM. The adsorption isotherm, kinetics, thermodynamics and mechanism were also studied. The results showed the equilibrium data were well fitted to the Langmuir isotherm model, and the saturation adsorption capacity of CMB200 was 241.99 mg g−1. Pseudo-second order kinetics was the most suitable model for describing the adsorption of MB onto biochar. The adsorption thermodynamics of MB on biochar showed that the adsorption was a spontaneous and endothermic process. Through zeta potential measurement, Boehm titration, cation exchange, deashing and esterification experiments, the importance of ash to adsorption was verified, as well as the adsorption mechanism. The adsorption mechanism of MB on CMB200 involved cation exchange, electrostatic interaction, hydrogen bonding, physical effects and others. This work shows that CMB200 holds promise to act as an effective adsorbent to remove MB in wastewater.

Biochar is a kind of low cost and renewable adsorbents which can be used to remove dye from wastewater. The mechanism between MB and CMB involved cation exchange, electrostatic interaction, hydrogen bonding, physical function and others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号