首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 977 毫秒
1.
A heterojunction of TiO2 grown on g-C3N4 particles is demonstrated using atomic layer deposition (ALD), equipped with a specifically designed rotary reactor for maintaining stable mechanical dispersion of g-C3N4 particles during ALD. The photocatalytic activity of the g-C3N4@ALD-TiO2 core–shell composites was examined using the degradation of rhodamine B dye under visible light irradiation. The optimal composite with 5 ALD cycles of TiO2 exhibited the highest photocatalytic reaction rate constant among the composites with a range of ALD cycles from 2 to 200 cycles, which was observed to be 3 times higher than that of pristine g-C3N4 and 2 times higher than that of g-C3N4@TiO2 composite prepared using a simple impregnation method. The ALD-TiO2 were well-dispersed on the g-C3N4 surface, while TiO2 nanoparticles were agglomerated onto the g-C3N4 in the g-C3N4@TiO2 composite prepared by the impregnation method. This created uniform and stable heterojunctions between the g-C3N4 and TiO2, thus, enhancing the photocatalytic activity.

A heterojunction of TiO2 grown on g-C3N4 particles is demonstrated using atomic layer deposition (ALD), equipped with a specifically designed rotary reactor for maintaining stable mechanical dispersion of g-C3N4 particles during ALD.  相似文献   

2.
Titanium oxide (TiO2) has been widely investigated as a photocatalytic material, and the fact that its performance depends on its crystalline structure motivates further research on the relationship between preparation methods and material properties. In this work, TiO2 thin films were grown on non-functionalized wave-like patterned vertically aligned carbon nanotubes (w-VA-CNTs) via the atomic layer deposition (ALD) technique. Grazing incidence X-ray diffraction (GIXRD) analysis revealed that the structure of the TiO2/VA-CNT nanocomposites varied from amorphous to a crystalline phase with increasing deposition temperature, suggesting a “critical deposition temperature” for the anatase crystalline phase formation. On the other hand, scanning transmission electron microscopy (STEM) studies revealed that the non-functionalized carbon nanotubes were conformally and homogeneously coated with TiO2, forming a nanocomposite while preserving the morphology of the nanotubes. X-ray photoelectron spectroscopy (XPS) provided information about the surface chemistry and stoichiometry of TiO2. The photodegradation experiments under ultraviolet (UV) light on a model pollutant (Rhodamine B, RhB) revealed that the nanocomposite comprised of anatase crystalline TiO2 grown at 200 °C (11.2 nm thickness) presented the highest degradation efficiency viz 55% with an illumination time of 240 min. Furthermore, its recyclability was also demonstrated for multiple cycles, showing good recovery and potential for practical applications.

Amorphous or anatase crystalline TiO2/VA-CNT nanocomposites were grown controlling the synthesis temperature. Photocatalytic degradation of RhB of 55% was achieved after 240 min. The immobilized material remains active after 4 cycles of use.  相似文献   

3.
This work shows the enhancement of the visible photocatalytic activity of TiO2 NPs film using the localized surface plasmonic resonance of Au nanostructures. We adopted a simple yet effective surface treatment to tune the size distribution, and plasmonic resonance spectrum of Au nanostructured films on glass substrates, by hot plate annealing in air at low temperatures. A hybrid photocatalytic film of TiO2:Au is utilized to catalyse a selective photodegradation reaction of Methylene Blue in solution. Irradiation at the plasmonic resonance wavelength of the Au nanostructures provides more effective photodegradation compared to broadband artificial sunlight of significantly higher intensity. This improvement is attributed to the active contribution of the plasmonic hot electrons injected into the TiO2. The broadband source initiates competing photoreactions in the photocatalyst, so that carrier transfer from the catalyst surface to the solution is less efficient. The proposed hybrid photocatalyst can be integrated with a variety of device architectures and designs, which makes it highly attractive for low-cost photocatalysis applications.

This work shows the enhancement of the visible photocatalytic activity of TiO2 NPs film using the localized surface plasmonic resonance of Au nanostructures.  相似文献   

4.
Porous graphitic carbon nitride (P-g-C3N4) thin sheets were fabricated by a one-step calcination of a mixture of urea, melamine, and ammonia chloride at 550 °C. P-g-C3N4 showed 48% higher photocatalytic H2 production from methanol aqueous solution than conventional urea-derived graphitic carbon nitride (g-C3N4) because the existence of numerous pores reduces the recombination rate of charge carriers. In order to further enhance the photocatalytic activity, TiO2 was uniformly deposited on P-g-C3N4 by 60–300 cycles of atomic layer deposition (ALD) to form the TiO2@P-g-C3N4 composite. They exhibited much higher photocatalytic hydrogen production rates than both TiO2 and P-g-C3N4. Among all composites, the sample deposited with 180 ALD cycles of TiO2 showed the highest H2 production because of optimal diffusion length for electrons and holes. It also performed better than the sample of g-C3N4 deposited with 180 cycles of TiO2.

Schematic of Pt-loaded TiO2@P-g-C3N4 2D/2D heterojunction structure and the proposed mechanism of charge transfer for photocatalytic H2 evolution.  相似文献   

5.
Visible-light phototransistors have been fabricated based on the heterojunction of zinc oxide (ZnO) and titanium oxide (TiO2). A thin layer of TiO2 was deposited onto the spin-coated ZnO film via atomic layer deposition (ALD). The electrical characteristics of the TiO2 layer were optimized by controlling the purge time of titanium isopropoxide (TTIP). The optimized TiO2 layer could absorb the visible-light from the sub-gap states near the conduction band of TiO2, which was confirmed via photoelectron spectroscopy measurements. Therefore, the heterostructure of TiO2/ZnO can absorb and generate photocurrent under visible light illumination. The oxygen-related-states were investigated via X-ray photoelectron spectroscopy (XPS), and the interfacial band structure between TiO2 and ZnO was evaluated via ultraviolet photoelectron spectroscopy (UPS). Oxygen-related states and subgap-states were observed, which could be used to generate photocurrent by absorbing visible light, even with TiO2 and ZnO having a wide bandgap. The optimized TiO2/ZnO visible-light phototransistor showed a photoresponsivity of 99.3 A W−1 and photosensitivity of 1.5 × 105 under the illumination of 520 nm wavelength light. This study provides a useful way to fabricate a visible-light phototransistor based on the heterostructure of wide bandgap oxide semiconductors.

Visible-light phototransistors have been fabricated based on the heterojunction of zinc oxide (ZnO) and titanium oxide (TiO2).  相似文献   

6.
We report the growth of zirconium oxide (ZrO2) as a high-k gate dielectric for an inkjet-printed transistor using a low-temperature atomic layer deposition (ALD) from tetrakis(dimethylamido)zirconium (TDMAZr) and water precursors. All the samples are deposited at low-temperature ranges of 150–250 °C. The films are very uniform with RMS roughness less than 4% with respect to their thickness. The atomic force microscopy (AFM) shows a significant change in surface morphology from tapered posts to undulating mountain-like structures with several hundreds of ALD cycles. The results from X-ray diffraction (XRD) analysis exhibit an amorphous to the crystalline structure with temperature variation, which is independent of the thickness of the films. All our samples are hydrophilic as contact angles are less than 90°. The capacitance–voltage (CV) and conductance–voltage (Gp/ωV) characteristics of ZrO2 dielectrics for silicon metal–oxide–semiconductor (MOS) capacitors are studied for different temperatures. For the n-type substrate MOS capacitors, the dielectric constants are estimated to be 7.5–11. Due to the low deposition temperature, a hydrophilic surface, and high k value, the ALD-ZrO2 dielectric can be compatible for printed transistors. The processes of fabrication and characterization of inkjet-printed graphene transistors is demonstrated using the ZrO2 dielectric. The possible solvents, surfactant, and the dielectric induced modifications in graphene flakes are demonstrated by Raman spectra. The graphene flakes spread uniformly on the ZrO2 surface. The functional inkjet-printed graphene transistor characteristics are demonstrated to illustrate the field effect behavior with the ALD-ZrO2 dielectric.

We report the growth of zirconium oxide (ZrO2) as a high-k gate dielectric for an inkjet-printed transistor using a low-temperature atomic layer deposition (ALD) from tetrakis(dimethylamido)zirconium (TDMAZr) and water precursors.  相似文献   

7.
Ordered alumina through-hole membranes were obtained by a combination of the anodization of Al, formation of a TiO2 protective layer, and subsequent etching. Two-layered anodic porous alumina materials composed of TiO2-coated and noncoated alumina were prepared by the combination of the anodization of Al and the formation of a TiO2 protective layer by atomic layer deposition (ALD). The obtained two layers of anodic porous alumina have different solubilities because the TiO2 thin layer formed by ALD acts as a protective layer that prevents the dissolution of the alumina layer during wet etching of the sample in an etchant. After the selective dissolution of the bottom layer of porous alumina without the TiO2 layer, an ordered alumina through-hole membrane could be detached from the Al substrate. This process allows the repeated preparation of ordered alumina through-hole membranes from a single Al substrate. By this process, ordered alumina through-hole membranes with large interhole distances could also be obtained. The obtained alumina through-hole membrane can be used in various applications.

Ordered alumina through-hole membrane with an interhole distance of 1 μm.  相似文献   

8.
It is a great challenge to simultaneously improve the visible light absorption capacity and enhance photon-generated carrier separation efficiency of photocatalysts. Herein, Zn-doped TiO2 nanoparticles with high exposure of the (001) crystal face were prepared via a one-step hydrothermal decomposition method. A detailed analysis reveals that the electronic structures were modulated by Zn doping; thus, the responsive wavelength was extended to 600 nm, which effectively improved the visible light absorption of TiO2. More importantly, the surface heterojunction of TiO2 was created because of the co-existing specific facets of (101) and (001). Therefore, the surface separation efficiency of photogenerated electron and hole pairs was greatly enhanced. So, the optimal TiO2 photocatalyst exhibited excellent photocatalytic activity, in which the Rhodamine B (RhB) degradation efficiency was 98.7% in 60 min, under the irradiation of visible light. This study is expected to provide guidance for the rational design of TiO2 photocatalysts.

It is a great challenge to simultaneously improve the visible light absorption capacity and enhance photon-generated carrier separation efficiency of photocatalysts.  相似文献   

9.
The experimental and theoretical studies of the local atomic order and chemical binding in tantalum oxide amorphous films are presented. The experimental studies were performed on thin films deposited at the temperature of 100 °C by atomic layer deposition on silicon (100) and glass substrates. Thin films of amorphous tantalum oxide are known to exhibit an extremely large extent of oxygen nonstoichiometry. Performed X-ray absorption and photoelectron studies indicated the oxygen over-stoichiometric composition in the considered films. Surplus oxygen atoms have 1s electron level with binding energy about 1 eV higher than these in reference Ta2O5 oxide. The density functional theory was applied to find the possible location of additional oxygen atoms. Performed calculation indicated that additional atoms may form the dumbbell defects, which accumulate the dangling oxygen bonds in orthorhombic structure and lead to increase of oxygen 1s level binding energy. The presence of this kind of oxygen–oxygen bonding may be responsible for increase of amorphous film chemical resistivity which is very important in many applications.

The experimental and theoretical studies of the local atomic order and chemical binding in tantalum oxide amorphous films are presented.  相似文献   

10.
Extension of the light absorption range and a reduction of the possibility of the photo-generated electron–hole pair recombination are the main tasks to break the bottleneck of the photocatalytic application of TiO2. In this paper, we systematically investigate the electronic and optical properties of Sc-doped, C-doped, and Sc/C-codoped TiO2 (101) surfaces using spin-polarized DFT+U calculations. The absorption coefficient of the Sc/C-codoped TiO2 (101) surfaces were enhanced the most compared with the other two doped systems in the high energy region of visible light, which can be attributed to the shallow impurity states. Furthermore, we studied the optical absorption properties with the change of the impurity concentration. The Sc/C-codoped TiO2 (101) surface with 5.56% impurity concentration exhibited optimal photocatalytic performance in the visible region. These results may be helpful for designing the high-performance of the photocatalysts by doping.

The Sc/C-codoped TiO2 (101) surface with 5.56% impurity concentration exhibited optimal photocatalytic performance in the visible region, which may be helpful for designing the high-performance of photocatalysts by doping.  相似文献   

11.
TiO2 has great potential in photocatalytic degradation of organic pollutants, but poor visible light response and low separation efficiency of photogenerated electron–hole pairs limit its wide applications. In this study, we have successfully prepared TiO2/UiO-67 photocatalyst through an in situ solvothermal method. The degradation rate of aflatoxin B1 (AFB1) is 98.9% in only 80 min, which is superior to the commercial P25, commercial TiO2 and most of reported photocatalysts under visible light irradiation. In addition, the TiO2/UiO-67 photocatalyst showed excellent recyclability. We demonstrated that the enhanced photocatalytic mechanism was owing to the heterojunction between TiO2 and UiO-67, which enhanced effectively the separation photogenerated charge carriers and visible light response. The free radical trapping tests demonstrated that superoxide radicals (˙O2), holes (h+) and hydroxyl radicals (˙OH) were the main active species and then oxidized AFB1 to some small molecules.

Enhanced photocatalytic activity of TiO2/UiO-67 under visible-light for aflatoxin B1 degradation.  相似文献   

12.
In this report, a composite photocatalyst consisting of cobalt phthalocyanine sulfate (CoPcS) and TiO2 was prepared by a facile synthesis. Careful characterizations and measurements indicate a covalent grafting of CoPcS onto TiO2 through Ti–O–S linkages, acquiring an intimate heterojunction between TiO2 and CoPcS. The obtained composite was evaluated for its photocatalytic activity toward the degradation of methyl blue (MB) under visible light irradiation. The evaluation showed a significantly enhanced degradation rate of MB by CoPcS/TiO2. The improved photocatalytic performance of CoPcS/TiO2 was attributed to the photosensitization of TiO2 by CoPcS, charge separation by electron transfer at the interface of the heterojunction formed between CoPcS and TiO2, and oxygen activation via CoPcS. A synergetic mechanism in improving the photocatalytic performance of TiO2 by CoPcS was investigated.

In this report, a composite photocatalyst consisting of cobalt phthalocyanine sulfate (CoPcS) and TiO2 was prepared by a facile synthesis.  相似文献   

13.
Surface coating of metal oxides is an effective approach for enhancing the capacity retention of a nickel-rich layered cathode. Current conventional coating techniques including wet chemistry methods and atomic layer deposition are restricted by the difficulty in perfectly balancing the coating quality and scale-up production. Herein, a highly efficient TiO2 coating route through fluidized bed chemical vapor deposition (FBCVD) was proposed to enable scalable and high yield synthesis of a TiO2 coated nickel-rich cathode. The technological parameters including coating time and TiCl4 supply rate were systematically studied, and thus a utility TiO2 deposition rate model was deduced, promoting the controllable TiO2 coating. The FBCVD TiO2 deposition mechanism was fundamentally analyzed based on the TiCl4 hydrolysis principle. The amorphous and uniform TiO2 coating layer is compactly attached on the particle surface, forming a classical core–shell structure. Electrochemical evaluations reveal that the TiO2 coating by FBCVD route indeed improves the capacity retention from 89.08% to 95.89% after 50 cycles.

Surface coating of metal oxides is an effective approach for enhancing the capacity retention of a nickel-rich layered cathode.  相似文献   

14.
M-doped WO3 (M = Sn or In) films were prepared from aqueous coating solutions via evaporation-driven deposition during low-speed dip coating. Sn- and In-doping were easily achieved by controlling the chemical composition of simple coating solutions containing only metal salts and water. The crystallinity of the WO3, Sn-doped WO3, and In-doped WO3 films varied with heating temperature, where amorphous and crystalline films were obtained by heating at 200 and 500 °C, respectively. All the amorphous and crystalline films showed an electrochromic response, but good photoelectrochemical stability was observed only for the crystalline samples heated at 500 °C. The crystalline In–WO3 films exhibited a faster electrochromic color change than the WO3 or Sn–WO3 films, and good cycle stability for the electrochromic response in the visible wavelength region.

WO3 and M-doped WO3 (M = Sn or In) electrochromic films were obtained from aqueous solutions via evaporation-driven deposition. The In–WO3 films showed a faster electrochromic response than WO3 and Sn–WO3 films, and a good cycle stability.  相似文献   

15.
We report a new atomic layer deposition (ALD) process for yttrium oxide (Y2O3) thin films using tris(N,N′-diisopropyl-2-dimethylamido-guanidinato) yttrium(iii) [Y(DPDMG)3] which possesses an optimal reactivity towards water that enabled the growth of high quality thin films. Saturative behavior of the precursor and a constant growth rate of 1.1 Å per cycle confirm the characteristic self-limiting ALD growth in a temperature range from 175 °C to 250 °C. The polycrystalline films in the cubic phase are uniform and smooth with a root mean squared (RMS) roughness of 0.55 nm, while the O/Y ratio of 2.0 reveal oxygen rich layers with low carbon contaminations of around 2 at%. Optical properties determined via UV/Vis measurements revealed the direct optical band gap of 5.56 eV. The valuable intrinsic properties such as a high dielectric constant make Y2O3 a promising candidate in microelectronic applications. Thus the electrical characteristics of the ALD grown layers embedded in a metal insulator semiconductor (MIS) capacitor structure were determined which resulted in a dielectric permittivity of 11, low leakage current density (≈10−7 A cm−2 at 2 MV cm−1) and high electrical breakdown fields (4.0–7.5 MV cm−1). These promising results demonstrate the potential of the new and simple Y2O3 ALD process for gate oxide applications.

A new water assisted atomic layer deposition (ALD) process was developed using the yttrium tris-guanidinate precursor which resulted in device quality thin films.  相似文献   

16.
Black TiO2 has attracted widespread attention due to its visible light absorption and wide range of applications. However, the currently reported preparation methods for black TiO2 are not suitable for large-scale production due to its being prepared under high vacuum and over a long time. We have successfully prepared black TiO2 under normal pressure and short time conditions. The as-prepared black titanium dioxide was characterized by XRD, XPS, TEM, UV-visible absorption spectrum and other characterization methods. The result shows that the as prepared black titanium dioxide had a disordered structure and oxygen vacancy defects on the surface, and exhibits excellent visible and near infrared absorption performance. The black TiO2 sample was prepared under 650 °C 60 min exhibits excellent visible light photocatalytic performance, and can degrade 56% MO after visible light irradiation for 120 min.

Black TiO2 has attracted widespread attention due to its visible light absorption and wide range of applications.  相似文献   

17.
Lack of visible light response and low quantum yield hinder the practical application of TiO2 as a high-performance photocatalyst. Herein, we present a rational design of TiO2 nanorod arrays (NRAs) decorated with Ag/Ag2S nanoparticles (NPs) synthesized through successive ion layer adsorption and reaction (SILAR) and covered by graphene oxide (GO) at room temperature. Ag/Ag2S NPs with uniform sizes are well-dispersed on the TiO2 nanorods (NRs) as evidenced by electron microscopic analyses. The photocatalyst GO/Ag/Ag2S decorated TiO2 NRAs shows much higher visible light absorption response, which leads to remarkably enhanced photocatalytic activities on both dye degradation and photoelectrochemical (PEC) performance. Its photocatalytic reaction efficiency is 600% higher than that of pure TiO2 sample under visible light. This remarkable enhancement can be attributed to a synergy of electron-sink function and surface plasmon resonance (SPR) of Ag NPs, band matching of Ag2S NPs, and rapid charge carrier transport by GO, which significantly improves charge separation of the photoexcited TiO2. The photocurrent density of GO/Ag/Ag2S–TiO2 NRAs reached to maximum (i.e. 6.77 mA cm−2vs. 0 V). Our study proves that the rational design of composite nanostructures enhances the photocatalytic activity under visible light, and efficiently utilizes the complete solar spectrum for pollutant degradation.

The photocatalytic reaction efficiency of GO/Ag/Ag2S–TiO2 nanorod arrays is 600% higher than that of a pure TiO2 sample under visible light.  相似文献   

18.
Semiconductor-based heterojunction photocatalysts with a special active crystal surface act as an essential part in environmental remediation and renewable energy technologies. In this study, an RGO/CdS/TiO2 step-scheme with high energy {001} TiO2 facets was successfully fabricated via a microwave-assisted solvothermal method. The photocatalytic performance of as-prepared samples was assessed by degrading methylene blue under visible light irradiation. We found that the photocatalytic activity of the RGO/CdS/TiO2 step-scheme heterojunction was related to the proportion of TiO2. A ternary sample with a TiO2 content of 10 wt% exhibited superior photocatalytic performance, and approximately 99.7% of methylene blue was degraded during 50 min of visible illumination which was much higher than the percentages found for TiO2, CdS, RGO/TiO2, and RGO/CdS. The greatly improved photocatalytic performance is due to the exposure of the reactive {001} surface of TiO2 and the formation of a CdS/TiO2 heterojunction step-scheme, which effectively inhibits the recombination of charge carriers at the heterogeneous interfaces. Moreover, the incorporation of graphene further enhances the visible light harvesting and serves as an electron transport channel for rapidly separating photogenerated carriers. Based on the PL, XPS, photoelectrochemical properties and the free radical capturing experiment results, a possible photodegradation mechanism was proposed.

The photocatalytic enhancement of RGO/CdS/TiO2 is due to the high-energy {001} surface of TiO2 and CdS forming a stepped heterojunction, which is dispersed on the surface of reduced graphene oxide.  相似文献   

19.
We fabricated amorphous InGaZnO thin film transistors (a-IGZO TFTs) with aluminum oxide (Al2O3) as a gate insulator grown through atomic layer deposition (ALD) method at different deposition temperatures (Tdep). The Al2O3 gate insulator with a low Tdep exhibited a high amount of hydrogen in the film, and the relationship between the hydrogen content and the electrical properties of the TFTs was investigated. The device with the Al2O3 gate insulator having a high H content showed much better transfer parameters and reliabilities than the low H sample. This is attributed to the defect passivation effect of H in the active layer, which is diffused from the Al2O3 layer. In addition, according to the post-annealing temperature (Tpost-ann), a-IGZO TFTs exhibited two unique changes of properties; the degradation in low Tpost-ann and the enhancement in high Tpost-ann, as explained in terms of H diffusion from the gate insulator to an active layer.

We fabricated amorphous InGaZnO thin film transistors (a-IGZO TFTs) with aluminum oxide (Al2O3) as a gate insulator grown through atomic layer deposition (ALD) method at different deposition temperatures (Tdep).  相似文献   

20.
AlN thin films were epitaxially grown on a 4H-SiC substrate via atomic layer deposition (ALD) along with atomic layer annealing (ALA). By applying the layer-by-layer, in situ ALA treatment using helium/argon plasma in each ALD cycle, the as-deposited film gets crystallization energy from the plasma, which results in significant enhancement of the crystal quality to achieve a highly crystalline AlN epitaxial layer at a deposition temperature as low as 300 °C. In a nanoscale AlN epitaxial layer with a thickness of ∼30 nm, X-ray diffraction reveals a low full-width-at-half-maximum of the AlN (0002) peak of only 176.4 arcsec. Atomic force microscopy, high-resolution transmission electron microscopy, and Fourier diffractograms indicate a smooth surface and high-quality hetero-epitaxial growth of a nanoscale AlN layer on 4H-SiC. This research demonstrates the impact of the ALA treatment on the evolution of ALD techniques from conventional thin film deposition to low-temperature atomic layer epitaxy.

The schematic diagram of the processing cycle including the atomic layer annealing (ALA) to achieve low-temperature epitaxial growth of AlN on SiC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号