首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amine-modified MCM-41 adsorbents (APTMS/MCM-41, PEI/MCM-41 and AAPTS/MCM-41) were prepared and characterized by XRD, N2 adsorption–desorption, FT-IR, TEM, SEM and TG-DTA. The performance of each adsorbent in a fixed adsorption bed for H2S removal was measured using a mixture of oxygen, nitrogen and hydrogen sulfide gases. It was found that the specific surface area decreased and the topography changed significantly after the use of each modified adsorbent. Nevertheless, all amine-modified MCM-41 adsorbents retained mesoporous silica of MCM-41. The H2S removal rate and saturated H2S capacity of APTMS/MCM-41 improved from 32.3% to 54.2% and 119.5 to 134.4 mg g−1, respectively, compared with that of MCM-41, and it showed the best performance among all adsorbents. APTMS/MCM-41, PEI/MCM-41 and AAPTS/MCM-41 were regenerated by maintaining at 423, 523 and 373 K in nitrogen for 3 h, respectively, and thus possessed high regenerability.

Several amine-modified MCM-41 adsorbents (APTMS/MCM-41, PEI/MCM-41, AAPTS/MCM-41) by the grafting method were prepared, in which APTMS/MCM-41 showed much better adsorptive desulfurization performance and regenerability than the others.  相似文献   

2.
Supported catalysts with Keggin type heteropoly acids (H5PMo10V2O40) loaded onto amine-functionalized MCM-41 for the catalytic hydroxylation of benzene to phenol with H2O2 were prepared by a wet impregnation method. The effects of the preparation conditions on the properties and activity of the supported catalysts were fully investigated. The results showed that the catalyst retained the mesoporous structure of MCM-41 and H5PMo10V2O40 was dispersed uniformly on the surface of the amine-functionalized MCM-41. Meanwhile, the reusability and catalytic performance of the catalyst were affected by two key factors, i.e., the interaction between the heteropoly acid and the surface of MCM-41, and the hydrophobicity of the catalyst since they decide the leaching of H5PMo10V2O40 and the adsorption of benzene. The catalyst with H5PMo10V2O40 loaded onto amine-functionalized MCM-41, which was prepared using ethanol as the solvent, exhibited the highest phenol yield (20.4%), a turnover frequency value of 20.3 h−1 and good reusability. We believe this work offers an effective and facile strategy for the preparation of a new catalyst for hydroxylation of benzene to phenol.

Supported catalysts with heteropoly acid loaded onto amine-functionalized MCM-41 for hydroxylation of benzene to phenol are prepared.  相似文献   

3.
Bi2O3/Co3O4 catalysts prepared by the impregnation method were investigated for the selective catalytic reduction of NO by C3H6 (C3H6-SCR) in the presence of O2. Their physicochemical properties were analyzed with SEM, XRD, H2-TPR, XPS, PL and IR measurements. It was found that the deposition of Bi2O3 on Co3O4 nanoplates enhanced the catalytic activity, especially at low reaction temperature. The SO2 tolerance of Co3O4 in C3H6-SCR activity was also improved with the addition of Bi2O3. Among all catalysts tested, 10.0 wt% Bi2O3/Co3O4 achieved a 90% NO conversion at 200 °C with the total flow rate of 200 mL min−1 (GHSV 30 000 h−1). No loss in its C3H6-SCR activity was observed at different temperatures after the addition of 100 ppm of SO2 to the reaction mixture. These enhanced catalytic behaviors may be associated with the improved oxidizing characteristics of 10.0 wt% Bi2O3/Co3O2. XRD results showed that Bi2O3 entered the lattice of Co3O4, resulting in the formation of lattice distortion and structural defects. H2-TPR results showed that the reduction of Co3O4 was promoted and the diffusion of oxygen was accelerated with the addition of Bi2O3. XPS measurements implied that more Co3+ formed on the 10.0% Bi2O3/Co3O2 catalysts. The improved oxidizing characteristics of the catalyst with the addition of Bi2O3 due to the synergistic effect of the nanostructure hybrid, thus enhanced the C3H6-SCR reaction and hindered the oxidization of SO2. Therefore, the 10.0% Bi2O3/Co3O4 catalyst exhibited the highest NO conversion and strongest SO2 tolerance ability.

Bi2O3/Co3O4 catalysts prepared by the impregnation method were investigated for the selective catalytic reduction of NO by C3H6 (C3H6-SCR) in the presence of O2.  相似文献   

4.
One dimensional mesoporous etched halloysite nanotube supported Co2+ is achieved by selective etching of Al2O3 from halloysite nanotube (HA) and immersing the etched HA (eHA) into the Co(NO3)2·6H2O solution consecutively. By facilely tuning the etching time and the weight ratio of Co(NO3)2·6H2O to eHA, the morphology, specific surface area and the supported Co2+ content of the mesoporous material can be tuned. The method for mesoporous material is scaled up and can be extended to other clay minerals. The mesoporous eHA supported Co2+ is used as catalyst for the selective catalytic oxidation of cyclohexene in solvent-free reaction system with O2 as oxidant. The results shows the catalytic activity is dependent on etching time, weight ratio of Co(NO3)2·6H2O to eHA, calcination treatment and reaction time/temperature. Among them, mesoporous eHA supported Co2+ prepared with 18 h etching time and 2 : 1 Co(NO3)2·6H2O/eHA weight ratio without calcination (HA/HCl-18 h/Co2+-2 : 1) demonstrates the highest catalytic activity under 75 °C reaction temperature and 18 h reaction time (58.30% conversion and 94.03% selectivity to allylic products). Furthermore, HA/HCl-18 h/Co2+-2 : 1 has exhibit superior cycling stability with 37.69% conversion and 92.73% selectivity to allylic products after three cycles.

Mesoporous eHA@Co2+ nanorods with effective solvent-free oxidation of cyclohexene to allylic products with O2 have been successfully fabricated by HCl selective etching of Al2O3 from halloysite nanotubes and the impregnation method consecutively.  相似文献   

5.
Subnano MoO3/MCM-41 was successfully prepared through doping (NH4)6Mo7O24 in the synthesis process of MCM-41. The morphology of MoO3/MCM-41 was visually observed by TEM and HADDF-STEM. N2 sorption, XPS and Raman were further applied to investigate the structure of the material. MoO3/MCM-41 was used in the oxidative desulfurization process with tert-butyl hydroperoxide as oxidant. MoO3/MCM-41 showed outstanding catalytic activity and recycling ability at room temperature.

MoO3 subnanoclusters encapsulated in MCM-41 exhibited enhanced catalytic activity and stability for oxidative desulfurization at room temperature.  相似文献   

6.
In this work, based on the electrospinning method, pure Co3O4, pure MnO2, and Co3O4 composite nano-fiber materials doped with different ratios of Mn4+ were prepared. XRD, XPS, BET and SEM tests were used to characterize the composition, structure and morphology of the materials. An electrochemical workstation was used to test the electrochemical performance of the materials. The results showed that the material properties had greatly improved on doping Mn4+ in Co3O4 nano-fibers. The relationship between the amount of Mn4+ doped in the Co3O4 composite nano-fiber material and its electrochemical performance was also tested and is discussed in this report. The results show that when nCo : nMn = 20 : 2, the Co3O4 composite nano-fiber material had a specific surface area of 68 m2 g−1. Under the current density of 1 A g−1, the 20 : 2 sample had the maximum capacitance of 585 F g−1, which was obviously larger than that of pure Co3O4 nano-fibers (416 F g−1). After 2000 cycles of charging/discharging, the specific capacitance of the 20 : 2 sample was 85.9%, while that of the pure Co3O4 nano-fiber material was only 76.4%. The mechanism of performance improvement in the composite fibers was analyzed, which demonstrated concrete results.

In this work, based on the electrospinning method, pure Co3O4, pure MnO2, and Co3O4 composite nano-fiber materials doped with different ratios of Mn4+ were prepared.  相似文献   

7.
A series of CoxNi1−xFe2O4/multi-walled carbon nanotube (CoxNi1−xFe2O4/MWCNTs) nanocomposites as photocatalysts were successfully synthesized, where CoxNi1−xFe2O4 was synthesized via a one-step hydrothermal approach. Simultaneously, methylene blue (MB) was used as the research object to investigate the catalytic effect of the catalyst in the presence of hydrogen peroxide (H2O2). The results showed that all the photocatalysts exhibited enhanced catalytic activity compared to pure ferrite. In addition, compared with the other photocatalysts, the reaction time was greatly shortened a significantly higher removal rate was achieved using 3-CNF/MWCNTs. There was no significant decrease in photodegradation efficiency after three catalytic cycles, suggesting that CoxNi1−xFe2O4/MWCNTs are recyclable photocatalysts for wastewater treatment. Our results indicate that the CoxNi1−xFe2O4/MWCNT composite can be effectively applied for the removal of organic pollutants as a novel photocatalyst.

A series of CoxNi1−xFe2O4/multi-walled carbon nanotube (CoxNi1−xFe2O4/MWCNTs) nanocomposites as photocatalysts were successfully synthesized. The results implied that this composites can be effectively applied for the removal of organic pollutant as novel photocatalysts.  相似文献   

8.
A novel type of porous Co3O4 hollow nanoprism (HNP) was successfully prepared using tetragonal cobalt acetate hydroxide [Co5(OH)2(OAc)8·2H2O] as precursor by a facile solvothermal process and a subsequent calcination treatment. The morphology and structure of the Co3O4 HNPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD) and N2 adsorption–desorption measurements. An enzyme-free glucose sensor was constructed based on the Co3O4 HNPs, and the electrochemical performance was tested by cyclic voltammetry (CV) and chronoamperometry. The as-prepared sensor exhibited a good electrocatalytic activity for glucose oxidation at the applied potential of 0.6 V in alkaline solution, with a high sensitivity of 19.83 μA mM−1 cm−2 and a high upper limit of 30 mM, which provide the potential for direct determination of blood glucose without any dilution pretreatment. The Co3O4 HNPs had a porous and tubular structure with a large amount of accessible active sites, which enhanced the mass diffusion and accelerated the electron transfer. Moreover, the sensor also demonstrated a desirable stability, selectivity and reproducibility, and could verify the non-enzymatic analysis of glucose in real samples.

Co3O4 hollow nanoprisms based non-enzymatic glucose sensor were prepared by a self-template process, exhibiting wide linear range, good selectivity and stability, which can directly monitoring blood glucose without any dilution pretreatment.  相似文献   

9.
Co3O4 is a P-type metal-oxide semiconductor which can realize acetone detection at a lower temperature, but the lower working temperature brings the enhanced humidity effect. In order to solve the problem of a Co3O4 gas sensor being easily affected by humidity, an acetone-sensing material of Co3O4 mixed with Pr/Zn was prepared by electrospray in this work. The optimal working temperature of Pr/Zn–Co3O4 is 160 °C, and the detection limit can reach 1 ppm. The fluctuation of the acetone response is about 7.7% in the relative humidity range of 30–90%. Compared with pure Co3O4, the anti-humidity property of this material is obviously enhanced, but the gas-sensing response deteriorates. Compared with Pr–Co3O4, the anti-humidity and acetone sensing properties of Pr/Zn–Co3O4 were both improved. The morphology, composition, crystal state and energy state of the material were analyzed by SEM, EDS, XRD and XPS. The material of Pr/Zn–Co3O4 is a multi-component mixed material composed of PrCoO3, ZnO, Pr6O11 and Co3O4. The improved anti-humidity and acetone sensing properties exhibited by this material are the result of the synergistic effect of ZnO and Pr3+.

With the synergistic effect of Pr and Zn, the material of Co3O4 mixed with Pr/Zn exhibits improved properties of anti-humidity and acetone sensitivity.  相似文献   

10.
Considering the three-dimensional ordered network of Ni foam-supported catalysts and the toxicity effects of volatile organic compounds (VOCs), the design of proper active materials for the highly efficient elimination of VOCs is of vital importance in the environmental field. In this study, a series of Co–Mn composite oxides with different Co/Mn molar ratios grown on interconnected Ni foam are prepared as monolithic catalysts for total toluene oxidation, in which Co1.5Mn1.5O4 with a molar ratio of 1 : 1 achieves the highest catalytic activity with complete toluene oxidation at 270 °C. The Co–Mn monolithic catalysts are characterized by XRD, SEM, TEM, H2-TPR and XPS. It is observed that a moderate ratio of Mn/Co plays significant effects on the textural properties and catalytic activities. From the XPS and H2-TPR characterization results, the obtained Co1.5Mn1.5O4 (Co/Mn = 1/1) favors the excellent low-temperature reducibility, high concentration of surface Mn3+ and Co3+ species, and rich surface oxygen vacancies, resulting in superior oxidation performance due to the formation of a solid solution between the Co and Mn species. It is deduced that the existence of the synergistic effect between Co and Mn species results in a redox reaction: Co3+–Mn3+ ↔ Co2+–Mn4+, and enhances the catalytic activity for total toluene oxidation.

A series of Co–Mn oxides with different Co/Mn molar ratios grown on interconnected Ni foam were prepared as monolithic catalysts for total toluene oxidation.  相似文献   

11.
In the direct synthesis of 2-propylheptanol (2-PH) from n-valeraldehyde, a second-metal oxide component Co3O4 was introduced into NiO/Nb2O5–TiO2 catalyst to assist in the reduction of NiO. In order to optimize the catalytic performance of NiO–Co3O4/Nb2O5–TiO2 catalyst, the effects of the Ni/Co mass ratio and NiO–Co3O4 loading were investigated. A series of NiO–Co3O4/Nb2O5–TiO2 catalysts with different Ni/Co mass ratios were prepared by the co-precipitation method and their catalytic performances were evaluated. The result showed that NiO–Co3O4/Nb2O5–TiO2 with a Ni/Co mass ratio of 8/3 demonstrated the best catalytic performance because the number of d-band holes in this catalyst was nearly equal to the number of electrons transferred in hydrogenation reaction. Subsequently, the NiO–Co3O4/Nb2O5–TiO2 catalysts with different Ni/Co mass ratios were characterized by XRD and XPS and the results indicated that both an interaction of Ni with Co and formation of a Ni–Co alloy were the main reasons for the reduction of NiO–Co3O4/Nb2O5–TiO2 catalyst in the reaction process. A higher NiO–Co3O4 loading could increase the catalytic activity but too high a loading resulted in incomplete reduction of NiO–Co3O4 in the reaction process. Thus the NiO–Co3O4/Nb2O5–TiO2 catalyst with a Ni/Co mass ratio of 8/3 and a NiO–Co3O4 loading of 14 wt% showed the best catalytic performance; a 2-PH selectivity of 80.4% was achieved with complete conversion of n-valeraldehyde. Furthermore, the NiO–Co3O4/Nb2O5–TiO2 catalyst showed good stability. This was ascribed to the interaction of Ni with Co, the formation of the Ni–Co alloy and further reservation of both in the process of reuse.

NiO–Co3O4/Nb2O5–TiO2 catalyst with a Ni/Co mass ratio of 8/3 and NiO–Co3O4 loading of 14% shows the best catalytic performance.  相似文献   

12.
Mn-Based catalysts supported on γ-Al2O3, TiO2 and MCM-41 synthesized by an impregnation method were compared to evaluate their NO catalytic oxidation performance with low ratio O3/NO at low temperature (80–200 °C). Activity tests showed that the participation of O3 remarkably promoted the NO oxidation. The catalytic oxidation performance of the three catalysts decreased in the following order: Mn/γ-Al2O3 > Mn/TiO2 > Mn/MCM-41, indicating that Mn/γ-Al2O3 exhibited the best catalytic activity. In addition, there was a clear synergistic effect between Mn/γ-Al2O3 and O3, followed by Mn/TiO2 and O3. The characterization results of XRD, EDS mapping, BET, H2-TPR, XPS and TG showed that Mn/γ-Al2O3 had good manganese dispersion, excellent redox properties, appropriate amounts of coexisting Mn3+ and Mn4+ and abundant chemically adsorbed oxygen, which ensured its good performance. In situ DRIFTS demonstrated the NO adsorption performance on the catalyst surface. As revealed by in situ DRIFTS experiments, the chemically adsorbed oxygen, mainly from the decomposition of O3, greatly promoted the NO adsorption and the formation of nitrates. The Mn-based catalysts showed stronger adsorption strength than the corresponding pure supports. Due to the abundant adsorption sites provided by pure γ-Al2O3, under the interaction of Mn and γ-Al2O3, the Mn/γ-Al2O3 catalyst exhibited the strongest NO adsorption performance among the three catalysts and produced lots of monodentate nitrates (–O–NO2) and bidentate nitrates (–O2NO), which were the vital intermediate species for NO2 formation. Moreover, the NO–TPD studies also demonstrated that Mn/γ-Al2O3 showed the best NO desorption performance among the three catalysts. The good NO adsorption and desorption characteristics of Mn/γ-Al2O3 improved its high catalytic activity. In addition, the activity test results also suggested that Mn/γ-Al2O3 exhibited good SO2 tolerance.

The Mn/γ-Al2O3 catalyst exhibited excellent performance for NO conversion in the presence of a low ratio of O3/NO, which was due to the coexistence of Mn3+ and Mn4+ and abundant chemically adsorbed oxygen.  相似文献   

13.
A series of Co3O4 catalysts modified by Sm were prepared by a combined dealloying and calcination approach, and the catalytic activities were evaluated using CO catalytic oxidation. The Sm2O3/Co3O4 catalysts were composed of a large number of nanorods and nanosheets, and exhibited a three-dimensional supporting structure with pores. The experimental results revealed that the addition of a small amount of Sm into the precursor AlCo alloy led to a dealloyed sample with improved catalytic activity, and the dealloyed Al90Co9.5Sm0.5 ribbons (0.5 Sm2O3/Co3O4) calcined at 300 °C showed the highest activity for CO oxidation with complete CO conversion at 135 °C, moreover, CO conversion almost no attenuation, even after 70 hours of catalytic oxidation, which is superior to that of Co3O4. The enhanced catalytic activity of the Sm2O3/Co3O4 catalyst can be attributed to the large specific surface area, more reactive oxygen species and Co3+ ion, as well as electronic interactions between Sm and Co.

A series of Co3O4 catalysts modified by Sm were prepared by a combined dealloying and calcination approach, and the catalytic activities were evaluated using CO catalytic oxidation.  相似文献   

14.
To investigate the effect of catalyst precursors on physicochemical properties and activity of lean methane catalytic combustion, a series of Co3O4 catalysts were prepared via a precipitation method by using four different cobalt precursors: Co(C2H3O2)2, Co(NO3)2, CoCl2, and CoSO4. The catalysts were characterized by BET, XRD, SEM, Raman, XPS, XRF, O2-TPD and H2-TPR techniques. It was found that the different types of cobalt precursor had remarkable effects on the surface area, particle size, reducibility and catalytic performance. In contrast, the Co3O4-Ac catalyst showed a relatively small surface area, but its activity and stability were the highest. XPS, Raman, O2-TPD and H2-TPR results demonstrated that the superior catalytic performance of Co3O4-Ac was associated with its higher Co2+ concentration, more surface active oxygen species and better reducibility. In addition, the activity of the Co3O4-S catalyst reduced significantly due to the residual impurity SO42−, which could reduce the concentration of surface adsorbed active oxygen species and inhibit oxygen migration.

The effects of cobalt precursor on the microstructure, surface properties, reducibility and catalytic performance for methane combustion were investigated.  相似文献   

15.
Capacitive deionization (CDI), as an emerging eco-friendly electrochemical brackish water deionization technology, has widely benefited from carbon/metal oxide composite electrodes. However, this technique still requires further development of the electrode materials to tackle the ion removal capacity/rate issues. In the present work, we introduce a novel active carbon (AC)/Co3O4–Sb2O3–SnO2 active material for hybrid electrode capacitive deionization (HECDI) systems. The structure and morphology of the developed electrodes were determined using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and Brunauer–Emmett–Teller (BET)/Barrett–Joyner–Halenda (BJH) techniques, as well as Fourier-transform infrared (FT-IR) spectroscopy. The electrochemical properties were also investigated by cyclic voltammetry (CV) and impedance spectroscopy (EIS). The CDI active materials AC/Co3O4 and AC/Co3O4–Sb2O3–SnO2 showed a high specific capacity of 96 and 124 F g−1 at the scan rate of 10 mV s−1, respectively. In addition, the newly-developed electrode AC/Co3O4–Sb2O3–SnO2 showed high capacity retention of 97.2% after 2000 cycles at 100 mV s−1. Moreover, the electrode displayed excellent CDI performance with an ion removal capacity of 52 mg g−1 at the applied voltage of 1.6 V and in a solution of potable water with initial electrical conductivity of 950 μs cm−1. The electrode displayed a high ion removal rate of 7.1 mg g−1 min−1 with an excellent desalination–regeneration capability while retaining about 99.5% of its ion removal capacity even after 100 CDI cycles.

Capacitive deionization (CDI), as an emerging eco-friendly electrochemical brackish water deionization technology, has widely benefited from carbon/metal oxide composite electrodes.  相似文献   

16.
The effect of a weak magnetic field (WMF) on the removal of reactive brilliant red X-3B (X-3B) by zero-valent iron (ZVI)/H2O2 was studied. The optimum conditions for the removal of X-3B by the ZVI/H2O2/WMF system were as follows: pH = 4.0, X-3B was 50 mg L−1, H2O2 was 8 mM, and ZVI with particle size of 20 μm was 0.5 g L−1. The X-3B decolorization rate could reach 99.41% in 10 minutes. The superposed WMF increased the working pH of ZVI from 3.0 to 4.0. The main part of ZVI/H2O2 removal kinetics of X-3B followed the zero order rate law. In this study, the removal effect of X-3B by pre-magnetization ZVI was not as good as that of real-time magnetization, but it was better than the removal of X-3B by the ZVI/H2O2 system. The ZVI/H2O2/WMF system still had the ability to remove X-3B after 4 consecutive cycles. The use of WMF improved the removal of X-3B by ZVI/H2O2 mainly due to the corrosion of ZVI. Under acidic conditions, WMF enhanced the activity of ZVI, which promoted the efficiency of the Fenton reaction. The use of WMF to enhance the ZVI/H2O2 removal X-3B was a promising and environmental friendly process because it did not require additional energy and expensive reagents and did not cause secondary pollution.

The effect of a weak magnetic field (WMF) on the removal of reactive brilliant red X-3B (X-3B) by zero-valent iron (ZVI)/H2O2 was studied.  相似文献   

17.
Deep desulfurization is a key process for the production of high value-added products from C5 distillates. In this work, different potassium salt modified gamma-Al2O3 adsorbents were prepared by an incipient-wetness impregnation method and characterized by N2 adsorption–desorption, SEM-EDS, TEM, CO2-TPD, XRD, FT-IR, and IC. The C5 distillate with a 1200 μg mL−1 sulfur content is desulfurized to less than 10 μg mL−1 within 24 hours by the static adsorption method. For the desulfurization in the fix-bed reactor, the breakthrough sulfur capacity of K2CO3-decorated gamma-Al2O3 reaches 0.76 wt% under the optimized conditions, viz., at 30 °C, with a sulfur content of 50 μg mL−1 in the raw oil, and a liquid hourly space velocity of 1 h−1. The desulfurization activity of the exhausted adsorbent can be recovered after regeneration. Selective adsorption of CS2 includes three processes: adsorption, hydrolysis, and oxidation. CS2 is first adsorbed on the adsorbent and hydrolyzed to form H2S. H2S is further oxidized to form S/SO42−, and then deposits on the surface of the adsorbent. Adsorption, hydrolysis, and oxidation all play essential roles in the removal process of CS2.

Deep desulfurization is a key process for the production of high value-added products from C5 distillates.  相似文献   

18.
The present investigation involves synthesis and characterization of MCM-41–AEAPTMS–Fe(iii)Cl using coordinated Fe(iii) on MCM-41–AEAPTMS for efficient removal of hazardous Cr(vi) ions from aqueous solution. The adsorbent MCM-41–AEAPTMS–Fe(iii)Cl was characterized using small-angle X-ray diffraction (SAX), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Fourier-transform infrared (FT-IR) and Brunauer–Emmett–Teller (BET) surface analyzer techniques. The BET surface area was found to be 87.598 m2 g−1. The MCM-41–AEAPTMS–Fe(iii)Cl effectively adsorbs Cr(vi) with an adsorption capacity acquiring the maximum value of 84.9 mg g−1 at pH 3 at 298 K. The data followed pseudo-second-order kinetics and obeyed the Langmuir isotherm model. The thermodynamic data proved the exothermic and spontaneous nature of Cr(vi) ion adsorption on MCM-41–AEAPTMS–Fe(iii). Further, the higher value of ΔH° (−64.339 kJ mol−1) indicated that the adsorption was chemisorption in nature.

The present investigation involves synthesis and characterization of MCM-41–AEAPTMS–Fe(iii)Cl using coordinated Fe(iii) on MCM-41–AEAPTMS for efficient removal of hazardous Cr(vi) ions from aqueous solution.  相似文献   

19.
In this paper, a series of Co3O4–Ag photocatalysts with different Ag loadings were synthesized by facile hydrothermal and in situ photoreduction methods and fully characterized by XRD, SEM, TEM, FTIR spectroscopy, XPS, UV-vis and PL techniques. The catalysts were used for the degradation of methyl orange (MO). Compared with the pure Co3O4 catalyst, the Co3O4–Ag catalysts showed better activity; among these, the Co3O4–Ag-0.3 catalyst demonstrated the most efficient activity with 96.4% degradation efficiency after 30 h UV light irradiation and high degradation efficiency of 99.1% after 6 h visible light irradiation. According to the corresponding dynamics study under UV light irradiation, the photocatalytic efficiency of Co3O4–Ag-0.3 was 2.72 times higher than that of Co3O4 under identical reaction conditions. The excellent photocatalytic activity of Co3O4–Ag can be attributed to the synergistic effect of strong absorption under UV and visible light, reduced photoelectron and hole recombination rate, and decreased band gap due to Ag doping. Additionally, a possible reaction mechanism over the Co3O4–Ag photocatalysts was proposed and explained.

A novel Co3O4–Ag catalyst covered on the Ni foam substrate was synthesized via facile hydrothermal and in situ photoreduction methods for the efficient degradation of methyl orange.  相似文献   

20.
Fabricating abundant oxygen vacancies is crucial for non-noble metal oxides to catalyze formaldehyde (HCHO) oxidation at room temperature. Here, a simple one-pot preparation method via solution combustion was found to produce oxygen vacancy-rich Co3O4 catalysts, avoiding delicate defect engineering. The catalyst was evaluated to result in 52% HCHO conversion in a dynamic flow reaction with ∼6 ppm HCHO, which was higher as compared to some other Co3O4 catalysts prepared in three methods of sol–gel, deposition precipitation and thermal decomposition. The optimal catalyst also exhibited high durability with steady HCHO conversion (∼47%) for more than 50 h. The catalyst characterizations revealed that the explosive solution combustion brought out two particular features of Co3O4, namely, the porous network structure with nano-holes and the abundant oxygen vacancies. The latter was demonstrated to increase the reactive oxygen species and to improve the reducibility and the oxygen transport capacity of Co3O4. The two features and the derived properties are beneficial to the activity and durability of Co3O4. The solution combustion method can serve as a simple and feasible way to fabricate abundant oxygen vacancies to provide room-temperature activity of Co3O4 for HCHO elimination at room temperature.

The rich oxygen vacancies in porous Co3O4 were generated in solution combustion, offering high room-temperature activity for formaldehyde oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号