首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 117 毫秒
1.
Deuterium isotope substitution in one part of a molecule could produce a significant effect on chemical shifts of neighbouring nuclei as well as on nuclei, located far from the site of replacement. To estimate how far this influence could extend the reaction of proton–deuterium exchange of several 2-alkanones in deuterated methanol solutions of 1-methyl 3-ethyl imidazolium acetate ionic liquid (IL) was studied in detail using 13C NMR spectroscopy. Deuteration occurs in alkyl groups of 2-alkanones neighboring the ketonic group via keto–enol tautomerization catalyzed by IL. In the course of the reaction, various isotopomers with various deuteration levels are formed, among which a dynamic equilibrium is established. The number of substituted deuterons affects not only the multiplicity and chemical shifts of directly bonded carbon, but carbons in the groups further along the alkyl chain. Moreover, the latter groups better indicate the level and site of substitution.

Long range deuterium isotope effects on the carbon spectral pattern in 2-hexanone reveal the existence and distribution of H/D isotopomers.  相似文献   

2.
In this work, Zn–Fe double metal cyanide (DMC) catalysts were successfully synthesized via clean and efficient ball milling. Imidazolium-based ionic liquids as cocatalysts were incorporated into the structure of the DMC catalysts during the grinding process. The modified Zn–Fe DMC catalysts were effective for the alternating copolymerization of carbon dioxide and propylene oxide under controlled reaction conditions. The properties and structures of the Zn–Fe DMC catalysts and the resulting polymers were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, elemental analysis, 1H and 13C NMR spectroscopy, gel permeation chromatography, and thermogravimetric analysis. The results indicate that the Zn–Fe DMC catalysts exhibit higher thermal stability compared to the DMC catalysts without imidazolium-based ionic liquids (DMC-Blank). We determined that the introduction of a small amount of imidazolium-based ionic liquids can increase the carbonate content of the poly(propylene carbonate) (PPC) copolymer in the range of 18.48–29.00%. The turnover numbers of PPC were ∼4.40. In addition, the measured number-average relative molecular mass was in the range of 2.96 × 103–4.98 × 103 with a narrow polydispersity index of 1.00–1.08.

Zn–Fe DMC complexes with imidazolium-based ionic liquid cocatalysts were prepared by a clean and efficient ball milling process for the copolymerization of CO2 and propylene oxide.  相似文献   

3.
Metal-free imidazolium-based ionic liquid (IL) Brønsted acids 1-methyl imidazolium hydrogen sulphate [HMIM]HSO4 and 1-methyl benzimidazolium hydrogen sulphate [HMBIM]HSO4 were synthesized. Their physicochemical properties were investigated using spectroscopic and thermal techniques, including UV-Vis, FT-IR, 1H NMR, 13C-NMR, mass spectrometry, and TGA. The ILs were immobilized on mesoporous silica gel and characterized by FT-IR spectroscopy, scanning electron microscopy, Brunauer–Emmett–Teller analysis, ammonia temperature-programmed desorption, and thermogravimetric analysis. [HMIM]HSO4@silica and [HMBIM]HSO4@silica have been successfully applied as promising replacements for conventional catalysts for alkane isomerization reactions at room temperature. Isomerization of n-heptane and n-octane was achieved with both catalysts. In addition to promoting the isomerization of n-heptane and n-octane (a quintessential reaction for petroleum refineries), these immobilized catalysts are non-hazardous and save energy.

Metal-free imidazolium-based ionic liquid (IL) Brønsted acids 1-methyl imidazolium hydrogen sulphate [HMIM]HSO4 and 1-methyl benzimidazolium hydrogen sulphate [HMBIM]HSO4 were synthesized.  相似文献   

4.
In this study, Mg–Al–La composite oxide loaded with ionic liquid [Bmim]OH was used as a catalyst for the synthesis of fatty acid isobutyl ester (FAIBE) via transesterification between waste cooking oil and isobutanol. Mg–Al–La composite oxide was synthesized from the β-cyclodextrin (β-CD) intercalation modification of Mg–Al–La layered double hydroxides. The structure of the catalyst was characterized via XRD, BET and EDS. The results showed that the interlayer space of the catalyst was increased due to β-CD intercalation modification. The IL/CD–Mg–Al–La catalyst exhibited significant catalytic activity and regeneration performance in transesterification due to large interlayer space and strongly alkaline ionic liquid. The yield of FAIBE achieved was 98.3% under the optimum reaction condition and 95.2% after regeneration for six times. The viscosity–temperature curve of FAIBE was determined and the phase transition temperature was −1 °C. The pour point of FAIBE was only −10 °C, which exhibited excellent low temperature fluidity.

In this study, Mg–Al–La composite oxide loaded with ionic liquid [Bmim]OH was used as a catalyst for the synthesis of fatty acid isobutyl ester (FAIBE) via transesterification between waste cooking oil and isobutanol.  相似文献   

5.
The Debus–Radziszewski imidazole synthesis was adapted to directly yield long-chain imidazolium ionic liquids. Imidazolium acetate ionic liquids with side-chains up to sixteen carbon atoms were synthesised in excellent yields via an on-water, one-pot reaction. The imidazolium acetate ILs acted as surfactants when dissolved in various solvents. The imidazolium acetate ionic liquids were also derivatised via an acid metathesis to the chloride, nitrate, and hydrogen oxalate derivatives. The thermal behaviour of all the ionic liquids was determined via thermogravimetric and calorimetric analysis.

The modified Debus–Radziszewski reaction was used as a one-pot on-water reaction to allow a greener synthesis of long-chain 1,3-dialkylimidazolium acetate ionic liquids in high yield from long-chain linear amines.  相似文献   

6.
The chemical functionalization or modification of polymers to alter or improve the physical and mechanical properties constitutes an important field in macromolecular research. Fabrication of polymeric materials via structural tailoring of commercial or commodity polymers that are produced in vast quantities especially possess unique advantages in material applications. In the present study, we report on benign chemical modification of unsaturated styrene–isoprene–styrene (SIS) copolymer using available backbone alkene groups. Covalent attachment of aldehyde functional substrates onto reactive isoprene double bond residues was conveniently carried out using UV-induced Paterno–Büchi [2 + 2] cycloaddition. Model organic compounds with different structures were utilized in high efficiency chemical modification of parent polymer chains via oxetane ring formation. Functionalization studies were confirmed via1H NMR, FT-IR and SEC analyses. The methodology was extended to covalent crosslinking of polymer chains to obtain organogels with tailorable crosslinking degrees and physical characteristics. Considering the outstanding elastic properties of unsaturated rubbers and their high commercial availability, abundant reactive double bonds in backbone chains of these polymers offer easy to implement structural modification via proposed Paterno–Büchi photocycloaddition.

Paterno–Büchi reaction is reported as a convenient chemical reaction tool to modify unsaturated copolymer elastomers.  相似文献   

7.
New chiral bicyclic imines, enamines and amines were prepared via Horner–Wadsworth–Emmons reaction of hexahydroquinoxalin-2(1H)-one-derived phosphonate, as the source of a phosphonate carbanion, and a wide range of structurally diverse carbonyl substrates. The simplicity of the synthetic protocol, high selectivity, and broad substrate scope are the main advantages of the presented methodology.

New chiral cyclic imines and enamines were prepared via HWE reaction, with selectivity dependent on the carbonyl substrate.  相似文献   

8.
A three-dimensional cross-linked Ni–V2O5 nanomaterial with a particle size of 250–300 nm was successfully prepared in a 1-butyl-3-methylimidazole bromide ionic liquid (IL). The formation of this structure may follow the rule of dissolution–recrystallization and the ionic liquid, as both a dissolution and structure-directing agent, plays an important role in the formation of the material. After calcination of the precursor, the active material (Ni–V2O5–IL) was used as an anode for lithium-ion batteries. The designed anode exhibited excellent electrochemical performance with 765 mA h g−1 at a current density of 0.3 A g−1 after 300 cycles, which is much higher than that of a NiVO–W material prepared via a hydrothermal method (305 mA h g−1). These results show the remarkable superiority of this novel electrode material synthesized in an ionic liquid.

A three-dimensional cross-linked Ni–V2O5 nanomaterial with a particle size of 250–300 nm was successfully prepared in a 1-butyl-3-methylimidazole bromide ionic liquid (IL).  相似文献   

9.
This paper focuses on the intercalation of chlorhexidine acetate (CA) and terbinafine hydrochloride (TBH) into montmorillonite as sustained release drug carriers. The intercalation compounds were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and thermogravimetric analysis (TGA). The basal spacing of montmorillonite increased from 1.23 to 2.97 nm. It was confirmed that CA and TBH molecules were well-stabilized in the interlayer space of clay via mono-, double or triplicate layer stacking. The adsorption amounts and molecular structures of CA and TBH appeared to depend on the cation exchange capacity of MMT, which in turn, tailored the drug release patterns. In vitro release tests of MMT–CA–TBH in 0.9 wt% NaCl solution at 37 °C show a biphasic and sustained profile of CA and TBH ion release. After release, dissolution–diffusion kinetic models were fitted. The mechanism of MMT–CA–TBH release is probably due to surface diffusion and bulk diffusion via ionic exchange of MMT ions on or in the MMT with ions in the NaCl solution. The in vitro release experiments revealed that CA and TBH were released from MMT steadily, depending on the cooperation between the drugs themselves and the electrostatic interactions between the drugs and MMT. It was found that the cross-linking ratio increased due to a decrease in the free volume available for diffusion.

This paper focuses on the intercalation of chlorhexidine acetate (CA) and terbinafine hydrochloride (TBH) into montmorillonite as sustained release drug carriers.  相似文献   

10.
In the present work, we describe the preparation of ten amino acid ionic liquids (AAILs) formed from ammonium salts as cations, derivatives of glycerol, and natural amino acids as anions. All of them are viscous oils, colorless or pale yellow, and hygroscopic at room temperature. They have appreciable solubility in many protic and aprotic polar solvents. The AAILs were used as catalysts in a Morita–Baylis–Hillman (MBH) reaction. The ionic liquids derivative from l-proline and l-histidine demonstrated the ability to catalyze the reaction between methyl vinyl ketone and aromatic aldehydes differently substituted in the absence of an additional co-catalyst under organic solvent-free conditions. The AAIL derivatives from l-valine, l-leucine, and l-tyrosine catalyzed the MBH reaction only in the presence of imidazole. The MBH adducts were obtained in moderate to good yields. Although the catalytic site in the ILs was in its enantiomerically pure form, all the MBH adducts were obtained in their racemic form.

In this work, we describe the preparation of ten amino acid ionic liquids (AAILs). The AAILs were used as catalysts in a Morita–Baylis–Hillman (MBH) reaction. The MBH adducts were obtained from moderate to good yields and in their racemic form.  相似文献   

11.
A palladium catalyzed synthesis of N–H phenanthridinones was developed via C–H arylation. The protocol gives phenanthridinones regioselectively by one-pot reaction without deprotection. It exhibits broad substrate scope and affords targets in up to 95% yields. Importantly, it could be applied for the less reactive o-chlorobenzamides.

Pd(t-Bu3P)2/KOAc proved to be a good combination for one-pot synthesis of N–H phenanthridinones with up to 95% yield.  相似文献   

12.
An efficient method to synthesize benzothieno[3,2-b]benzofurans via intramolecular dehydrogenative C–H/O–H coupling has been developed. Good to excellent yields (64–91%) could be obtained no matter if the substituted group is electron-donating or electron-withdrawing. Notably, three-to-six fused ring thienofuran compounds could be constructed using this method. A reaction mechanism study showed that 1,1-diphenylethylene can completely inhibit the reaction. Therefore, it is a radical pathway initiated by single electron transfer between the hydroxyl of the substrate and the copper catalyst.

The construction of benzothieno[3,2-b]benzofurans via novel dehydrogenative C–H/O–H coupling reaction has been developed with excellent yields. Furthermore, three-to-six fused ring thienofuran compounds could be constructed.  相似文献   

13.
A novel strategy towards the synthesis of 1,4-disubstituted 1,2,3-triazoles via C–N and N–N bond formation has been demonstrated under transition metal-free and azide-free conditions. These 1,2,3-triazoles were obtained in a regioselective manner from commercially available anilines, aryl alkenes/aryl alkynes and N-tosylhydrazines using I2 under O2 atmosphere. Broad substrate scope, milder reaction conditions, good to moderate yields and clean protocol are the notable features of the method. Moreover, this protocol is amenable for the generation of a library of medicinally important key building blocks.

A novel strategy towards the synthesis of 1,4-disubstituted 1,2,3-triazoles via C–N and N–N bond formation has been demonstrated under transition metal-free and azide-free conditions.  相似文献   

14.
In this study, controlled mono and di-olefination of arenes was first realized at room temperature via the C–H bond activation in ionic liquids, probably due to the positive effects of ionic liquids. It is an energy-saving routes in industrial production without the need for heating equipment. Different catalysts were screened, and it was found that [Ru(p-cymene)Cl2]2 generated mono-olefinated products predominantly while [Cp*RhCl2]2 selectively gave di-olefinated products. These catalysts ([BMIM]NTf2 and [BMIM]PF6) as green and recyclable reaction media are highly efficient under mild conditions. This reaction process can avoid any volatile and environmentally toxic organic solvents, and is much safer without the need for pressure-tight equipment. A wide substrate scope with good yields and satisfactory selectivity was achieved. The reactions can be scaled up to gram-scale. Furthermore, an expensive rhodium/ruthenium catalytic system was recycled for at least 6 times with consistently high catalytic activity, which was economical and environmental friendly from an industrial point of view. According to the mechanistic study, the C–H bond cleavage was probably achieved via the concerted metalation–deprotonation. This technique can be applied in the synthesis of various valuable unsaturated aromatic compounds and shows a great potential for industrial production.

The controlled mono- and di-olefination of arenes was first realized at room temperature through C–H bond activation in ionic liquids.  相似文献   

15.
A large 1,3-phenylene-bridged hexameric naphthalene wheel N6 and a heptameric wheel N7 were synthesized simply by Suzuki–Miyaura coupling via one-pot reaction from monomers. We could control the distribution of N6 and N7via the reaction conditions. The hexameric wheel structure was revealed by X-ray diffraction analysis. The wheel N6 exhibited C60 encapsulation ability in the solid state, which was also confirmed by single crystal X-ray analysis.

1,3-Phenylene-bridged cyclic hexa-naphthalene synthesized by Suzuki–Miyaura coupling via a one-pot reaction formed a co-crystal with C60 to exhibit a 1D alignment of fullerene.  相似文献   

16.
In this study, Au–Ag and Pt–Ag bimetallic nanocages were loaded on natural halloysite nanotubes (HNTs) via galvanic exchange based on Ag@HNT. By changing the ratio of Au to Ag or Pt to Ag in exchange processes, Au–Ag@HNT and Pt–Ag@HNT with different nanostructures were generated. Both Au–Ag@HNT and Pt–Ag@HNT systems showed significantly improved efficiency as peroxidase-like catalysts in the oxidation of o-phenylenediamine compared with monometallic Au@HNT and Pt@HNT, although inert Ag is dominant in the composition of both Au–Ag and Pt–Ag nanocages. On the other hand, loading on HNTs enhanced the thermal stability for every system, whether monometallic Ag nanoparticles, bimetallic Au–Ag or Pt–Ag nanocages. Ag@HNT sustained thermal treatment at 400 °C in nitrogen with improved catalytic performance, while Au–Ag@HNT and Pt–Ag@HNT maintained or even had slightly enhanced catalytic efficiency after thermal treatment at 200 °C in nitrogen. This study demonstrated that natural halloysite nanotubes are a good support for various metallic nanoparticles, improving their catalytic efficiency and thermal stability.

Bimetallic Au–Ag@HNT and Pt–Ag@HNT nanocages showed significantly improved efficiency in the oxidation of o-phenylenediamine as peroxidase-like catalyst compared with corresponding monometallic nanoparticles.  相似文献   

17.
A novel silicone resin (SR-OH) containing phenolic hydroxyl (Ph–OH) groups was designed and synthesized via co-hydrolysis/condensation and catalytic hydrogenation. During the curing process, the cross-linking degree of the resin was further increased by the Si–O–Ph bonds formed by the reaction of the Ph–OH and terminal Si–OH groups. Thermogravimetric analysis (TGA) showed that the cured resin product exhibited excellent thermal and thermo-oxidative stability, which was much higher than that of a typical methyl phenyl silicone resin (SR-Ph). The temperature at which 5% weight loss occurs (Td5) was up to 606 °C (nitrogen) and 542 °C (air), and its char yield at 800 °C was 91.1% and 85.3% in nitrogen and air, respectively. The significant improvement in thermal stability was mainly attributed to the formation of Si–O–Ph bonds which not only increases the cross-linking degree of the resin but also significantly prevents degradation by the ‘back-biting’ and oxidative cleavage.

A novel silicone resin (SR-OH) containing phenolic hydroxyl (Ph–OH) groups was designed and synthesized via co-hydrolysis/condensation and catalytic hydrogenation.  相似文献   

18.
NiO, Ni–Co–Mn–Ox and NiO/Ni–Co–Mn–Ox on nickel foam substrates were prepared via a chemical bath deposition–calcination. The thermodynamic behavior was observed by TG/DTA. The chemical structure and composition, phase structure and microstructures were tested by XPS, XRD, FE-SEM and TEM. The electrochemical performance was measured by CV, GCD and EIS. The mechanism for formation and enhancing electrochemical performance is also discussed. Firstly, the precursors such as NiOOH, CoOOH and MnOOH grow on nickel foam substrates from a homogeneous mixed solution via chemical bath deposition. Thereafter, these precursors are calcined and decomposed into NiO, Co3O4 and MnO2 respectively under different temperatures in a muffle furnace. Notably, NiO/Ni–Co–Mn–Ox on nickel foam substrates reveals a high specific capacity with 1023.50 C g−1 at 1 A g−1 and an excellent capacitance retention with 103.94% at 5 A g−1 after 3000 cycles in 2 M KOH, its outstanding electrochemical performance and cycling stability are mainly attributed to a porous sheet–sheet hierarchical nanostructure and synergistic effects of pseudo-capacitive materials and excellent redox reversibility. Therefore, this research offers a facile synthesis route to transition metal oxides for high performance supercapacitors.

NiO, Ni–Co–Mn–Ox and NiO/Ni–Co–Mn–Ox on nickel foam substrates were prepared via a chemical bath deposition–calcination.  相似文献   

19.
Binary mixtures of hydrocarbons and a thermally robust ionic liquid (IL) incorporating a perarylphosphonium-based cation are investigated experimentally and computationally. Experimentally, it is seen that excess toluene added to the IL forms two distinct liquid phases, an “ion-rich” phase of fixed composition and a phase that is nearly pure toluene. Conversely, n-heptane is observed to be essentially immiscible in the neat IL. Molecular dynamics simulations capture both of these behaviours. Furthermore, the simulated composition of the toluene-rich IL phase is within 10% of the experimentally determined composition. Additional simulations are performed on the binary mixtures of the IL and ten other small hydrocarbons having mixed aromatic/aliphatic character. It is found that hydrocarbons with a predominant aliphatic character are largely immiscible with the IL, while those with a predominant aromatic character readily mix with the IL. A detailed analysis of the structure and energetic changes that occur on mixing reveals the nature of the ion-rich phase. The simulations show a bicontinuous phase with hydrocarbon uptake akin to absorption and swelling by a porous absorbent. Aromatic hydrocarbons are driven into the neat IL via dispersion forces with the IL cations and, to a lesser extent, the IL anions. The ion–ion network expands to accommodate the hydrocarbons, yet maintains a core connective structure. At a certain loading, this network becomes stretched to its limit. The energetic penalty associated with breaking the core connective network outweighs the gain from new hydrocarbon–IL interactions, leaving additional hydrocarbons in the neat phase. The spatially alternating charge of the expanded IL network is shown to interact favourably with the stacked aromatic subphase, something not possible for aliphatic hydrocarbons.

Binary mixtures of hydrocarbons and a thermally robust ionic liquid (IL) incorporating a perarylphosphonium-based cation are investigated experimentally and computationally.  相似文献   

20.
Conductive hydrogels have attracted increasing attention because of their important application in flexible pressure sensors. However, designing hydrogels with a combination of excellent mechanical properties, high sensitivity, and good biocompatibility is still a profound challenge. Here we report a conductive and biocompatible PVA–Gelatin–nHAP hydrogel (PGHAP gel) by connecting a double network with inorganic nano-particles via ionic bonds. The as-prepared gel achieves excellent elasticity and good fatigue resistance even after 50 cycles of compression. Then a hydrogel pressure sensor was obtained using the as-prepared gel, exhibiting high pressure sensitivity almost linearly responding up to 1.5 kPa and adequate stability of the capacitance–pressure over 4 cycles. These results demonstrate the great potential applications of the hydrogel in biomedical devices, including artificial intelligence, human motion detection, and wearable devices.

A biocompatible, stretchable and mineral conductive hydrogel used for highly sensitive pressure sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号