首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study we use poly(N-isopropylacrylamide) (PNIPAM) based copolymer microgels to create free-standing, transferable, thermoresponsive membranes. The microgels are synthesized by copolymerization of NIPAM with 2-hydroxy-4-(methacryloyloxy)–benzophenone (HMABP) and spin-coated on Si wafers. After subsequent cross-linking by UV-irradiation, the formed layers easily detach from the supporting material. We obtain free standing microgel membranes with lateral extensions of several millimetres and an average layer thickness of a few hundred nanometres. They can be transferred to other substrates. As one example for potential applications we investigate the temperature dependent ion transport through the membranes via resistance measurements revealing a sharp reversible increase in resistance when the lower critical solution temperature of the copolymer microgels is reached. In addition, prior to cross-linking, the microgels can be decorated with silver nanoparticles and cross-linked afterwards. Such free-standing nanoparticle hybrid membranes are then used as catalytic systems for the reduction of 4-nitrophenol, which is monitored by UV/Vis spectroscopy.

Cross-linkable microgels are synthesized by copolymerization of NIPAM with 2-hydroxy-4-(methacryloyloxy)–benzophenone (HMABP) and are subsequently UV-cross-linked to obtain smart membranes exhibiting switchable resistance.  相似文献   

2.
Herein, we present the synthesis of Ag–Au bimetallic nanocomposites stabilized with organic–inorganic hybrid microgels. The aim is to get both the surface plasmon resonance (SPR) and catalytic performance of the composite material can be changed in response to external stimuli. Ag@poly(N-isopropylacrylamide-co-3-methacryloxypro-pyltrimethoxysilane) (Ag@P(NIPAM-co-MAPTMS)) hybrid microgels were synthesized by seed-emulsion polymerization using Ag nanoparticles (NPs) as the core and NIPAM/MAPTMS as monomers. Ag–Au@P(NIPAM-co-MAPTMS) bimetallic hybrid microgels were prepared by a galvanic replacement (GR) reaction between Ag NPs and HAuCl4, with the composition and structure of these bimetallic nanocomposites being determined by the amount of added HAuCl4. The highly porous organic–inorganic microgel layer provided confined space for the GR reaction, effectively preventing the aggregation of Ag–Au NPs. The shell layer of P(NIPAM-co-MAPTMS) three-dimensional network chains not only enhanced nanocomposite dispersity and stability, but also provided highly porous gel microdomains that could increase the diffusion of the substrate and hence enhanced catalytic activity. Additionally, the SPR and catalytic properties of Ag–Au@P(NIPAM-co-MAPTMS) are reversibly sensitive to external temperature. With increase of temperature, the maximum absorption peak of bimetallic nanocomposites shifted to longer wavelengths, and the catalytic activity of these composites for the reduction of 4-nitrophenol by NaBH4 remarkably increased. The features above mentioned are related to presence of the thermosensitive PNIPAM chains and the highly porous structure constructed by rigid MAPTMS segments intersected between NIPAM chains.

Ag–Au bimetallic nanocomposites stabilized with organic–inorganic hybrid microgels allowed the mass transfer of reactants to be controlled by temperature modulation.  相似文献   

3.
Polymer microgels containing a polystyrene core and poly(N-isopropylmethacrylamide) shell were synthesized in aqueous media following a free radical precipitation polymerization. Au nanoparticles were fabricated into the shell region of the core–shell microgels denoted as P(STY@NIPM) by the in situ reduction of chloroauric acid with sodium borohydride. Various characterization techniques such as transmission electron microscopy (TEM), ultraviolet–visible spectroscopy (UV-visible) and Fourier transform infrared spectroscopy (FTIR) were used for the characterization of Au–P(STY@NIPM). The catalytic potential of Au–P(STY@NIPM) toward the reductive reaction of 4-nitrophenol (4NP) under various reaction conditions was evaluated. The Arrhenius and Eyring parameters for the catalytic reduction of 4NP were determined to explore the process of catalysis. A variety of nitroarenes were converted successfully into their corresponding aminoarenes with good to excellent yields in the presence of the Au–P(STY@NIPM) system using NaBH4 as a reductant. The Au–P(STY@NIPM) system was found to be an efficient and recyclable catalyst with no significant loss in its catalytic efficiency.

A core–shell microgel system was synthesized and used as a micro-reactor for the synthesis of gold nanoparticles. The resulting hybrid system has the ability to catalyze the reduction of various nitroarenes in aqueous media.  相似文献   

4.
The unique combination of cobalt (Co) nanoparticles (NPs) and smart polymer microgels is of great interest and has received much attention over the past decade with respect to the production of hydrogen gas and its use in removing toxic dyes from water. The responsive behavior of microgels makes cobalt nanoparticle-loaded microgels most suitable for the production of hydrogen and for the reduction of pollutants in different environments. Different classes of Co NPs in microgels have been reported in the literature. Hybrid microgel formations play an important role in their use. Hence, a specific assembly of Co NPs in microgels has been designed for the synthesis and use of hydrogen to reduce toxic pollutants from water. All progress in the synthesis, classification, characterization, and applications of Co NPs in microgels has been reviewed in this report. Catalytic generation and the use of hydrogen for the reduction of pollutants in the presence of Co NPs loaded into microgels have been discussed in a tutorial manner.

The synthesis and use of Co nanoparticles loaded into cross-linked polymers for generation of hydrogen is discussed in detail. The factors affecting hydrogen production have been discussed briefly. The catalytic reduction of dyes and nitroarenes is also discussed in detail.  相似文献   

5.
A series of four bolaamphiphiles with different hydrophilic units has been synthesised. All the amphiphiles were well characterised from their physiochemical data. The aggregation tendency of newly synthesised amphiphiles was studied using fluorescence spectroscopy, dynamic light scattering (DLS), and cryogenic electron microscopy (cryo-TEM). Furthermore, their application as nanocarriers for hydrophobic guests was demonstrated by using two established standards, i.e. the dye Nile red and the drug nimodipine. A cytotoxicity and cellular uptake study has been carried out using A549 cells. Due to the presence of an ester linkage in PEG based bolaamphiphiles, a drug release study was performed in the presence of an immobilized enzyme Novozym-435 (a lipase).

Non-ionic bolaamphiphiles as nanocarrier for biomedical applications.  相似文献   

6.
A comparative X-ray powder diffraction study on poly(N-vinyl pyrrolidone) (PVP)-stabilized palladium and gold nanoparticles and bimetallic Pd–Au nanoparticles (both types of core–shell nanostructures) was performed. The average diameter of Au and Pd nanoparticles was 5 to 6 nm. The two types of core–shell particles had a core diameter of 5 to 6 nm and an overall diameter of 7 to 8 nm, i.e. a shell thickness of 1 to 2 nm. X-ray powder diffraction on a laboratory instrument was able to distinguish between a physical mixture of gold and palladium nanoparticles and bimetallic core–shell nanoparticles. It was also possible to separate the core from the shell in both kinds of bimetallic core–shell nanoparticles due to the different domain size and because it was known which metal was in the core and which was in the shell. The spherical particles were synthesized by reduction with glucose in aqueous media. After purification by multiple centrifugation steps, the particles were characterized with respect to their structural, colloid-chemical, and spectroscopic properties, i.e. particle size, morphology, and internal elemental distribution. Dynamic light scattering (DLS), differential centrifugal sedimentation (DCS), atomic absorption spectroscopy (AAS), ultraviolet-visible spectroscopy (UV-vis), high-angle annular dark field imaging (HAADF), and energy-dispersed X-ray spectroscopy (EDX) were applied for particle characterization.

A comparative X-ray powder diffraction study on poly(N-vinyl pyrrolidone) (PVP)-stabilized palladium and gold nanoparticles and bimetallic Pd–Au nanoparticles (both types of core–shell nanostructures) was performed.  相似文献   

7.
We present a novel protocol for the synthesis of enzymatically active microgels. The protocol is based on the precipitation polymerization of N-isopropylacrylamide (NIPAm) in the presence of an enzyme and a protein binding comonomer. A basic investigation on the influence of different reaction parameters such as monomer concentration and reaction temperature on the microgel size and size distribution is performed and immobilization yields are determined. Microgels exhibiting hydrodynamic diameters between 100 nm and 1 μm and narrow size distribution could be synthesized while about 31–44% of the enzyme present in the initial reaction mixture can be immobilized. Successful immobilization including a verification of enzymatic activity of the microgels is achieved for glucose oxidase (GOx) and 2-deoxy-d-ribose-5-phosphate aldolase (DERA). The thermoresponsive properties of the microgels are assessed and discussed in the light of activity evolution with temperature. The positive correlation of enzymatic activity with temperature for the GOx containing microgel originates from a direct interaction of the enzyme with the PNIPAm based polymer matrix whose magnitude is highly influenced by temperature.

Precipitation polymerization of NIPAm in the presence of an enzyme and a protein-binding comonomer as a simple and versatile immobilization protocol.  相似文献   

8.
The vinyl caprolactam (VCL) based microgel system has become the center of great attention due to its versatile properties. Copolymerization of VCL with an ionic monomer imparts pH responsive properties into the microgel system in addition to thermo-sensitivity. Stimuli responsive behavior of VCL-based microgels makes them prospective and appealing candidates for practical applications covering the fields of drug delivery, catalysis and optical devices. In the last few years, VCL-based microgels have been used as microreactors and stabilizers for the synthesis and stabilization of inorganic nanoparticles to obtain hybrid microgels. The present review article provides a summary of the present-day progress of fabrication, stabilization, categorization and analysis of VCL-based microgels and their hybrids with different morphologies. The stimuli responsive properties and applications of VCL-based hybrid microgels have been reviewed critically. The remaining problems which need to be addressed have been pointed out for further advancement in this field.

The present review provides recent research progress of fabrication, stabilization, characterization and applications of N-vinyl caprolactam based microgels loaded with inorganic nanoparticles.  相似文献   

9.
Thermoresponsive hydrogel microspheres (microgels) are smart materials that quickly respond to external stimuli, and their thermoresponsiveness can be tuned by varying the constituent chemical species. Although uniformly sized microgels can be prepared via aqueous free radical precipitation polymerization, the nanostructure of the obtained microgels is complex and remains unclear so far. In the present study, the nanostructure and thermoresponsiveness of poly(N-isopropyl methacrylamide) (pNIPMAm)-based microgels, which have a volume-transition temperature of ∼43 °C, were evaluated mainly using temperature-controllable high-speed atomic force microscopy. These observations, which are characterized by high spatio-temporal resolution, revealed that the pNIPMAm microgels have a peculiar heterogeneous structure, for example a core–shell and non-thermoresponsive nanostructure in the core region, that originates from the precipitation polymerization process. Furthermore, it was found that the adsorption concentration of the microgels on the substrate is one of the keys for controlling their thermoresponsiveness. These findings can be expected to advance the design of new materials such as thermoresponsive nanosheets and stimuli-responsive coatings.

Nanostructure and thermoresponsiveness of single and packed poly(N-isopropyl methacrylamide)-based microgels observed by temperature-controllable high speed atomic force microscopy.  相似文献   

10.
In this study, mesoporous SiO2 nanoparticles (MSNs) were synthesized via a sol–gel method and modified with (3-chloropropyl) trimethoxysilane to make them hydrophobic (MMSNs). The material was characterized via SEM, TEM, FT-IR, DLS, BET and contact angle measurements. The MMSNs have good foam stability, so that the foam properties of the added particles have been increased by 38.4% in an oil/SDS solution. Simultaneously, it becomes a promising material for foam stabilization in order to enhance the oil recovery because it is bio-compatibile and environment friendly. Also, it provides a novel application-stable foam for mesoporous materials.

In this study, mesoporous SiO2 nanoparticles (MSNs) were synthesized via a sol–gel method and modified with (3-chloropropyl) trimethoxysilane to make them hydrophobic (MMSNs).  相似文献   

11.
Composite materials featuring a synergic combination of interesting properties such as stimuli responsiveness and tailored porosity are highly appealing due to their multiple possible applications. We hereby present an example which brings together such features by using poly(N-isopropyl-acrylamide)-derived thermo-responsive microgels and Zn-based Metal Organic Framework (MOF) ZIF-8, capable of selective adsorption. Such a composite was obtained by including methacrylic acid as a co-monomer in the microgel, in order to position carboxylic acid moieties within the polymeric matrix, which via preconcentration of MOF precursors would trigger confined heterogeneous nucleation. The highly integrated composite obtained features thermoresponsivity and permanent porosity. Methylene blue adsorption/desorption experiments were performed, revealing a dramatic enhancement of its cargo capacity together with an increased release efficiency.

We hereby present a composite material which combines porosity (ZIF-8 MOF) and stimuli-responsiveness (PNIPAm-co-MAA microgel) in a synergistic way thus opening the path for its use in adsorption and sensing applications.  相似文献   

12.
Using N-isopropyl acrylamide (NIPAM) as the main monomer, 1-vinyl imidazole (VIM) containing tertiary amine groups as the functional comonomer, and 1,5-dibromo pentane as the crosslinking agent, ionic P(NIPAM-co-VIM) microgels were prepared by a two-step method. The crosslinking agent was reacted with tertiary amino groups by the quaternary amination. The results of zeta potential and particle size analysis showed that P(NIPAM-co-VIM) microgels were positively charged and had a particle size of about 400 nm, and the microgels with 11 wt% VIM still showed temperature sensitivity with a volume phase transition temperature of approximately 37.5 °C. The effects of VIM content, ambient temperature, and pH on the adsorption properties of the microgels for phosphate anions were explored. The self-assembly of the positively charged P(NIPAM-co-VIM) microgels with polyelectrolytes and the adsorption behavior of the layers for phosphate anions were studied using a quartz crystal microbalance (QCM). It was found that at a phosphate concentration of 0.3 mg mL−1, VIM mass fraction of 11%, pH of 5, and temperature of 20 °C, the largest adsorption capacity of P(NIPAM-co-VIM) microgel on phosphate ions could reach 346.3 mg g−1. The frequency responses of the microgel-modified QCM sensor could reach 3.0, 18.8, and 25.9 Hz when exposed to 10−8, 10−7, and 10−6 M phosphate solutions. Therefore, the ionic (PNIPAM-co-VIM) microgels could be promising for fabricating anion-binding materials for separation and sensing applications.

The ionic P(NIPAM-co-VIM) microgels were prepared by a two-step method, and used as functional coating on Quartz Crystal Microbalance (QCM) sensor for the detection of trace phosphate ions in water.  相似文献   

13.
The simple sorting procedure and continuous use of poly(N-isopropylacrylamide) (PNIPAM), a well-known thermoresponsive polymer, have a high potential for the mass production of single-walled carbon nanotubes (SWCNTs) with a specific electronic structure. However, knowledge of efficient single-chirality sorting methods with mixed surfactant systems is not applicable. In this work, we explored experimental conditions by controlling the interaction among PNIPAM, sodium cholate (SC) and SWCNTs. An optimization of the PNIPAM and SC concentrations as well as the addition of sodium borate achieved the selective release of (6,4) nanotubes into the liquid phase after the PNIPAM phase transition. The sorting mechanism with PNIPAM was explained by the difference in the micelle configuration on the SWCNTs and the hydrophobic collapse of PNIPAM in the presence of a sodium salt. The one-step sorting procedure for obtaining SWCNTs with a single chirality via PNIPAM will help promote their widespread application.

Optimized experimental conditions in the presence of sodium borate achieved the selective release of (6,4) nanotubes into the liquid phase.  相似文献   

14.
The therapeutic diagnosis effect of cancer commonly depends on the cellular uptake efficiency of nanomaterials. However, the morphology of nanomaterials significantly affects cellular uptake capability. Herein, we designed a polydopamine-doped virus-like structured nanoparticle (GNR@HPMO@PVMSN) composed of a gold nanorod (GNR) core, hollow periodic mesoporous organosilica (HPMO) shell and polydopamine-doped virus-like mesoporous silica nanoparticle (PVMSN) outer shell. Compared with conventional gold nanorod@hollow periodic mesoporous organosilica core–shell nanoparticles (GNR@HPMO), GNR@HPMO@PVMSN with its virus-like structure was proved to enhance the efficiency of cellular uptake. GNR@HPMO@PVMSN with the virtues of high photothermal conversion efficiency and good photoacoustic imaging (PAI) ability was expected to be a promising nanotheranostic agent for imaging guided cancer treatment. The experiments in vitro and in vivo proved that GNR@HPMO@PVMSN had good biocompatibility as well as photothermal conversion ability. In addition, DOX loading and pH-/NIR-response DOX release abilities of GNR@HPMO@PVMSN were also verified in vitro. Therefore, the GNR@HPMO@PVMSN offers a promising strategy for PAI directed synergistic chemo-/photothermal therapy, which improves the therapeutic effect of the nanomaterial on tumors. This work explores the effects of rough surfaces on cellular uptake and provides a versatile theranostic platform for biomedical applications.

The therapeutic diagnosis effect of cancer commonly depends on the cellular uptake efficiency of nanomaterials.  相似文献   

15.
Acrylamide based microgels have gained a lot of attention in the last three decades due to their potential applications in various fields based on their responsive behavior and chemical stability. In this article, the synthesis, properties, and applications of poly(N-isopropylacrylamide-co-acrylamide) [P(NIPAM-Am)] microgels and P(NIPAM-Am) microgels having an additional ionic moiety in their network [P(NIPAM-Am-IM)] are reviewed. These microgels may swell/deswell reversibly with slight changes in environmental conditions such as change in temperature/pH/ionic strength etc. of the medium. This responsive behavior makes the microgels a potential candidate for use in the field of nanotechnology, drug delivery, sensing and catalysis. A critical overview of the recent research progress in this area along with future perspectives is presented. The discussion is concluded with suggested possible future studies for further development in this area.

Recent advances in synthesis, characterization and applications of acrylamide based polymer microgels and their hybrids are discussed for further development in this area.  相似文献   

16.
Self-assembly of block copolymers is a significant area of polymer science. The self-assembly of completely water-soluble block copolymers is of particular interest, albeit a challenging task. In the present work the self-assembly of a linear-brush architecture block copolymer, namely poly(N-vinylpyrrolidone)-b-poly(oligoethylene glycol methacrylate) (PVP-b-POEGMA), in water is studied. Moreover, the assembled structures are crosslinked via α-CD host/guest complexation in a supramolecular way. The crosslinking shifts the equilibrium toward aggregate formation without switching off the dynamic equilibrium of double hydrophilic block copolymer (DHBC). As a consequence, the self-assembly efficiency is improved without extinguishing the unique DHBC self-assembly behavior. In addition, decrosslinking could be induced without a change in concentration by adding a competing complexation agent for α-CD. The self-assembly behavior was followed by DLS measurement, while the presence of the particles could be observed via cryo-TEM before and after crosslinking.

Self-assembly of the double hydrophilic block copolymer poly(N-vinylpyrrolidone)-b-poly(oligoethylene glycol methacrylate) and supramolecular crosslinking via α-cyclodextrin in water is presented.  相似文献   

17.
18.
We report the synthesis of core–shell nanogels by sequential addition of thermoresponsive monomers; N-isopropylacrylamide (NIPAM) and N-isopropylmethacrylamide (NIPMAM). The aggregation behaviour of aqueous dispersions of these particles in the presence of salt can be tuned by varying the monomer ratio. The inclusion of degradable cross-linker bis(acryloyl)cystamine (BAC) allows the nanogels to degrade in the presence of reducing agent, with nanogels composed of a copolymer of the two monomers not showing the same high levels of degradation as the comparable core–shell particles. These levels of degradation were also seen with physiologically relevant reducing agent concentration at pH 7. Therefore, it is hoped that the aggregation of these nanogels will have applications in nanomedicine and beyond.

Core–shell nanogels with a poly(N-isopropylmethacrylamide) core and poly(N-isopropylacrylamide) shell display tuneable thermoresponsive behaviour and high degradability.  相似文献   

19.
Thermosensitive poly(N-isopropylacrylamide) (PNIPAM)-based substrates have presented great promise in cell sheet engineering. However, non-functionalized PNIPAM cannot be well applied for cell cultivation, due to the low cell adhesion. Herein, to enhance PNIPAM-based substrates and to promote cell proliferation and detachment, a polyhedral oligomeric silsesquioxane (POSS) nanoscale inorganic enhanced agent has been introduced into PNIPAM matrices to construct POSS-containing hybrid hydrogels. The hydrogels were facilely prepared using POSS as a cross-linker via one-pot crosslinking reaction under UV irradiation. The swelling behavior, thermal stability and the mechanical properties of POSS–PNIPAM hybrid hydrogels have been evaluated and they are all dependent on the content of POSS. The in vitro experiment confirms that human amniotic mesenchymal stem cells (hAMSCs) exhibit clearly enhanced adhesion and proliferation on the substrates of POSS–PNIPAM hybrid hydrogels in comparison to the pure PNIPAM hydrogel without POSS. Based on the thermal-responsiveness of PNIPAM, the proliferated cells are easily released without damage from the surface of hybrid hydrogels. Therefore, POSS-enhanced PNIPAM hybrid hydrogels provide a unique approach for harvesting anchorage dependent stem cells.

Thermosensitive poly(N-isopropylacrylamide) (PNIPAM)-based substrates have presented great promise in cell sheet engineering.  相似文献   

20.
Herein, magnetic mesoporous N-doped silica nanospheres decorated by CuO nanoparticles (M-MNS/CuO) were prepared and used for the green and efficient synthesis of some [3.3.3] propellane indeno[1,2-b] indole derivatives. In order to prepare N-doped silica nanoparticles, tetraethyl orthosilicate (TEOS) was used as the silica source, and diethanolamine (DEA) as a nitrogen precursor. Immobilization of CuO nanoparticles on the mesoporous N-doped silica nanosphere surfaces increases the surface area of catalyst and provides Lewis acidic sites in addition to nitrogen atoms as active basic sites. The presence of nitrogen atoms and copper oxide nanoparticles in the catalyst structure, give dual acidic and basic properties. The synthesized catalyst was characterized by FESEM, EDS, HRTEM, XRD, VSM, FTIR, and BET techniques which proved its magnetic core shell structure.

Herein, magnetic mesoporous N-doped silica nanospheres decorated by CuO nanoparticles (M-MNS/CuO) were prepared and used for the green and efficient synthesis of some [3.3.3] propellane indeno[1,2-b] indole derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号