首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Domino oxidation-Suzuki–Miyaura cross-coupling of benzyl alcohols with phenylboronic acid and domino reduction-C–N cross-coupling of the nitro compounds with aryl halides were carried out using a strong Ni/Pd bimetallic redox catalyst. The catalyst bearing a copolymer with two Ni/Pd coordinated metals in porphyrin (derived from demetalated chlorophyll b) and salen-type ligands, and pyridine moiety as a base functionality all immobilized on magnetite NPs was synthesised and characterized. The domino oxidation cross-coupling reaction was accomplished under molecular O2 in the absence of any hydride acceptor or/and base. Also, the domino reduction C–N cross-coupling reaction was performed in the presence of NaBH4 without the need for any base and co-reductant. This multifunctional catalyst gave moderate to good yields for both coupling reactions with high chemoselectivity. A wide investigation was conducted to determine its mechanism and chemoselectivity.

A new Ni/Pd bimetallic multifunctional catalytic system has been developed for the domino Suzuki–Miyaura cross-coupling of benzyl alcohols with phenyl boronic acid and domino reduction C–N cross-coupling of the nitro compounds with aryl halides.  相似文献   

2.
Dehydrogenative cross-coupling (DCC) is a clean methodology to make C–C bonds by using abundant C–H bonds. The blended catalyst, developed in this study, consists of a TiO2 photocatalyst and an Al2O3 supported Pd–Au bimetallic catalyst and shows superior activity to the conventional TiO2 photocatalyst loaded with the corresponding metal co-catalyst for the direct DCC between various arenes and tetrahydrofuran, with concomitant evolution of hydrogen gas. The reactions were done under mild conditions without consuming any oxidising agent or other additional chemicals. This new approach of separating the photocatalyst and the metal catalyst parts allows their independent modification to improve the overall catalytic performance.

A TiO2 photocatalyst physically mixed with a supported Pd–Au bimetallic catalyst is more efficient than Pd loaded TiO2 sample for the photocatalytic DCC between arene and THF.  相似文献   

3.
In this work, an anchored Pd complex (PGS–APTES–Pd(OAc)2) was prepared via simple and green steps from the natural clay mineral palygorskite and was well characterized by XPS, XRD, IR, SEM, and EDX. This complex was further utilized as a fine catalyst for the C–C/C–N coupling reactions of pyrimidin-2-yl sulfonates. Subsequently, the cyclic utilization test indicated the high stability and sustainability of this PGS–APTES–Pd(OAc)2 catalyst, and no activation was required in the recycling process, providing an applicable and reusable catalyst in organic synthesis.

PGS–APTES–Pd(OAc)2 was prepared through simple and green steps from the natural clay mineral palygorskite. Obviously, the stability and reusability of PGS–APTES–Pd(OAc)2 were superior to those of the PGS–Pd catalyst (prepared by the impregnation method) in recycling test.  相似文献   

4.
Despite the pharmacological potential of the pyrazolo[3,4-c]pyrazoles, only a few methods of preparation and direct functionalization of this moiety have been described. We report herein a convenient design of new pyrazolo[3,4-c]pyrazoles with a high therapeutic impact. The effective chosen strategy consists of hydrazine condensations and C–N Ullmann-type cross-coupling reactions with microwave activation. Moreover, chemoselective bromination of the newly formed bipyrazoles followed by Suzuki–Miyaura cross-coupling reactions allowed the synthesis of a variety of modulated heterobicycles.

A convenient design of pyrazolo[3,4-c]pyrazoles is reported through hydrazine condensations and C–N Ullmann-type cross-coupling reactions. Chemoselective bromination followed by Suzuki–Miyaura cross-coupling reactions access to a variety of modulated heterobicycles.  相似文献   

5.
A new approach has been developed for environmentally friendly C-C cross-coupling reactions using bi-functional Pd(ii)-salen complex-embedded cellulose filter paper (FP@Si-PdII-Salen-[IM]OH). A Pd(ii)-salen complex bearing imidazolium [OH]moieties was covalently embedded into a plain filter paper, then used as an efficient portable catalyst for the Heck, Suzuki, and Sonogashira cross-coupling reactions under environmentally friendly conditions via the filtration method. The catalytic filter paper properties were studied by EDX, XPS, TGA, ATR, XRD, and FESEM analyses. The reactions were catalyzed during reactants'' filtration over the catalytic filter paper. The modified filter paper was set up over a funnel and the reactants were passed through the catalytic filter paper several times. The effect of reaction parameters including loading of Pd(ii)-salen complex, temperature, solvent, and contact time were carefully studied and also the optimal model of conditions was presented by the design expert software. High to excellent yields were obtained for all C–C coupling types with 5 to 8 filtration times. Under optimal conditions, all coupling reactions showed high selectivity and efficiency. Another advantage of the modified filter paper was its stability and reusability for several times with preservation of catalytic activity and swellability.

A new platform has been developed for environmentally friendly C–C cross-coupling reactions via filtration of reactants through a portable Pd(II)-salen complex-embedded filter paper.  相似文献   

6.
We have developed a regioselective C–N cross-coupling of 1,2,4-thiadiazoles with sulfonyl azides through iridium catalysis in water. This method tactically linked the 1,2,4-thiadiazoles and sulfonamides together, and the novel molecules increased the diversity of 1,2,4-thiadiazoles which may have potential applications.

We have developed a regioselective C–N cross-coupling of 1,2,4-thiadiazoles with sulfonyl azides through iridium catalysis in water.  相似文献   

7.
Nanoparticles layered with palladium(0) were prepared from nano-sized magnetic Fe3O4 by coating it with silica and then reacting sequentially with phenylselenyl chloride under an N2 atmosphere and palladium(ii) chloride in water. The resulting Fe3O4@SiO2@SePh@Pd(0) NPs are magnetically retrievable and the first example of NPs in which the outermost layer of Pd(0) is mainly held by selenium. The weight percentage of Pd in the NPs was found to be 1.96 by ICP-AES. The NPs were authenticated via TEM, SEM-EDX, XPS, and powder XRD and found to be efficient as catalysts for the C–O and C–C (Suzuki–Miyaura) coupling reactions of ArBr/Cl in water. The oxidation state of Pd in the NPs having size distribution from ∼12 to 18 nm was inferred as zero by XPS. They can be recycled more than seven times. The main features of the proposed protocols are their mild reaction conditions, simplicity, and efficiency as the catalyst can be separated easily from the reaction mixture by an external magnet and reused for a new reaction cycle. The optimum loading (in mol% of Pd) was found to be 0.1–1.0 and 0.01–1.0 for O-arylation and Suzuki–Miyaura coupling, respectively. For ArCl, the required amount of NPs was more as compared to that needed for ArBr. The nature of catalysis is largely heterogeneous.

Fe3O4@SiO2@SePh@Pd(0) (Pd, 1.96%) as the first example of NPs having a Pd(0) layer held by selenium can execute C–C/C–O coupling in 2–6 h (80 °C).  相似文献   

8.
In the current research work, a new KIT-5-biguanidine-Pd(0) catalyst was prepared and applied to ultrasound-assisted Suzuki–Miyaura cross-coupling reactions using ultrasound waves at ambient temperature. The ultrasound-assisted method is a green and efficient method for C–C coupling. Many parameters of the Suzuki coupling reaction were examined, such as the irradiation time, the types of organic and inorganic bases, the types of aprotic and protic solvents, and the dosage (mol%) of catalyst. Also, the results showed that the yields from the ultrasound-assisted coupling reactions were higher than from non-irradiated reactions. The prepared catalyst was characterized via HR-TEM, SEM-EDX-mapping, FT-IR, ICP-AAS, BET-BJH, and XRD studies. The stability and catalytic performance of the prepared catalyst were good, and it could be reused 6 times without catalytic activity loss for the Suzuki–Miyaura cross-coupling reaction.

In the current research work, a new KIT-5-biguanidine-Pd(0) catalyst was prepared and applied to ultrasound-assisted Suzuki–Miyaura cross-coupling reactions using ultrasound waves at ambient temperature.  相似文献   

9.
Copper-catalyzed C–H functionalization is becoming a significant area in organic chemistry. Copper is now widely used as a catalyst in organic synthesis as it is inexpensive and not very toxic. Functionalization of C–H bonds to construct wide varieties of organic compounds has received much attention in recent times. This review focuses on the recent advances in Cu-catalyzed C–H functionalization and covers literature from 2018–2020.

Copper-catalyzed C–H functionalization has gone through some major progress in recent times. These efficient, selective and cost-effective reactions offer new avenues towards the synthesis of complex organic compounds.  相似文献   

10.
Isochromenes have been synthesized using palladium-catalyzed C–C and C–O bond forming reactions starting from ortho-bromo tertiary benzylic alcohols and internal acetylenes. Notably, this domino process is feasible by using the green solvent, water. The protocol exhibited a broad substrate scope and afforded various isochromenes.

Isochromenes have been synthesized using palladium-catalyzed C–C and C–O bond forming reactions starting from ortho-bromo tertiary benzylic alcohols and internal acetylenes.  相似文献   

11.
The Pd catalyst for Suzuki–Miyaura or the other C–C coupling reactions is one of the central tools in organic synthesis related to medicine, agricultural chemicals and advanced materials. However, recycling palladium is a bottleneck for developing the extreme potential of Pd in chemistry. Herein, we established a new heterogeneous Pd catalytic system in which the catalyst is a nanopetal-gathered flower-like microsphere self-assembled from PdCl2 and alkyl-linked bis-theophyllines. The microflowers catalyzed quantitatively the reaction of aryl bromides and phenylboronic acid in aqueous media at room temperature. It was found that the reaction proceeds better in an air atmosphere than in nitrogen gas even though the Pd(ii) species employed was lowered to 0.001 mol% in the substance. Very interestingly, the microflowers could be recycled 20 times without deactivation in the C–C coupling reaction between bromobenzene and phenylboronic acid in the presence of sodium chloride. We found that the sodium chloride added played an important role in maintaining the morphology of microflowers and preventing the formation of metallic Pd particles.

Bis-theophylline-palladium complex exhibit high catalytic activity in the C–C coupling reaction with excellent recyclability in the presence of NaCl.  相似文献   

12.
The present paper focuses on the synthesis of a novel hydrogel support by combining polysaccharides (chitosan NPs and dialdehyde cellulose nanowhiskers) and graphene oxide nanosheets to obtain a biocompatible material for catalytic applications. The hydrogel was synthesized via green chemistry processes and used as a support to prepare Pd nanoparticles. Finally, the hydrogel@Pd NPs was employed as the catalyst in the Mizoroki–Heck reaction to generate new C–C bonds. SEM analysis indicated that the hydrogel has macroporous morphology, which is in good correlation with its high crosslinking degree. The as-synthesized nanocomposite hydrogel exhibits beneficial properties such as ease of separation and excellent recyclability for at least six cycles without considerable loss in its activity. The yields of the products range from 81% to 98%. Additionally, this study provides the possibility to perform the Mizoroki–Heck reaction with aryl chloride in the presence of the as-prepared catalyst.

Pd NPs dispersed on a polysaccharide-based hydrogel as a novel catalyst show high catalytic activity and recyclability for coupling reactions.  相似文献   

13.
Carboxylic acids and their derivatives are ubiquitous compounds in organic chemistry, and are widely commercially available in a large structural variety. Recently, carboxylic acids have been frequently used as non-toxic and environmentally benign alternatives to traditional organohalide coupling partners in various carbon–carbon and carbon–heteroatom cross-coupling reactions. Along this line, several methods have been reported for the synthesis of nitrogen-containing organic compounds through decarboxylative cross-coupling reactions between carboxylic acids and N–H compounds. This review focuses on recent advances and discoveries on these reactions with special attention on the mechanistic aspects of the reactions.

Carboxylic acids and their derivatives are ubiquitous compounds in organic chemistry, and are widely commercially available in a large structural variety.  相似文献   

14.
Phosphorus-containing compounds are one of the most important classes of organic compounds, which have wide applications in organic chemistry, medicinal chemistry, agricultural chemistry, and materials chemistry. In particular, organophosphorus compounds bearing a P(O)–C bond have attracted significant attention in recent decades due to their widespread biological and pharmacological activities. In this review, we will highlight the most important developments in the construction of P(O)–C bonds through decarboxylative C–P cross-coupling reactions. The literature has been surveyed from 2011 to May 2018.

Phosphorus-containing compounds are one of the most important classes of organic compounds, which have wide applications in organic chemistry, medicinal chemistry, agricultural chemistry, and materials chemistry.  相似文献   

15.
A plethora of 6-(hetero)aryl C–C and C–N bonded tacrine analogues has been made accessible by employing palladium mediated (Suzuki–Miyaura, Heck, Sonogashira, Stille and Buchwald) cross-coupling reactions, starting from either halogenated or borylated residues. The successful use of Pd(dppf)Cl2·CH2Cl2 as a common catalytic system in realizing all these otherwise challenging transformations is the highlight of our optimized protocols. The analogues thus synthesized allow the available chemical space around the C-6 of this biologically relevant tacrine core to be explored. The in silico docking studies of the synthesized compounds were carried out against the acetylcholinesterase (AChE) enzyme. The hepatotoxicity studies of these compounds were done against complexes of CYP1A2 and CYP3A4 proteins with known inhibitors like 7,8-benzoflavone and ketoconazole, respectively.

24 synthesized compounds by various cross-coupling reactions on 6-bromo tacrine. Molecular docking and toxicity prediction studies were also performed.  相似文献   

16.
The recyclable nanomagnetic Pd-complex PAMAM G0-Pd@γ-Fe2O3 is reported for catalytic C–C cross-coupling reactions of challenging substrates. Mainly, a great variety of aryl chlorides can be used as substrates for Suzuki–Miyaura and Mizoroki–Heck reactions under mild reaction conditions (60–90 °C) and low catalyst loading (<1 mol% Pd) in aqueous media. The presence of numerous polar groups in the polymer matrix increases the solubility of the catalyst in water, thus facilitating its operation in aqueous environments. The immobilization of the catalyst on the surface of a magnetic platform allows its effective recovery and reuse without significant loss of catalytic activity for at least six cycles with total leaching of <1% palladium metal, meeting the requirements for acceptable metal residues in the pharmaceutical industry.

The recyclable nanomagnetic Pd-complex PAMAM G0-Pd@γ-Fe2O3 is reported for catalytic C–C cross-coupling reactions of challenging substrates.  相似文献   

17.
Advances in the Pd-catalyzed synthesis of C-glycosides and branched sugars are summarized herein and the strategies are categorized based on named reactions or types of sugar moieties involved in the reactions. These include cross-coupling reactions, C–H activations, and carbonylative cross-coupling reactions. Applications of Pd-catalyzed C-glycosylation reactions are discussed in the synthesis of natural products and biologically active molecules such as bergenin, papulacandin D, and SGLT2-inhibitors. Important mechanistic cycles are drawn and the mechanisms for how Pd-activates the sugar moieties for various coupling partners are discussed. The directing group-assisted C-glycosylation and some intramolecular C–H activation reactions are also included.

This review highlights the recent progress of Pd-catalyzed reactions in carbohydrates. Different types strategies and applications in the synthesis of natural products, SGLT2 inhibitors and biologically active have been included in this review.  相似文献   

18.
In this study, a novel carbon nanotube (CNT) based nanocatalyst (Ni@Pd/CNT) was synthesized by modifying CNTs using Ni@Pd core–shell nanoparticles (NPs). Ni@Pd/CNT was used in catalytic carbonylative cross-coupling between 4-iodoanisole and phenylboronic acid. The Ni@Pd NPs possessed a magnetic nickel (Ni) core with a palladium (Pd) structural composite shell. Thus, the use of Ni had led to a reduced consumption of Pd without sacrificing the overall catalytic performance, simultaneously making it reusable as it could be conveniently recovered from the reaction mixture by using an external magnetic field. Immobilization of the Ni@Pd NPs on carbon nanotubes not only prevented their aggregation, but also significantly enhanced the accessibility of the catalytically active sites. The abovementioned approach based on carbon nanotubes and Ni@Pd NPs provided a useful platform for the fabrication of noble-metal-based nanocatalysts with easy accessibility and low cost, which may allow for an efficient green alternative for various catalytic reductions.

In this study, a novel carbon nanotube (CNT) based nanocatalyst (Ni@Pd/CNT) was synthesized by modifying CNTs using Ni@Pd core–shell nanoparticles (NPs).  相似文献   

19.
Porous organic polymers have attracted significant attention owing to their large specific surface area, excellent chemical and thermal stability, and controllable skeletons. phenanthroline-based microporous organic polymer (Phen-MOP) has been synthesized via a cost-effective method based on the Scholl reaction. The Phen-MOP polymer exhibits high surface area and good stability. Owing to the phenanthroline skeleton embedding into the microporous polymer framework, the Phen-MOP can serve as a platform to support a transition metal catalyst. After being post-modified with palladium acetate, the synthesized Phen-Pd-MOP framework can serve as a highly efficient heterogeneous catalyst for the Suzuki–Miyaura coupling reaction and the Heck coupling reaction. Moreover, the Phen-Pd-MOP catalyst could be reused at least 10–12 times without any significant loss of the catalytic activity.

Phenanthroline-based microporous organic polymer (Phen-MOP) is synthesized via a cost-effective method based on the Scholl reaction. After post-modification with Pd(OAc)2, the synthesized Phen-Pd-MOP is a highly efficient heterogeneous catalyst for C–C coupling reactions.  相似文献   

20.
Herein, a novel high-performance heterogeneous catalytic system made of volcanic pumice magnetic particles (VPMP), cellulose (CLS) natural polymeric texture, and palladium nanoparticles (Pd NPs) is presented. The introduced VPMP@CLS-Pd composite has been designed based on the principles of green chemistry, and suitably applied in the Suzuki–Miyaura cross-coupling reactions, as an efficient heterogeneous catalytic system. Concisely, the inherent magnetic property of VPMP (30 emu g−1) provides a great possibility for separation of the catalyst particles from the reaction mixture with great ease. In addition, high heterogeneity and high structural stability are obtained by this composition resulting in remarkable recyclability (ten times successive use). As the main catalytic sites, palladium nanoparticles (Pd NPs) are finely distributed onto the VPMP@CLS structure. To catalyze the Suzuki–Miyaura cross-coupling reactions producing biphenyl pharmaceutical derivatives, the present Pd NPs were reduced from chemical state Pd2+ to Pd0. In this regard, a plausible mechanism is submitted in the context as well. As the main result of the performed analytical methods (including FT-IR, EDX, VSM, TGA, FESEM, TEM, BTE, and XPS), it is shown that the spherical-shaped nanoscale Pd particles have been well distributed onto the surfaces of the porous laminate-shaped VPMP. However, the novel designed VPMP@CLS-Pd catalyst is used for facilitating the synthetic reactions of biphenyls, and high reaction yields (∼98%) are obtained in a short reaction time (10 min) by using a small amount of catalytic system (0.01 g), under mild conditions (room temperature).

An efficient natural-based catalyst constructed of volcanic pumice, cellulose polymeric chains, and palladium nanoparticles is presented for Suzuki–Miyaura coupling reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号