首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Developmental and cross-cultural studies show that finger counting represents one of the basic number learning strategies. However, despite the ubiquity of such an embodied strategy, the issue of whether there is a neural link between numbers and fingers in adult, literate individuals remains debated. Here, we used transcranial magnetic stimulation to study changes of excitability of hand muscles of individuals performing a visual parity judgment task, a task not requiring counting, on Arabic numerals from 1 to 9. Although no modulation was observed for the left hand muscles, an increase in amplitude of motor-evoked potentials was found for the right hand muscles. This increase was specific for smaller numbers (1 to 4) as compared to larger numbers (6 to 9). These findings indicate a close relationship between hand/finger and numerical representations.  相似文献   

2.
Transcranial magnetic stimulation (TMS) was used to investigate whether the excitability of the corticospinal system is selectively affected by motor imagery. To this purpose, we performed two experiments. In the first one we recorded motor evoked potentials from right hand and arm muscles during mental simulation of flexion/extension movements of both distal and proximal joints. In the second experiment we applied magnetic stimulation to the right and the left motor cortex of subjects while they were imagining opening or closing their right or their left hand. Motor evoked potentials (MEPs) were recorded from a hand muscle contralateral to the stimulated cortex. The results demonstrated that the excitability pattern during motor imagery dynamically mimics that occurring during movement execution. In addition, while magnetic stimulation of the left motor cortex revealed increased corticospinal excitability when subjects imagined ipsilateral as well as contralateral hand movements, the stimulation of the right motor cortex revealed a facilitatory effect induced by imagery of contralateral hand movements only. In conclusion, motor imagery is a high level process, which, however, manifests itself in the activation of those same cortical circuits that are normally involved in movement execution.  相似文献   

3.
In this study we investigated in healthy subjects whether continuous theta‐burst stimulation (cTBS) over the lateral cerebellum alters motor practice and retention phases during ipsilateral index finger and arm reaching movements. In 12 healthy subjects we delivered cTBS before repeated index finger abductions or arm reaching movements differing in complexity (reaching‐to‐grasp and reaching‐to‐point). We evaluated kinematic variables for index finger and arm reaching movements and changes in primary motor cortex (M1) activity tested with transcranial magnetic stimulation. Peak acceleration increased during motor practice for index finger abductions and reaching‐to‐grasp movements and persisted during motor retention. Peak acceleration decreased during motor practice for reaching‐to‐point movements and the decrease remained during motor retention. Cerebellar cTBS left the changes in peak acceleration during motor practice for index finger abductions and reaching‐to‐grasp arm movements unchanged but reduced peak acceleration at motor retention. Cerebellar cTBS prevented the decrease in peak acceleration for reaching‐to‐point movements during motor practice and at motor retention. Index finger abductions and arm reaching movements increased M1 excitability. Cerebellar cTBS decreased the motor evoked potential (MEP) facilitation induced by index finger movements, but increased the MEP facilitation after reaching‐to‐grasp and reaching‐to‐point movements. Cerebellar stimulation prevents motor retention for index finger abductions, reaching‐to‐grasp and reaching‐to‐point movements and degrades motor practice only for reaching‐to‐point movements. Cerebellar cTBS alters practice‐related changes in M1 excitability depending on how intensely the cerebellum contributes to the task. Changes in M1 excitability reflect mechanisms of homeostatic plasticity elicited by the interaction of an ‘exogenous’ (cTBS‐induced) and an ‘endogenous’ (motor practice‐induced) plasticity‐inducing protocol.  相似文献   

4.
It used to be considered that unilateral movements of distal limb parts are associated only with contralateral motor cortical activity. Recent neuroimaging studies, however, suggest that the motor cortex ipsilateral to a task-performing hand is also activated, and that motor patterns in one hand affect the degree of the activity of the ipsilateral motor cortex. If so, muscles of the hand contralateral to a task-performing one may change those excitability depending on types of tasks. We studied eight subjects who performed three different finger tasks by one hand: (a) pinch, (b) sequential finger opposition, and (c) tactile discrimination. Transcranial magnetic stimulation was delivered by a figure eight coil over the hemisphere ipsilateral to a task-performing hand. Motor evoked potentials and background electromyographic activities were recorded from the opponens pollicis muscle contralateral to the stimulated hemisphere. On average, the motor evoked potentials were larger during tactile discrimination task than those at rest in either hand (p < 0.01). Background electromyographic activities in the left hand increased significantly during right hand tactile discrimination task (p < 0.01), whilst those in the right hand did not change during the left hand performance (p > 0.05). These findings suggest the followings: (1) the hand muscle contralateral to a task performing one changes its excitability depending on types of tasks; and (2) increment of excitability of the left hand muscle associated with right hand tactile discrimination is greater than that of the right hand one in association with the same task by the left hand, thus supporting the idea that there is a functional asymmetry between the right and left motor cortex in respect of motor performance.  相似文献   

5.
The characteristics of the precentral neuron activity related to ipsilateral movements were studied while the monkey was performing finger, wrist and arm movements on either side.Out of 197 task-related neurons, 134 discharged in association with contralateral movements, but not with any one of 3 ipsilateral movements. Fifty neurons discharged with bilateral movements.Thirteen neurons discharged in association with ipsilateral movements (ipsi-neurons). Ten were recorded from the trunk or shoulder area of the motor cortex and were accompanied by contraction of those muscles by intracortical stimulation (ICS). The remaining 3 were related to elbow or wrist, but no ipsi-neurons were related to finger muscle contractions.In ipsilateral task performance, 7 ipsi-neurons discharged in association with finger and/or wrist movements in addition to arm movement. Five others were associated with arm movement. The last one discharged with wrist movement. Most of the units showed similar response to contralateral movement.Ipsi-neurons were classified into two groups. One group was recorded around the sulcus precentralis superior, had the lower threshold current and was mostly associated with finger, wrist and arm movements. The other was recorded in the rostral motor cortex, and had the higher threshold current and was related to arm movement.Among 185 neurons to which pyramidal tract stimulation was delivered, 2 out of the 80 PTNs and 11 out of the 105 non-PTNs were ipsi-neurons.EMGs were recorded from various muscles involved in the forelimb movements. Arm and finger muscles showed no activity when the monkey used the ipsilateral hand, while most of the shoulder and trunk muscles showed tonic or moderate transient changes in the activity during the ipsilateral tasks. The ipsi-neuron activity was discussed in consideration with EMGs.  相似文献   

6.
OBJECTIVES: To test to which extent the increase in ipsilateral motor cortex excitability during unimanual motor tasks shows hemispheric asymmetry. METHODS: Six right-handed healthy subjects performed one of several motor tasks of different complexity (including rest) with one hand (task hand) while the other hand (non-task hand) was relaxed. Focal transcranial magnetic stimulation was applied to the motor cortex ipsilateral to the task hand and the amplitude of the motor evoked potential (MEP) in the non-task hand was measured. In one session, the task hand was the right hand, in the other session it was the left hand. The effects of motor task and side of the task hand were analyzed. Spinal motoneuron excitability was assessed using F-wave measurements. RESULTS: Motor tasks, in particular complex finger sequences, resulted in an increase in MEP amplitude in the non-task hand. This increase was significantly less when the right hand rather than the left hand was the task hand. This difference was seen only in muscles homologous to primary task muscles. The asymmetry could not be explained by changes in F-wave amplitudes. CONCLUSIONS: Hemispheric asymmetry of ipsilateral motor cortex activation either supports the idea that, in right handers, the left motor cortex is more active in ipsilateral hand movements, or alternatively, that the left motor cortex exerts more effective inhibitory control over the right motor cortex than vice versa. We suggest that hemispheric asymmetry of ipsilateral motor cortex activation is one property of motor dominance of the left motor cortex.  相似文献   

7.
Kinesthetic motor imagery and actual execution of movements share a common neural circuitry. Functional magnetic resonance imaging was used in 12 right-handed volunteers to study brain activity during motor imagery and execution of simple and complex unimanual finger movements of the dominant and the nondominant hand. In the simple task, a flexible object was rhythmically compressed between thumb, index and middle finger. The complex task was a sequential finger-to-thumb opposition movement. Premotor, posterior parietal and cerebellar regions were significantly more active during motor imagery of complex movements than during mental rehearsal of the simple task. In 10 of the subjects, we also used transcranial magnetic brain stimulation to examine corticospinal excitability during the same motor imagery tasks. Motor-evoked potentials increased significantly over values obtained in a reference condition (visual imagery) during imagery of the complex, but not of the simple movement. Imagery of finger movements of either hand activated left dorsal and ventral premotor areas and the supplementary motor cortex regardless of task complexity. The effector-independent activation of left premotor areas was particularly evident in the simple motor imagery task and suggests a left hemispherical dominance for kinesthetic movement representations in right-handed subjects.  相似文献   

8.
To address whether the passive observation of walking would induce an increase in motor cortical excitability, we examined the responses of motor-evoked potential elicited by transcranial magnetic stimulation in the tibialis anterior and soleus muscles as the participants observed naturally performed walking. Motor-evoked potentials in these muscles were significantly increased during the observation of walking throughout the entire step-cycle periods, but not during specific step periods. These findings indicate that cortical excitability can be increased not only during the observation of voluntary hand/arm movements, but also during the observation of automatic movements such as walking. It is also suggested that the present results may reflect the increased cortical excitability during the entire walking cycle.  相似文献   

9.
《Brain stimulation》2020,13(3):707-716
BackgroundThe cerebellum and primary motor cortex (M1) are crucial to coordinated and accurate movements of the upper limbs. There is also appreciable evidence that these two structures exert somewhat divergent influences upon proximal versus distal upper limb control. Here, we aimed to differentially regulate the contribution of the cerebellum and M1 to proximal and distal effectors during motor adaptation, with transcranial direct current stimulation (tDCS). For this, we employed tasks that promote similar motor demands, but isolate whole arm from hand/finger movements, in order to functionally segregate the hierarchy of upper limb control.MethodsBoth young and older adults took part in a visuomotor rotation task; where they adapted to a 60° visuomotor rotation using either a hand-held joystick (requiring finger/hand movements) or a 2D robotic manipulandum (requiring whole-arm reaching movements), while M1, cerebellar or sham tDCS was applied.ResultsWe found that cerebellar stimulation improved adaptation performance when arm movements were required to complete the task, while in contrast stimulation of M1 enhanced adaptation during hand and finger movements only. This double-dissociation was replicated in an independent group of older adults, demonstrating that the behaviour remains intact in ageing.ConclusionsThese results suggest that stimulation of distinct motor areas can selectively improve motor adaptation in the proximal and distal upper limb. This also highlights new ways in which tDCS might be best applied to achieve reliable rehabilitation of upper limb motor deficits.  相似文献   

10.
Motor imagery (MI) is the mental rehearsal of a motor act without overt movement. Using transcranial magnetic stimulation (TMS), we tested the effect of MI on corticospinal excitability in patients with writer's cramp. In 10 patients with writer's cramp and 10 healthy controls, we applied focal TMS over each primary motor area and recorded motor evoked potentials (MEPs) from contralateral hand and arm muscles while participants imagined a tonic abduction of the index finger contralateral to the stimulated hemisphere. In healthy controls and patients, the MEP amplitude in the relaxed first dorsal interosseus muscle (FDI) showed a muscle-specific increase during MI; however, the increase was less pronounced in patients than in healthy controls. In addition, in patients but not in controls, the MEP amplitude also increased in hand and forearm muscles not involved in the imagined movement. This abnormal spread of facilitation was observed in the affected and unaffected upper limb. MI of simple hand movements is less efficient and less focussed in patients with writer's cramp than it is in normal subjects.  相似文献   

11.
We investigated finger movements in patients with hand dystonia to compare the kinematics of repetitive individual and non-individual finger oppositions. We used an optoelectronic motion analysis system to record movements in 3-D space, and recorded three 5-second trials for each task, counting how many finger oppositions subjects carried out during each trial, and measured the duration and amplitude of flexions, extensions, and pauses. During tasks, normal subjects and patients carried out finger flexions faster than extensions, and invariably they paused longer before extension than before flexion. Patients were slower and paused longer than controls during both individual and non-individual oppositions. During individual finger movements, patients were disproportionately slow during extension and pause before extension. Patients with hand dystonia perform finger movements abnormally; they are affected predominantly during individual oppositions. This finding reflects the finer cortical control needed to promote and sustain this highly fractionated type of motor output, and points toward underactivity of the primary motor cortex in dystonia.  相似文献   

12.
After acute stroke several changes in cortical excitability occur involving affected (AH) and unaffected hemisphere (UH) but whether they contribute to motor recovery is still controversial. We performed transcranial magnetic stimulation mapping of several upper limb muscles over the two hemispheres in thirteen patients at 4–12 days from subcortical stroke and after 1 month. The occurrence of mirror movements (MMs) on the healthy side during contraction of paretic muscles was measured. At baseline, cortical excitability parameters over the AH decreased in comparison with controls, while excitability over the UH increased correlating with severity of motor deficits of the affected arm at baseline as well as with poor recovery. At follow-up, map parameters of the UH became closer to those of controls independently from recovery, while for the AH the number of responsive sites increased significantly. Ipsilateral motor evoked responses (iMEPs) in the affected arm were never elicited. We observed an early impairment in dexterity of the ipsilesional hand that recovered over-time but persistently differed in comparison with controls. MMs occurrence increased at baseline correlating with reduced cortical excitability of the AH as well as with increased map density over the UH. The acute increased excitability of the UH after stroke has a negative prognostic value on recovery and negatively affects motor performance of the ipsilesional hand. Moreover, the absence of iMEPs and the normalization of motor cortical excitability at follow-up indicate that the UH primary motor area does not contribute to recovery.  相似文献   

13.
Congenital mirror movements (CMMs) are involuntary, symmetric movements of one hand during the production of voluntary movements with the other. CMMs have been attributed to a range of physiological mechanisms, including excessive ipsilateral projections from each motor cortex to distal extremities. We examined this hypothesis with an individual showing pronounced CMMs. Mirror movements were characterized for a set of hand muscles during a simple contraction task. Transcranial magnetic stimulation (TMS) was then used to map the relative input to each muscle from both motor cortices. Contrary to our expectations, CMMs were most prominent for muscles with the strongest contralateral representation rather than in muscles that were activated by stimulation of either hemisphere. These findings support a bilateral control hypothesis whereby CMMs result from the recruitment of both motor cortices during intended unimanual movements. Consistent with this hypothesis, bilateral motor cortex activity was evident during intended unimanual movements in an fMRI study. To assess the level at which bilateral recruitment occurs, motor cortex excitability during imagined unimanual movements was assessed with TMS. Facilitory excitation was only observed in the contralateral motor cortex. Thus, the bilateral recruitment of the hemispheres for unilateral actions in individuals with CMMs appears to occur during movement execution rather than motor planning.  相似文献   

14.
In healthy volunteers, reduction of somatosensory input from one hand leads to rapid performance improvements in the other hand. Thus, it is possible that reduction of somatosensory input from the healthy hand can influence motor function in the paretic hand of chronic stroke patients with unilateral hand weakness. To test this hypothesis, we had 13 chronic stroke patients perform motor tasks with the paretic hand and arm during cutaneous anesthesia of the healthy hand and healthy foot in separate sessions. Performance of a finger tapping task, but not a wrist flexion task, improved significantly with anesthesia of the hand, but not the foot. This effect progressed with the duration of anesthesia and correlated with baseline motor function. We conclude that cutaneous anesthesia of the healthy hand elicits transient site-specific improvements in motor performance of the moderately paretic hand in patients with chronic stroke, consistent with interhemispheric competition models of sensorimotor processing.  相似文献   

15.
Borroni P  Cerri G  Baldissera F 《Brain research》2004,1022(1-2):117-125
When associating hand and foot voluntary oscillations, isodirectional coupling is preferred irrespective of hand position (prone or supine). To investigate the neural correlates of this coupling modality, excitability of the motor projections innervating the resting forearm was tested during cyclic voluntary flexion-extensions of the ipsilateral foot. H-reflexes, in some experiments facilitated by subliminal Transcranial Magnetic Stimulation (TMS), and Compound Muscle Action Potentials (CMAPs), evoked by supraliminal TMS, were elicited in Flexor Carpi Radialis (FCR) and Extensor Carpi Radialis (ECR) muscles at five intervals during the foot movement cycle. With the hand prone, a sinusoidal excitability modulation was observed in wrist flexors and extensors, but reversed in phase: in FCR, excitability increased during plantar-flexion and decreased during dorsiflexion, while in ECR the opposite occurred. This reciprocal organisation was confirmed by the excitability modulation of CMAPs evoked simultaneously in the two antagonists. When the hand was supinated, the H-reflex modulation reversed in phase, i.e., FCR excitability increased during foot dorsiflexion and decreased during plantar-flexion. In both muscles and hand positions tested, when the muscle-to-movement phase-lag was increased by inertial loading of the foot, H-reflex excitability modulations remained phase linked to muscular contractions, not to movement. Together, these results suggest that the subliminal excitability modulation of hand movers has a common central origin with the parallel overt activation of foot movers, is reciprocally organised, and is direction- not muscle-dependent. It may therefore represent the neural substrate for isodirectional coupling of hand (prone or supine) with the foot.  相似文献   

16.
Summary Background. Enhancement of cortical excitability is thought to be beneficial for synaptic plasticity associated with motor skill acquisition. Single dose application of the selective norepinephrine reuptake inhibitor reboxetine (RBX) increases motor cortex excitability. In this study, we tested if a chronic dose application of RBX improved motor skill acquisition and modulated cortical excitability. Methods. The study was randomised, double blind and placebo-controlled. Twelve healthy subjects received four milligram RBX twice a day for four days preceded by two milligram RBX twice a day for two days. Each subject served as his own control. The time interval between the verum and the placebo session was 16 days or more. Measurement of cortical excitability by means of paired pulse transcranial magnetic stimulation (ppTMS) was conducted before and after the motor skill acquisition task in each session. The task was to lift two fingers of the right hand at once while the hand was positioned sprawled out on the table. The movements were self-paced and subjects had to perform as many moves as possible in 60 sec. Between seven blocks of self-paced movements six blocks with 60 single trials at a fixed interstimulus intervall were presented. Two equally difficult versions of the task using different finger combinations were established in order to avoid carry over effects in performance. The finger movements were recorded with a three-dimensional ultrasound movement analysis system (Zebris). Results. All subjects had substantial gain in performance across the selfpaced blocks. Average increase in number of correct moves was 87% (from 27.8 to 51.9). There was no significant difference neither between the versions of the task nor between placebo vs. verum. Also, there was no significant difference between first and second session, indicating that there was no carry over effect in performance. ppTMS revealed no significant differences in cortical excitability between groups. Conclusion. The newly developed skill acquisition task yields robust single subject gain of performance. As the two versions of the task do not interact, it is suitable to be used in cross-over designs. In contrast to studies using single doses of RBX, motor cortex excitability seems to be unaffected in a steady-state induced by repeated drug applications. This could explain why RBX did not modulate motor behavior.  相似文献   

17.
The neurophysiological hallmark of congenital mirror movements (MM) are fast-conducting corticospinal projections from the hand area of one primary motor cortex to both sides of the spinal cord. It is still unclear whether the abnormal ipsilateral projection originates through branching fibres from the normal contralateral projection or constitutes a separate ipsilateral projection. To clarify this question, we used focal paired-pulse transcranial magnetic stimulation to test task-related modulation of short-interval intracortical inhibition (SICI) in the abductor pollicis brevis (APB) muscles of a 15-year-old girl (Patient 1) and a 40-year-old woman (Patient 2) with congenital MM. In both patients, during intended unilateral APB contraction, SICI decreased markedly in the "task" APB but remained unchanged in the "mirror" APB when compared to muscle rest. In contrast, spinal excitability as tested with H reflexes increased similarly in the task and mirror flexor carpi radialis muscles. This dissociation of task-related SICI modulation strongly supports the existence of a separate ipsilateral fast-conducting corticospinal projection. In Patient 1, we tested the functional significance of this separate ipsilateral projection during 7 months of motor rehabilitation training, which was designed to facilitate unilateral finger movements. A marked reduction of MM was observed after training, suggesting that unwanted mirror activity in the ipsilateral pathway can be suppressed by learning.  相似文献   

18.
BACKGROUND: Ipsilateral sensory motor cortex (SMC) activation can occur during hand movements following cerebral injury. We studied the effect of increasing task difficulty and temporary peripheral paralysis on patterns of motor system activation.METHODS: Six healthy subjects completed a functional MRI paradigm of right finger abduction with four stages; light resistance, strong resistance, imagined movement and attempted abduction after ulnar nerve blockade. Activation maps compared images acquired during rest and task, while region of interest analysis measured numbers of activated pixels.RESULTS: All subjects showed some ipsilateral SMC activation. Across all subjects and all tasks involving hand movement, contralateral activation was proportional to ipsilateral activation (2.1:1; r=0.86).CONCLUSIONS: The relationship between ipsilateral and contralateral SMC activation remained stable despite differing effort or hand paralysis. The contralateral and ipsilateral SMC appear to act in a coordinated fashion during unilateral hand movements.  相似文献   

19.
Two male patients (a child and an adult) with congenital mirror movement were studied using functional MRI (fMRI) and transcranial magnetic stimulation (TMS). Bilateral primary sensorimotor cortices were activated during unilateral hand gripping on fMRI when the child patient was 8 years old andthe adult was 37 years old. Bilateral motor evoked potentials were induced from the hand and forearm muscles after TMS of each hemisphere. Bilateral motor responses were also induced from the arm muscles in the adult patient. Bilateral motor responses had short and similar latencies. Contralateral motor responses to TMS were smaller than ipsilateral ones in the hand muscles, while contralateral responses were larger than ipsilateral ones in the arm muscles. Contralateral hand motor responses reduced in amplitude or disappeared with increasing age while in the child patient, mirror movements decreased gradually. Our results suggest that bilateral activation of the primary sensorimotor cortices during intended unilateral hand movement and bilateral motor responses to TMS account, at least in part, for the pathophysiology of congenital mirror movement. Reduction of contralateral hand motor responses may be related to the decrease in mirror movements during development.  相似文献   

20.
Spontaneous modulations of corticospinal excitability during action observation have been interpreted as evidence for the activation of internal motor representations equivalent to the observed action. Alternatively or complementary to this perspective, growing evidence shows that motor activity during observation of rhythmic movements can be modulated by direct visuomotor couplings and dynamical entrainment. In‐phase and anti‐phase entrainment spontaneously occur, characterized by cyclic movements proceeding simultaneously in the same (in‐phase) or opposite (anti‐phase) direction. Here we investigate corticospinal excitability during the observation of vertical oscillations of an index finger using Transcranial Magnetic Stimulation (TMS). Motor‐evoked potentials (MEPs) were recorded from participants’ flexor and extensor muscles of the right index finger, placed in either a maximal steady flexion or extension position, with stimulations delivered at maximal flexion, maximal extension or mid‐trajectory of the observed finger oscillations. Consistent with the occurrence of dynamical motor entrainment, increased and decreased MEP responses – suggesting the facilitation of stable in‐phase and anti‐phase relations but not an unstable 90° phase relation – were found in participants’ flexors. Anti‐phase motor facilitation contrasts with the activation of internal motor representation as it involves activity in the motor system opposite from activity required for the execution of the observed movement. These findings demonstrate the relevance of dynamical entrainment theories and methods for understanding spontaneous motor activity in the brain during action observation and the mechanisms underpinning coordinated movements during social interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号