首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Analysis of human buccal epithelial cells frequently reveals an intracellular polymicrobial consortium of bacteria. Although several oral bacteria have been demonstrated to invade cultured epithelial cells, several others appear unable to internalize. We hypothesized that normally noninvasive bacteria may gain entry into epithelial cells via adhesion to invasive bacteria. Fusobacterium nucleatum is capable of binding to and invading oral epithelial cells. By contrast, Streptococcus cristatus binds weakly to host cells and is not internalized. F. nucleatum and S. cristatus coaggregate strongly via an arginine-sensitive interaction. Coincubation of KB or TERT-2 epithelial cells with equal numbers of F. nucleatum and S. cristatus bacteria led to significantly increased numbers of adherent and internalized streptococci. F. nucleatum also promoted invasion of KB cells by other oral streptococci and Actinomyces naeslundii. Dissection of fusobacterial or streptococcal adhesive interactions by using sugars, amino acids, or antibodies demonstrated that this phenomenon is due to direct attachment of S. cristatus to adherent and invading F. nucleatum. Inhibition of F. nucleatum host cell attachment and invasion with galactose, or fusobacterial-streptococcal coaggregation by the arginine homologue l-canavanine, abrogated the increased S. cristatus adhesion to, and invasion of, host cells. In addition, polyclonal antibodies to F. nucleatum, which inhibited fusobacterial attachment to both KB cells and S. cristatus, significantly decreased invasion by both species. Similar decreases were obtained when epithelial cells were pretreated with cytochalasin D, staurosporine, or cycloheximide. These studies indicate that F. nucleatum may facilitate the colonization of epithelial cells by bacteria unable to adhere or invade directly.  相似文献   

2.
Y Asai  Y Ohyama  K Gen  T Ogawa 《Infection and immunity》2001,69(12):7387-7395
Gingival epithelial cells are a central component of the barrier between oral microflora and internal tissues. Host responses to periodontopathic bacteria and surface components containing fimbriae are thought to be important in the development and progression of periodontal diseases. To elucidate this mechanism, we established immortalized human gingival epithelial cells (HGEC) that were transfected with human papillomavirus. HGEC predominantly expressed Toll-like receptor (TLR) 2, but not TLR4 or CD14. They also induced interleukin-8 (IL-8) production when stimulated with Porphyromonas gingivalis fimbriae and Staphylococcus aureus peptidoglycan, but not Escherichia coli-type synthetic lipid A. Furthermore, an active synthetic peptide composed of residues 69 to 73 (ALTTE) of the fimbrial subunit protein, derived from P. gingivalis and similar to a common component of cell wall peptidoglycans in parasitic bacteria, N-acetylmuramyl-L-alanyl-D-isoglutamine (MDP), significantly induced IL-8 production and NF-kappaB activation in HGEC, and these cytokine-producing activities were augmented by a complex of soluble CD14 and lipopolysaccharide-binding protein (LBP). IL-8 production in HGEC stimulated with these bacterial components was clearly inhibited by mouse monoclonal antibody to human TLR2. These findings suggest that P. gingivalis fimbrial protein and its active peptide are capable of activating HGEC through TLR2.  相似文献   

3.
Oral treponemes are considered to be important in the development and progression of periodontal diseases. We investigated the mechanisms of recognition and activation of human gingival epithelial cells (HGEC) with the oral treponemes Treponema denticola, Treponema vincentii, and Treponema medium and their outer membrane extracts (OMEs). T. vincentii and T. medium but not T. denticola produced interleukin 8 (IL-8) in an HGEC culture. Further, all three treponemes induced IL-8 mRNA expression and NF-kappaB activation in HGEC. Among them, T. denticola especially exhibited trypsin- and chymotrypsin-like protease activities, and the addition of chymostatin, a chymotrypsin protease inhibitor, resulted in detectable IL-8 production by HGEC cultured with T. denticola. Additionally, IL-8 mRNA expression in HGEC cultured with the three treponemes and their OMEs was definitely inhibited by the mouse anti-human Toll-like receptor 2 (TLR2) monoclonal antibody TL2.1. These findings suggest that oral treponemes and their OMEs activate HGEC through TLR2.  相似文献   

4.
Actinobacillus actinomycetemcomitans, an oral bacterium implicated in human periodontal disease, was recently demonstrated to invade cultured epithelial cells (D. H. Meyer, P. K. Sreenivasan, and P. M. Fives-Taylor, Infect. Immun. 59:2719-2726, 1991). This report characterizes the requirements for invasion of KB cells by A. actinomycetemcomitans. The roles of bacterial and host factors were investigated by using selective agents that influence specific bacterial or host cell functions. Inhibition of bacterial protein synthesis decreased invasion, suggesting the absence of a preformed pool of proteins involved in A. actinomycetemcomitans invasion. Inhibition of bacterial and eukaryotic energy synthesis also decreased invasion, confirming that A. actinomycetemcomitans invasion is an active process. Bacterial adherence to KB cells was indicated by scanning electron microscopy of infected KB cells. Further, the addition of A. actinomycetemcomitans-specific serum to the bacterial inoculum reduced invasion substantially, suggesting a role for bacterial attachment in invasion. Many of the adherent bacteria invaded the epithelial cells under optimal conditions. Inhibitors of receptor-mediated endocytosis inhibited invasion by A. actinomycetemcomitans. Like that of many facultatively intracellular bacteria, A. actinomycetemcomitans invasion was not affected by eukaryotic endosomal acidification. These are the first published observations describing the requirements for epithelial cell invasion by a periodontopathogen. They demonstrate that A. actinomycetemcomitans utilizes a mechanism similar to those used by many but not all invasive bacteria to gain entry into eukaryotic cells.  相似文献   

5.
M J Duncan  S Nakao  Z Skobe    H Xie 《Infection and immunity》1993,61(5):2260-2265
The invasion of gingival epithelial cells by certain pathogenic periodontal bacteria may account for their presence within diseased gingival tissue. To dissect the initial steps of a potential invasion pathway for the periodontal pathogen Porphyromonas gingivalis, laboratory and clinical bacterial isolates were tested for their interactions with a human oral epithelial cell line (KB). Several P. gingivalis strains immobilized on filters could bind oral epithelial cells. Quantitative adherence assays supported these results. The invasion of epithelial cells by P. gingivalis 33277 was measured by assay and confirmed by transmission electron microscopy. These preliminary results demonstrate that certain P. gingivalis strains are capable of internalization by human oral epithelial cells in vitro.  相似文献   

6.
7.
Periodontal diseases are inflammatory disorders caused by microorganisms of dental plaque that colonize the gingival sulcus and, subsequently, the periodontal pocket. As in other mucosal infections, the host response to plaque bacteria is characterized by an influx of polymorphonuclear leukocytes (PMNs) to the gingival crevice. Neutrophil migration through the epithelial lining of the gingival pocket is thought to be the first line of defense against plaque bacteria. In order to model this phenomenon in vitro, we used the oral epithelial cell line KB and human PMNs in the Transwell system and examined the impact of Porphyromonas gingivalis-epithelial cell interactions on subsequent PMN transepithelial migration. We demonstrate here that P. gingivalis infection of oral epithelial cells failed to trigger transmigration of PMNs. Furthermore, it significantly inhibited neutrophil transmigration actively induced by stimuli such as N-formylmethionyl leucyl phenylalanine, interleukin-8 (IL-8), and the intestinal pathogen enterotoxigenic Escherichia coli. The ability of P. gingivalis to block PMN transmigration was strongly positively correlated with the ability to adhere to and invade epithelial cells. In addition, P. gingivalis attenuated the production of IL-8 and the expression of intercellular adhesion molecule 1 by epithelial cells. The ability of P. gingivalis to block neutrophil migration across an intact epithelial barrier may critically impair the potential of the host to confront the bacterial challenge and thus may play an important role in the pathogenesis of periodontal disease.  相似文献   

8.
Interaction of bacteria with mucosal surfaces can modulate the production of proinflammatory cytokines and adhesion molecules produced by epithelial cells. Previously, we showed that expression of interleukin-8 (IL-8) and intercellular adhesion molecule 1 (ICAM-1) by gingival epithelial cells increases following interaction with several putative periodontal pathogens. In contrast, expression of IL-8 and ICAM-1 is reduced after Porphyromonas gingivalis ATCC 33277 challenge. In the present study, we investigated the mechanisms that govern the regulation of these two molecules in bacterially infected gingival epithelial cells. Experimental approaches included bacterial stimulation of gingival epithelial cells by either a brief challenge (1.5 to 2 h) or a continuous coculture throughout the incubation period. The kinetics of IL-8 and ICAM-1 expression following brief challenge were such that (i) secretion of IL-8 by gingival epithelial cells reached its peak 2 h following Fusobacterium nucleatum infection whereas it rapidly decreased within 2 h after P. gingivalis infection and remained decreased up to 30 h and (ii) IL-8 and ICAM-1 mRNA levels were up-regulated rapidly 2 to 4 h postinfection and then decreased to basal levels 8 to 20 h after infection with either Actinobacillus actinomycetemcomitans, F. nucleatum, or P. gingivalis. Attenuation of IL-8 secretion was facilitated by adherent P. gingivalis strains. The IL-8 secreted from epithelial cells after F. nucleatum stimulation could be down-regulated by subsequent infection with P. gingivalis or its culture supernatant. Although these results suggested that IL-8 attenuation at the protein level might be associated with P. gingivalis proteases, the Arg- and Lys-gingipain proteases did not appear to be solely responsible for IL-8 attenuation. In addition, while P. gingivalis up-regulated IL-8 mRNA expression, this effect was overridden when the bacteria were continuously cocultured with the epithelial cells. The IL-8 mRNA levels in epithelial cells following sequential challenge with P. gingivalis and F. nucleatum and vice versa were approximately identical and were lower than those following F. nucleatum challenge alone and higher than control levels or those following P. gingivalis challenge alone. Thus, together with the protease effect, P. gingivalis possesses a powerful strategy to ensure the down-regulation of IL-8 and ICAM-1.  相似文献   

9.
10.
Fusobacterium nucleatum is closely associated with human periodontal diseases and may also be a causative agent in other infections, such as pericarditis, septic arthritis, and abscesses of tonsils and liver. Initiation and outcome of infective diseases depend critically on the host cell signaling system altered by the microbe. Production of proteinases by infected cells is an important factor in pericellular tissue destruction and cell migration. We studied binding of F. nucleatum to human epithelial cells (HaCaT keratinocyte line) and subsequent cell signaling related to collagenase 3 expression, cell motility, and cell survival, using a scratch wound cell culture model. F. nucleatum increased levels of 12 protein kinases involved in cell migration, proliferation, and cell survival signaling, as assessed by the Kinetworks immunoblotting system. Epithelial cells of the artificial wound margins were clearly preferential targets of F. nucleatum. The bacterium colocalized with lysosomal structures and stimulated migration of these cells. Of the 13 anaerobic oral bacterial species, F. nucleatum and Fusobacterium necrophorum were among the best inducers of collagenase 3 mRNA levels, a powerful matrix metalloproteinase. Production of collagenase 3 was detected in fusobacterium-infected cells and cell culture medium by immunocytochemistry, immunoblotting, and zymography. The proteinase production involved activation of p38 mitogen-activated protein kinase in the infected cells. The study suggests that F. nucleatum may be involved in the pathogenesis of periodontal diseases (and other infections) by activating multiple cell signaling systems that lead to stimulation of collagenase 3 expression and increased migration and survival of the infected epithelial cells.  相似文献   

11.
Porphyromonas gingivalis invasion of gingival epithelial cells.   总被引:9,自引:5,他引:9       下载免费PDF全文
Porphyromonas gingivalis, a periodontal pathogen, can invade primary cultures of gingival epithelial cells. Optimal invasion occurred at a relatively low multiplicity of infection (i.e., 100) and demonstrated saturation at a higher multiplicity of infection. Following the lag phase, during which bacteria invaded poorly, invasion was independent of growth phase. P. gingivalis was capable of replicating within the epithelial cells. Invasion was an active process requiring both bacterial and epithelial cell energy production. Invasion was sensitive to inhibitors of microfilaments and microtubules, demonstrating that epithelial cell cytoskeletal rearrangements are involved in bacterial entry. P. gingivalis, but not epithelial cell, protein synthesis was necessary for invasion. Invasion within the epithelial cells was not blocked by inhibitors of protein kinase activity. Invasion was inhibited by protease inhibitors, suggesting that P. gingivalis proteases may be involved in the invasion process. Low-passage clinical isolates of P. gingivalis invaded with higher efficiency than the type strain. Serum inhibited invasion of the type strain but had no effect on the invasion of a clinical isolate. Invasion of gingival epithelial cells by P. gingivalis may contribute to the pathology of periodontal diseases.  相似文献   

12.
Tamai R  Asai Y  Ogawa T 《Infection and immunity》2005,73(10):6290-6298
Porphyromonas gingivalis, a periodontopathic bacterium, is known to invade oral epithelial cells in periodontal lesions, although the mechanism is unclear. In the present study, goat polyclonal anti-intercellular adhesion molecule 1 (anti-ICAM-1) antibody inhibited the invasion of P. gingivalis into KB cells (human oral epithelial cells). Further, the P. gingivalis fimbria, a pathogenic adhesion molecule, bound to recombinant human ICAM-1, as shown by enzyme-linked immunosorbent assay. P. gingivalis was also found to colocalize with ICAM-1 on KB cells, as seen with an immunofluorescence microscope, and the knockdown of ICAM-1 in KB cells resulted in the inhibition of P. gingivalis invasion by RNA interference. In addition, methyl-beta-cyclodextrin, a cholesterol-binding agent, inhibited the colocalization of P. gingivalis with ICAM-1 and invasion by the microorganism. The colocalization of caveolin-1, a caveolar marker protein, on KB cells with P. gingivalis was also shown, and the knockdown of caveolin-1 in KB cells caused a reduced level of P. gingivalis invasion. These results suggest that ICAM-1 and caveolae are required for the invasion of P. gingivalis into human oral epithelial cells, and these molecules appear to be associated with the primary stages of the development and progression of chronic periodontitis.  相似文献   

13.
14.
Prevotella bivia has been associated with female upper genital tract infections and an increased risk of preterm delivery. In this study, the adherence and invasion capacity of P. bivia was investigated using a cervix epithelial cell line. P. bivia was furthermore analysed for its ability to evoke a proinflammatory cytokine response in epithelial cells. The invasion capacity, defined as the number of bacteria recovered from lysed HeLa cells infected with P. bivia, varied considerably among five strains, all of which were isolates from women with bacterial vaginosis. One P. bivia strain (P47) gave rise to an approximately 120-fold higher number of intracellular bacteria (7 x 10(3) bacteria per 1 x 10(5) cells) compared with the least invasive strain. Three strains expressed an intermediate or low invasiveness, showing an approximately 3- to 40-fold higher number of intracellular bacteria per 1 x 10(5) cells compared with the least invasive strain. The intracellular localization of P47 in phagosome-like vesicles was confirmed by transmission electron microscopy. All P. bivia strains adhered to HeLa cells to the same extent (range 14-22 bacteria per cell) as analysed by interference microscopy. No correlation was found between adhesion and invasion capacity of the strains. Furthermore, no fimbriae-like structures were observed on P47 detected by scanning electron microscopy or negative staining. Analysis of TNF-alpha, IL-1alpha, IL-6, IL-8, and IL-18 in P. bivia-stimulated HeLa cells showed low levels of only IL-6 and IL-8 for the most invasive P. bivia strain P47. Thus, the induction of IL-6 or IL-8 secretion appeared to be associated with invasion capacity. This work provides evidence that some P. bivia isolates can invade human cervix epithelial. Thus, a strong capacity for invasion and a weak proinflammatory cytokine-inducing capacity in P. bivia are suggested to be virulence factors in establishing a low-grade upper genital tract infection.  相似文献   

15.
Calprotectin, an S100 calcium-binding protein with broad-spectrum antimicrobial activity in vitro, is expressed in neutrophils, monocytes, and gingival keratinocytes. In periodontitis, calprotectin appears upregulated and is detected at higher levels in gingival crevicular fluid and tissue specimens. How calprotectin contributes to the pathogenesis of periodontal diseases is unknown. To isolate the effects of calprotectin, a calprotectin-negative oral epithelial cell line was transfected with calprotectin genes to enable expression. Porphyromonas gingivalis was permitted to bind and invade transfected cells expressing calprotectin and sham transfectants. Rates of invasion into both cell lines were compared using the antibiotic protection assay. Transfected cells expressing calprotectin showed 40 to 50% fewer internalized P. gingivalis than sham transfectants. Similarly, binding to calprotectin expressing cells was reduced approximately twofold at all time points (15, 30, 45, and 60 min) as estimated by immunofluorescence analysis. Independent of invasion, however, prolonged exposure to P. gingivalis induced epithelial cell rounding and detachment from the substratum. These morphological changes were delayed, however, in cells expressing calprotectin. Using P. gingivalis protease-deficient mutants, we found that Arg-gingipain and Lys-gingipain contributed to epithelial cell rounding and detachment. In conclusion, expression of calprotectin appears to protect epithelial cells in culture against binding and invasion by P. gingivalis. In addition, cells expressing calprotectin are more resistant to detachment mediated by Arg-gingipain and Lys-gingipain. In periodontal disease, calprotectin may augment both the barrier protection and innate immune functions of the gingival epithelium to promote resistance to P. gingivalis infection.  相似文献   

16.
Fusobacterium nucleatum is a gram-negative anaerobe ubiquitous to the oral cavity. It is associated with periodontal disease. It is also associated with preterm birth and has been isolated from the amniotic fluid, placenta, and chorioamnionic membranes of women delivering prematurely. Periodontal disease is a newly recognized risk factor for preterm birth. This study examined the possible mechanism underlying the link between these two diseases. F. nucleatum strains isolated from amniotic fluids and placentas along with those isolated from orally related sources invaded both epithelial and endothelial cells. The invasive ability may enable F. nucleatum to colonize and infect the pregnant uterus. Transient bacteremia caused by periodontal infection may facilitate bacterial transmission from the oral cavity to the uterus. To test this hypothesis, we intravenously injected F. nucleatum into pregnant CF-1 mice. The injection resulted in premature delivery, stillbirths, and nonsustained live births. The bacterial infection was restricted inside the uterus, without spreading systemically. F. nucleatum was first detected in the blood vessels in murine placentas. Invasion of the endothelial cells lining the blood vessels was observed. The bacteria then crossed the endothelium, proliferated in surrounding tissues, and finally spread to the amniotic fluid. The pattern of infection paralleled that in humans. This study represents the first evidence that F. nucleatum may be transmitted hematogenously to the placenta and cause adverse pregnancy outcomes. The results strengthen the link between periodontal disease and preterm birth. Our study also indicates that invasion may be an important virulence mechanism for F. nucleatum to infect the placenta.  相似文献   

17.
In order to examine the possible implication of human epithelial and endothelial cells in the pathogenesis of various diseases associated with oral viridans streptococci, we tested the immunomodulatory effects of 11 representative strains of oral viridans streptococci on human epithelial KB cells and endothelial cells. We then examined the possible role of two major adhesins from oral viridans streptococci, protein I/II and rhamnose-glucose polymers (RGPs), in this process. In this study we demonstrate that oral viridans streptococci are potent stimulators of interleukin-8 (IL-8) production from KB cells and of IL-6 and IL-8 production from endothelial cells. The ability of protein I/II and RGPs to contribute to these effects was then examined. Using biotinylated protein I/IIf and RGPs from Streptococcus mutans OMZ 175, we showed that these adhesins bind to KB and endothelial cells through specific interactions and that the binding of these molecules initiates the release of IL-8 from KB cells and of IL-6 and IL-8 from endothelial cells. These results suggest that protein I/IIf and RGPs play an important role in the interactions between bacteria and KB and endothelial cells in that similar cytokine profiles are obtained when cells are stimulated with bacteria or surface components. We also provide evidence that protein I/IIf binds to and stimulates KB and endothelial cells through lectin interactions and that N-acetyl neuraminic acid (NANA) and fucose present on cell surface glycoproteins may form the recognition site since binding and cytokine release can be inhibited by dispase and periodate treatment of cells and by NANA and fucose. These results demonstrate that oral viridans streptococci, probably by engaging two cell surface adhesins, exert immunomodulatory effects on human KB and endothelial cells.  相似文献   

18.
IL-8 mRNA in human gingival epithelial cells (HGECs) is up-regulated by Fusobacterium nucleatum, and up-/down-regulated by Porphyromonas gingivalis in a complex interaction in the early stages (< or = 4 h) after infection. The mechanisms involved in this regulation in response to F. nucleatum and/or P. gingivalis infection, and identification of co-regulated cytokine genes, are the focus of this investigation. Heat, formalin or protease treatment of F. nucleatum cells attenuated the IL-8 mRNA up-regulation. NF-kappaB, mitogen-activated protein kinase (MAPK) p38 and MAPK kinase/extracellular signal-regulated kinase (MEK/ERK) pathways were involved in IL-8 mRNA induction by F. nucleatum. Pretreatment of P. gingivalis with heat, formalin or protease enhanced IL-8 mRNA induction. NF-kappaB, MARK p38, and MEK/ERK pathways were also involved in this induction. In contrast, down-regulation of IL-8 mRNA by P. gingivalis involved MEK/ERK, but not NF-kappaB or MAPK p38 pathways. cDNA arrays analysis revealed that mRNA down-regulation by P. gingivalis is a specific reaction that only a number of genes, e.g. IL-1beta, IL-8, macrophage inflammatory protein-2alpha, and migration inhibitory factor-related protein-14, are affected based on examination of 278 cytokine/receptor genes. These data indicate that F. nucleatum and P. gingivalis trigger specific and differential gene regulation pathways in HGECs.  相似文献   

19.
Periodontitis, which is widespread in the adult population, is a persistent bacterial infection associated with Porphyromonas gingivalis. Gingival epithelial cells are among the first cells encountered by both P. gingivalis and commensal oral bacteria. The chemokine interleukin 8 (IL-8), a potent chemoattractant and activator of polymorphonuclear leukocytes, was secreted by gingival epithelial cells in response to components of the normal oral flora. In contrast, P. gingivalis was found to strongly inhibit IL-8 accumulation from gingival epithelial cells. Inhibition was associated with a decrease in mRNA for IL-8. Antagonism of IL-8 accumulation did not occur in KB cells, an epithelial cell line that does not support high levels of intracellular invasion by P. gingivalis. Furthermore, a noninvasive mutant of P. gingivalis was unable to antagonize IL-8 accumulation. Invasion-dependent destruction of the gingival IL-8 chemokine gradient at sites of P. gingivalis colonization (local chemokine paralysis) will severely impair mucosal defense and represents a novel mechanism for bacterial colonization of host tissue.  相似文献   

20.
During the acute inflammatory response in periodontitis, gingival epithelial cells are considered to play important roles in the recruitment of inflammatory cells to the site of infection through the secretion of chemokines. However, little is known about the expression of molecules that are involved in the interaction between the epithelium and neutrophils following bacterial attachment. Earlier work reported that periodontopathogenic Eikenella corrodens strain 1,073 up-regulated the expression and secretion of chemokines such as interleukin-8 (IL-8) from KB cells (a human oral epithelial cell line derived from a human oral epidermoid carcinoma). To elucidate the mechanism of the transmigration of neutrophils through the epithelium, the present study investigated the expression of adhesion molecules on KB cells in response to E. corrodens attachment. Adhesion molecule gene expression was assessed by RT-PCR and adhesion proteins expressed on KB cell surfaces were determined by cell-based ELISA and FACS. In RT-PCR, ICAM-1 mRNA levels were significantly increased within 1 h in response to exposure to E. corrodens and continued to increase over the 12-h period of study. In ELISA, increased surface ICAM-1 expression was paralleled by increased ICAM-1 mRNA levels. Furthermore, the increases in ICAM-1 expression on epithelial cells infected with E. corrodens were observed to be due to the N-acetyl-D-galactosamine (GalNAc) specific bacterial lectin-like substance of E. corrodens (EcLS), which was one of the adhesins of E. corrodens. This is the first study to report that a bacterial lectin-like substance increased the expression of ICAM-1 on gingival epithelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号