首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preganglionic motoneurons supplying the ciliary ganglion control lens accommodation and pupil diameter. In cats, these motoneurons make up the preganglionic Edinger‐Westphal population, which lies rostral, dorsal, and ventral to the oculomotor nucleus. A recent cat study suggested that caudal motoneurons control the lens and rostral motoneurons control the pupil. This led us to examine the morphology, ultrastructure, and pretectal inputs of these populations. Preganglionic motoneurons retrogradely labeled by introducing tracer into the cat ciliary ganglion generally fell into two morphologic categories. Fusiform neurons were located rostrally, in the anteromedian nucleus and between the oculomotor nuclei. Multipolar neurons were found caudally, dorsal and ventral to the oculomotor nucleus. The dendrites of preganglionic motoneurons within the anteromedian nucleus crossed the midline, providing a possible basis for consensual responses. Ultrastructurally, several different classes of synaptic profiles contact preganglionic motoneurons, suggesting that their activity may be modified by a variety of inputs. Furthermore, there were differences in the synaptic populations contacting the rostral vs. caudal populations, supporting the contention that these populations display functional differences. Anterogradely labeled pretectal terminals were observed in close association with labeled preganglionic motoneurons, particularly in the rostral population. Ultrastructural analysis revealed that these terminals, packed with clear, spherical vesicles, made asymmetric synaptic contacts onto motoneurons in the rostral population, indicating that these cells serve the pupillary light reflex. Thus, the preganglionic motoneurons found in the cat display morphologic, ultrastructural, and connectional differences suggesting that this rostral preganglionic population is specialized for pupil control, whereas more caudal elements control the lens. J. Comp. Neurol. 522:3978–4002, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
In the present study, we assessed the extent of the thyrotropin-releasing hormone (TRH) input to motoneurons in the ambigual, facial, and hypoglossal nuclei of the rat using a combination of intracellular recording, dye filling, and immunohistochemistry. Twelve motoneurons in the rostral nucleus ambiguus were labelled by intracellular injection in vivo of Neurobiotin (Vector). Seven out of 12 ambigual motoneurons displayed rhythmic fluctuations of their membrane potential in phase with phrenic nerve discharge, whereas the other five had no modulations of any kind. Seven facial motoneurons and seven hypoglossal motoneurons were also filled with Neurobiotin. All three motor nuclei contained TRH-immunoreactive varicosities, with the largest numbers found in the nucleus ambiguus. Close appositions were seen between TRH-immunoreactive boutons and every labelled motoneuron. Respiratory- related motoneurons in the nucleus ambiguus received the largest number of TRH appositions with 74 ± 38 appositions/neuron (mean ± S. D.; n = 7). In contrast, nonrespiratory ambigual motoneurons received significantly fewer TRH appositions (11 ± 5; n = 5; P < 0. 05; Mann-Whitney U test). Facial motoneurons received about the same number of TRH appositions as nonrespiratory ambigual motoneurons, with 13 ± 4 (n = 7). Hypoglossal motoneurons received the fewest appositions from TRH-containing boutons, with 8 ± 2 (n = 7). There were no differences in the TRH inputs to respiratory and nonrespiratory motoneurons in the facial and hypoglossal nuclei. These results demonstrate that, among motoneurons in the medulla, respiratory motoneurons in the rostral nucleus ambiguus are preferentially innervated by the TRH-immunoreactive boutons. © 1995 Wiley-Liss Inc.  相似文献   

3.
J Kiss  B Halász 《Brain research》1990,532(1-2):107-114
A combination of electron microscopic immunocytochemistry and autoradiography was employed to examine the synaptic organization of thyrotropin-releasing hormone (TRH) neurons in the periventricular subdivision of the paraventricular nucleus of the rat hypothalamus. TRH neurons were identified by immunocytochemistry. Selective uptake of tritiated serotonin (5-HT) was used to identify serotoninergic elements. TRH-immunoreactive axon terminals were found to be in synaptic contact with TRH-immunoreactive dendrites and with unlabeled dendritic branchlets. There were direct appositions between radiolabeled 5-HT terminals and TRH-immunoreactive dendrites, but differential synaptic contacts between 5-HT axonal elements and TRH neurons were not seen. TRH-immunopositive cell bodies and dendrites received a very intense innervation by unlabeled axon terminals or axonal varicosities showing morphologically defined synaptic junctions. These were mostly of the asymmetrical variety and different types could be distinguished. The findings substantiate the view that TRH neurons of the periventricular subvision of the paraventricular nucleus may be influenced by TRH axons, serotoninergic fibers and a large number of unidentified nerve terminals.  相似文献   

4.
The location of the rabbit laryngeal motoneurons whose axons traverse the cranial root of the accessory nerve was studied with injection of HRP or nuclear yellow into the laryngeal muscles in combination with the intracranial severing of either the rootlets of the vagus nerve or those of the cranial root. The motoneurons were located in the diffuse cell group that forms a subnucleus occupying the caudal two-thirds of the nucleus ambiguus and sending fibers to the inferior laryngeal nerve. The caudal one-third of the diffuse cell group supplying the lateral cricoarytenoid muscle, was occupied only by these motoneurons, whereas in its rostral two-thirds, they were intermingled with motoneurons having axons that traversed the vagal rootlets. The thyroarytenoid and posterior cricoarytenoid motoneurons are present in the rostral two-thirds of the diffuse cell group; axons of the former traversed the rootlets of the cranial root, and of the latter traversed the vagal rootlets. On the other hand, the medial scattered cell group, located in the rostral one-third of the nucleus ambiguus and sending fibers to the cricothyroid muscle via the superior laryngeal nerve, contained only motoneurons with axons traversing the vagal rootlets. The above findings clarified that fibers of the cranial root enter the inferior laryngeal nerve after joining the vagus, and then reach the adductor muscles for the vocal fold, with their neurons of origin in a caudal portion of the nucleus ambiguus. The vagal rootlet fibers, with their neurons of origin situated more rostrally in the nucleus, innervate the tensor and abductor muscles via the superior and inferior laryngeal nerve, respectively.  相似文献   

5.
6.
These experiments were designed to characterize the distribution, morphology, and number of spinal preganglionic neurons that selectively innervate the B- and C-type sympathetic neurons in paravertebral ganglia 9 and 10 of the bullfrog. For this purpose, horseradish peroxidase (HRP) was applied to the anterior end of the sectioned sympathetic chain between ganglia 8 and 9. Subsequent retrograde axonal transport of the HRP labeled ipsilateral spinal neurons whose cell bodies form a column having rostral and caudal boundaries that are, respectively, just caudal to the level of spinal nerve 4 and midway between the entry zones of spinal nerves 7 and 8. In all segments, the labeled preganglionic somata were found in the lateral half of the spinal gray and slightly dorsal to the central canal; a position analogous to that of the intermediolateral cell column in mammals. Most labeled preganglionic neurons were multipolar in shape, and the cell bodies lying between spinal nerves 4 and 5 were, on average, larger than those found between spinal nerves 7 and 8. In transverse sections that were cut near spinal nerve 5, the axons of preganglionic neurons could be seen to exit the cord through ventral roots. Counts of labeled preganglionic neurons indicate that an average +/- S.D. of 338 +/- 89 cells innervate ganglia 9 and 10. Selective labeling of preganglionic B neurons, by cutting spinal nerves 7 and 8 central to their rami communicantes at the time of HRP application, revealed an average +/- S.D. of 137 +/- 31 cells that lie exclusively between spinal nerves 4 and 6. By contrast, selective labeling of preganglionic C neurons, by cutting the sympathetic chain rostral to ganglion 7 at the time of HRP application, revealed an average +/- S.D. of 187 +/- 77 cells in an adjacent portion of the preganglionic column that is bounded by spinal nerve 6 and by a point midway between spinal nerves 7 and 8. These results thus demonstrate a clear segmental segregation between the preganglionic B and C neurons that innervate ganglia 9 and 10.  相似文献   

7.
Physiologically identified triceps surae alpha motoneurons in the cat were stained intracellularly with horseradish peroxidase (HRP). After fixation with 2% glutaraldehyde and treatment with sodium borohydride, spinal cord sections were incubated with rabbit antiserum against thyrotropin-releasing hormone (TRH) and rabbit peroxidase-antiperoxidase complex. Light microscopically detected close contacts between immunoreactive nerve terminals and intracellularly HRP-stained profiles were studied under the electron microscope. In this way, synaptic contacts between TRH-immunoreactive boutons and functionally characterized alpha motoneurons could be demonstrated.  相似文献   

8.
Localization of retractor bulbi motoneurons in the rabbit   总被引:1,自引:0,他引:1  
Motoneurons innervating the rabbit retractor bulbi muscle have been identified by retrograde transport of horseradish peroxidase (HRP). Following injection of HRP into single slips or all 4 slips of the retractor bulbi muscle, labeled motoneurons were consistently observed in the abducens (ABD) nucleus and in the accessory abducens (ACC) nucleus located ventral, lateral and rostral to the ABD. Axons from the ACC motoneurons could be seen to enter the VIth nerve. Injection of HRP into the lateral rectus muscle produced consistent labeling of motoneurons in the ABD nucleus overlapping the distribution of retractor bulbi motoneurons, but labeling was never observed in the ACC nucleus. The number of labeled ABD neurons after lateral rectus injections was far less (36%) than after injection into all 4 slips of the retractor bulbi muscle (72%). Injection of HRP into the superior oblique, superior rectus or medial rectus muscle produced labeling of motoneurons in the corresponding subdivisions of the oculomotor nucleus or trochlear nucleus but no labeled motoneurons were observed in either the ABD or ACC nuclei. Some highly inconsistent labeling of oculomotor nucleus was observed after retractor bulbi or lateral rectus muscle injections and this was judged to be due to intraorbital diffusion of the HRP. It was concluded that the retractor bulbi muscle is innervated by motoneurons located in both the ABD and ACC nuclei.  相似文献   

9.
The levator veli palatini (LVP) is a muscle that plays a very important role in the complex functions regulating velopharyngeal function. Although previous studies have indicated that the contraction properties of the LVP closely resemble those of the intrinsic laryngeal muscle, histological evidence has not yet been obtained. The LVP is generally considered to be innervated by the glossopharyngeal nerve, which contains efferent and afferent components. LVP motoneurons are localized in the nucleus ambiguus (Amb), and afferent neurons project into the bilateral regions of the nucleus of the solitary tract (NST). However, the position of neuronal cell bodies on afferent neurons has remained unknown. The present study examined serial muscle cross-sections using monoclonal antibodies specific for myosin heavy chain (MyHC), to characterize muscle fibers of the LVP, clarify the central distribution of LVP motoneurons within the Amb and afferent terminals within the NST, and elucidate the location of LVP afferent neuronal cell bodies. Clear separation was observed within the LVP between fibers containing only fast MyHC and others positive for both slow and fast MyHC. Horseradish peroxidase (HRP)-labeled motoneurons in the Amb were separated into rostral and caudal divisions, corresponding to the B?tzinger complex and the rostral ventral respiratory group, respectively. HRP-labeled afferent neuronal cell bodies were observed in a glossopharyngo-vagal complex ganglion, and HRP-labeled afferent terminals were observed in bilateral lateral regions of the NST. These results suggest a relationship between MyHC isoform expression and the central distribution of LVP motoneurons or central projections of afferent neurons, with regard to activity of the LVP during both inspiration and expiration.  相似文献   

10.
This study used neuroanatomical techniques to investigate sources of afferents to the Edinger-Westphal nucleus (EW) of the pigeon. The EW contains the parasympathetic preganglionic neurons that, by way of the oculomotor nerve, project to the ciliary ganglion (Narayanan and Narayanan, '76; Lyman and Mugnaini, '80). The ciliary ganglion, in turn, innervates the internal musculature of the eye; the ciliary body, the iris sphincter muscle, and the smooth muscle of choroidal blood vessels (Marwitt et al., '71; Pilar and Tuttle, '82). In the bird, the neurons in the ciliary ganglion that innervate the iris sphincter muscle and the ciliary body receive input specifically from cells in the lateral EW (EWl), whereas those that innervate choroidal blood vessels receive input from cells in the medial EW (EWm) (Reiner et al., '83). Thus neurons in the EWl mediate pupilloconstriction and accommodation, whereas neurons in the EWm modulate choroidal blood flow. To study the afferents to EW, injections of horseradish peroxidase (HRP) were placed in this nucleus. These injections resulted in labeled cells in the area pretectalis, a retinorecipient pretectal nucleus and the suprachiasmatic nucleus, a retinorecipient hypothalamic nucleus. We have previously identified both these areas as being sources of afferents to EW (Gamlin et al., '82, '84). In addition, these HRP injections into EW resulted in labeled cells in the medial mesencephalic reticular formation (MRF) lateral and ventral to the oculomotor nucleus and in a localized area of the rostral lateral mesencephalic reticular formation (LRF) dorsolateral to nucleus subpretectalis. Injections of tritiated amino acids into the MRF labeled the entire EW, while such injections into the LRF labeled only the lateral EW. Both of these projections were predominantly contralateral. This study has identified the sources of two previously undocumented inputs to the avian EW. Both sources of input, the MRF and rostral LRF, receive afferents from visuomotor areas of the telencephalon and visual structures in the midbrain. The MRF input to EW could have either direct or modulatory influences on pupil diameter, accommodation, and choroidal blood flow. The LRF input to EW could play a role in controlling accommodation and possibly the pupillary near response.  相似文献   

11.
The motor and sensory connections of the cervical vagus nerve and of its inferior ganglion (nodose ganglion) have been traced in the medulla oblongata of 32 adult cats with the neuroanatomical methods of horseradish peroxidase (HRP) histochemistry and amino acid autoradiography (ARG). In 14 of these subjects, an aqueous solution of HRP was applied unilaterally to the central end of the severed cervical vagus nerve. In 13 other cases, HRP was injected directly into the nodose ganglion. Three of these 13 subjects had undergone infranodose vagotomy 6 weeks prior to the HRP injection. A mixture of tritiated amino acid was injected into the nodose ganglion in five additional cats. The retrograde transport of HRP yielded reaction product in nerve fibers and perikarya of parasympathetic and somatic motoneurons in the medulla oblongata. Furthermore, a tetramethyl benzidine (TMB) method for visualizing HRP enabled the demonstration of anterograde and transganglionic transport, so that central sensory connections of the nodose ganglion and of the vagus nerve could also be traced. The central distribution of silver grain following injections of tritiated amino acids in the nodose ganglion corresponded closely with the distribution of sensory projections demonstrated with HRP, thus confirming the validity of HRP histochemistry as a method for tracing these projections. The histochemical and autoradiographic experiments showed that the vagus nerve enters the medulla from its lateral aspect in multiple fascicles and that it contains three major components—axons of preganglionic parasympathetic neurones, axons of skeletal motoneurons, and central processes of the sensory neurons in the nodose ganglion. Retrogradely labeled neurons were seen in the dorsal motor nucleus of X(dmnX), the nucleus ambiguus (nA), the nucleus retroambigualis (nRA), the nucleus dorsomedialis (ndm) and the spinal nucleus of the accessory nerve (nspA). The axons arising from motoneurons in the nA did not traverse the medulla directly laterally; rather, all of these axons were initially directed dorsomedially toward the dmnX, where they formed a hairpin loop and then accompanied the axons of dmnX neurons to their points of exit. Afferent fibers in the vagus nerve reached most of the subnuclei of the nTS bilaterally, with the more intense labeling being found on the ipsilateral side. Labeling of sensory vagal projections was also found in the area postrema of both sides and around neurons of the dmnX. These direct sensory projections terminating within the dmnX may provide an anatomical substrate for vagally mediated monosynpatic reflexes. Following deefferentiation by infranodose vagotomy 6 weeks prior to HRP injections into the nodose ganglion, a number of neurons in the dmnX were still intensely labeled with the HRP reaction product. The axons of these HRP-labeled perikarya may constitute the bulbar component of the accessory nerve.  相似文献   

12.
Projections from the nucleus tractus solitarii (NTS) to autonomic control regions of the ventrolateral medulla, particularly the nucleus reticularis rostroventrolateralis (RVL), which serves as a tonic vasomotor center, were analyzed in rat by anterograde, retrograde, and combined axonal transport techniques. Autonomic portions of the NTS, including its commissural, dorsal, intermediate, interstitial, ventral, and ventrolateral subnuclei directly project to RVL as well as to other regions of the ventrolateral medulla. The projections are organized topographically. Rostrally, a small cluster of neurons in the intermediate third of NTS, the subnucleus centralis, and neurons in proximity to the solitary tract selectively innervate neurons in the retrofacial nucleus and nucleus ambiguus. Neurons generally located in more caudal and lateral sites in the NTS innervate the caudal ventrolateral medulla (CVL). The RVL, CVL, and nucleus retroambiguus are interconnected. A combined retrograde and anterograde transport technique was developed so as to prove that projections from the NTS to the ventrolateral medulla specifically innervate the region of RVL containing neurons projecting to the thoracic spinal cord or the region of the nucleus containing vagal preganglionic neurons. When the retrograde tracer, fast blue, was injected into the thoracic spinal cord, and wheat germ agglutinin-conjugate horseradish peroxidase (HRP) was injected into the NTS, anterogradely labeled terminals from the NTS surrounded the retrogradely labeled neurons in the RVL and in the nucleus retroambiguus in the caudal medulla. Among the bulbospinal neurons in the RVL innervated by the NTS were adrenaline-synthesizing neurons of the C1 group. When fast blue was applied to the cervical vagus, and HRP was injected into the NTS, anterogradely labeled terminals from the NTS surrounded retrogradely labeled neurons in the rostral dorsal motor nucleus of the vagus, the region of the nucleus ambiguus, the retrofacial nucleus, and the dorsal portion of the RVL, a region previously shown to contain cardiac vagal preganglionic neurons. This combined anterograde and retrograde transport technique provides a useful method for tracing disynaptic connections in the brain. These data suggest that the RVL is part of a complex of visceral output regions in the ventrolateral medulla, all of which receive afferent projections from autonomic portions of the NTS. Bulbospinal neurons in the RVL, in particular the C1 adrenaline neurons, may provide a portion of the anatomic substrate of the baroreceptor and other visceral reflexes.  相似文献   

13.
The central pathways subserving the feline pupillary light reflex were examined by defining retinal input to the olivary pretectal nucleus (OPt), the midbrain projections of this nucleus, and the premotor neurons within it. Unilateral intravitreal wheat germ agglutinin–conjugated horseradish peroxidase (WGA–HRP) injections revealed differences in the pattern of retinal OPt termination on the two sides. Injections of WGA–HRP into OPt labeled terminals bilaterally in the anteromedian nucleus, and to a lesser extent in the supraoculomotor area, centrally projecting Edinger–Westphal nucleus, and nucleus of the posterior commissure. Labeled terminals, as well as retrogradely labeled multipolar cells, were present in the contralateral OPt, indicating a commissural pathway. Injections of WGA–HRP into the anteromedian nucleus labeled fusiform premotor neurons within the OPt, as well as multipolar cells in the nucleus of the posterior commissure. Connections between retinal terminals and the pretectal premotor neurons were characterized by combining vitreous chamber and anteromedian nucleus injections of WGA–HRP in the same animal. Fusiform‐shaped, retrogradely labeled cells fell within the anterogradely labeled retinal terminal field in the OPt. Ultrastructural analysis revealed labeled retinal terminals containing clear spherical vesicles. They contacted labeled pretectal premotor neurons via asymmetric synaptic densities. These results provide an anatomical substrate for the pupillary light reflex in the cat. Pretectal premotor neurons receive direct retinal input via synapses suggestive of an excitatory drive, and project directly to nuclei containing preganglionic motoneurons. These projections are concentrated in the anteromedian nucleus, indicating its involvement in the pupillary light reflex. J. Comp. Neurol. 522:3960–3977, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
The localization of the spinal accessory motoneurons (SAMNs) that innervate the accessory respiratory muscles, the sternocleidomastoid (SCM) and trapezius (TP) muscles, was identified in the cat using the horseradish peroxidase (HRP) method. In the cases of HRP bathing of the transected spinal accessory nerve (SAN), HRP-labeled motoneurons were observed ipsilaterally from the C1 to the rostral C6 segments of the spinal cord. Labeled neurons were located principally in the medial and central regions of the dorsomedial cell column of the ventral horn in the C1 segment, in the lateral region of the ventrolateral cell column in the C2-C4 segments, between the ventrolateral and ventromedial cell columns in the C5 segment and in the lateral region of the ventromedial cell column in the C6 segment. In the cases of HRP injection into either SCM or TP muscles, labeled SCM motoneurons were found in the C1-C3 segments of the spinal cord and labeled TP motoneurons were chiefly localized more caudally within the spinal accessory nucleus. The present study revealed that, in the C5 and C6 segments, the SAMNs have a very similar topographic localization to the phrenic nucleus in the ventral horn. This finding implicated the functional linkage of the SAMNs with the phrenic motoneurons in particular types of respiration.  相似文献   

15.
The location of the motoneurons innervating the lateral rectus, pyramidalis, and quadratus muscles of the chick has been determined by application of horseradish peroxidase (HRP) to these muscles and their nerve branches, and internuclear neurons in the abducens nucleus have been identified by injection of HRP into the oculomotor nucleus. Quantitative results were obtained by means of a semiautomatic image analyzer. Lateral rectus motoneurons were observed only in the ipsilateral principal abducens nucleus, where they numbered 500-550, and quadratus and pyramidalis motoneurons only in the ipsilateral accessory abducens nucleus. The 325-375 internuclear neurons that appeared in the principal abducens nucleus contralateral to the oculomotor nucleus injected with HRP were practically confined to the rostral two thirds of the nucleus, where they tended to surround the lateral rectus motoneurons in dorsal or lateral positions, though a minority of interneurons also mingled with the motoneurons in the center or at the medial face of the nucleus. Most interneurons were small and elongated, but a minority of larger interneurons morphologically similar to the lateral rectus motoneurons were also distinguishable. The 100-110 quadratus motoneurons and the 45-55 pyramidalis motoneurons mingled in the accessory abducens nucleus were larger than the lateral rectus motoneurons and sent their axons into the ipsilateral abducens nerve.  相似文献   

16.
Accumulating evidence indicates that electrophysiologically distinct subsets of sympathetic neurons selectively innervate different classes of targets. The organization of this system may therefore be reflected in the sympathetic fiber contents of peripheral nerves. To test this possibility, we have mapped the pathways followed by three groups of postganglionic sympathetic axons in the bullfrog by recording compound action potentials and by retrograde tracing with horseradish peroxidase (HRP). The axons that were studied arise from fast B, slow B, and C-type neurons in ganglia 9 and 10 at the lumbar end of the paravertebral sympathetic chain. They project to peripheral targets primarily by way of the sciatic nerve and can be distinguished by the velocities with which they conduct action potentials. Action potentials were recorded with suction electrodes from isolated preparations composed of paravertebral chain ganglia 7-10, the sciatic nerve, and branches of the sciatic nerve that supply striated muscles, skin, and the bladder. Preganglionic B fibers were selectively activated by stimulating the paravertebral chain rostral to ganglion 7, and preganglionic C fibers were selectively activated by stimulating spinal nerves 7 and 8 at points central to their rami communicantes. Compound action potentials recorded from the sciatic, peroneal, tibial, and sural nerves and from the primary trunk of the pelvic nerve were each found to contain three components produced, respectively, by fast B, slow B, and C-type sympathetic axons. Similarly, action potentials recorded from cutaneous branches of the sciatic tree were found to contain three sympathetic components. By contrast, when compound action potentials were recorded from branches of the sciatic tree that directly enter and innervate striated muscles and also the bladder, the sympathetic responses were found to arise solely from C-type axons. HRP was used to label the sympathetic neurons that project to the sartorius muscle and into the cutaneous lateral crural nerve. Retrograde transport of HRP from the sartorius muscle labeled 17 +/- 4 (mean +/- s.d.) sympathetic neurons and 27 +/- 3 spinal motoneurons while transport from the lateral crural nerve labeled 68 +/- 47 sympathetic neurons but no spinal neurons. The average somatic diameter of ganglion cells projecting to the sartorius muscle was significantly smaller than that of cells projecting to the lateral crural nerve. The electrophysiological results indicate that fast B and slow B sympathetic axons in the sciatic trunk and its primary branches project selectively into cutaneous nerves while sympathetic C axons project into all peripheral nerves.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The nucleus ambiguus has been reported to innervate various thoracic and abdominal viscera in addition to the musculature of the upper alimentary tract. However, the literature is contradictory as to how different regions of the nucleus ambiguus innervate specific organs. Therefore, a systematic investigation of the viscerotopic organization of the nucleus ambiguus was undertaken. In 102 rats, 0.5-10.0 microliter of HRP, WGA-HRP, cholera toxin-HRP or fluorescent tracers were injected into the IXth, Xth, and XIth cranial nerves and the major branches of the Xth as well as organs supplied by them. The results demonstrate that the nucleus ambiguus in the rat is made up of two major longitudinal divisions: a dorsal division comprised of three rostrocaudally aligned subdivisions representing the special visceral efferent component, and a ventral division comprised of at least two subdivisions representing the general visceral efferent component. The dorsal division corresponds to the nucleus ambiguus in the narrow sense and comprises a rostral esophagomotor compact formation, an intermediate pharyngolaryngomotor semicompact formation, and a caudal laryngomotor loose formation. Each of these formations displays a characteristic dendroarchitecture. The stylopharyngeal and cricothyroid motoneurons are displaced rostrad from the main pharyngeal and laryngeal motoneuronal pools. Thyropharyngeal (lower constrictor) motoneurons occupy the rostral half of the semi-compact formation and hyopharyngeal (middle constrictor) motoneurons its entire length. The ventral division of the nucleus ambiguus corresponds to the external formation, extends along the entire length of the medulla oblongata, and contains preganglionic neurons innervating the heart and supradiaphragmatic structures innervated by the glossopharyngeal and the superior laryngeal nerves.  相似文献   

18.
Changes in the tracheal smooth muscle tone have been studied in 30 cats anaesthetized with a chloralose-urethane mixture and paralyzed with succinyl choline bromide during electrical stimulation of the medulla oblongata. Constrictor responses were evoked from the regions including the caudal portion of the dorsal motor nucleus of the vagus, nucleus ambiguous and neighbouring structures of the reticular formation. Dilatory responses of the tracheal smooth muscle were observed during stimulation of the reticular formation at the level from 1 mm caudally to 6 mm rostrally of the obex. It is supposed that structures responsible for contractile responses are vagal preganglionic neurons, located in the dorsal motor nucleus of the vagus, in the nucleus ambiguous and in neighbouring regions and axons of these cells, looping through the medial part of the medulla. It is also supposed that dilatory responses are associated with excitation of sympathotonic reticular neurons, inhibitory neurons activated by the input from pulmonary stretch receptors and, possibly, vagal efferent neurons belonging to the nonadrenergic nervous system of the bronchi.  相似文献   

19.
In this study we utilized the technique of simultaneous immunofluorescent double-labeling to investigate possible coexistence of the putative neurotransmitter thyrotropin-releasing hormone (TRH) with serotonin (5-HT) and with substance P (SP) in the intermediolateral cell column (IML) of rat spinal cord. We observed fibers and terminals immunoreactive for both TRH and 5-HT or TRH and SP in IML. In addition, this technique was used in animals in which we retrogradely labeled, with fluorescent tracer dyes, preganglionic sympathetic neurons within IML from either the adrenal medulla or the proximal cut end of the cervical sympathetic trunk. In these animals, fibers and terminals containing these combinations of neurotransmitters appeared to oppose identified preganglionic sympathetic neurons in IML. These data represent the first direct immunohistochemical demonstration of fibers and terminals in spinal cord which display coexistence of TRH- with either 5-HT- or SP-immunoreactivity. In addition, the proximity of TRH-immunoreactive fibers and terminals to sympathetic preganglionic neurons in IML support a role for TRH in the regulation of central sympathetic outflow.  相似文献   

20.
Number and distribution of stapedius motoneurons in cats   总被引:1,自引:0,他引:1  
Cell bodies of stapedius motoneurons were identified by retrograde transport of horseradish peroxidase (HRP) following injections into the stapedius muscle. Large injections were made in an attempt to label all stapedius motoneurons. To control for labeling of non-stapedial neurons resulting from spread of HRP, we determined the locations of brainstem neurons labeled by HRP applied to the facial nerve, the chorda tympani nerve, the auricular branch of the vagus nerve, the tensor tympani muscle, and the cochlea. In three cats analyzed in detail, 1,133-1,178 neurons projecting to the stapedius muscle were identified. Arguments are given which suggest that in these three cats all stapedius motoneurons were labeled. The labeled stapedius neurons may all be motoneurons because they all stain positively for acetylcholinesterase and have medium-coarse Nissl bodies. Most stapedius motoneurons were located around the motor nucleus of the facial nerve. Staphedius motoneurons were also found near the descending limb of the facial-nerve root, in the peri-olivary neuropil, and in the reticular formation with the ascending fibers of the facial-nerve root.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号